A Meta-Analysis and Systematic Review of Listeria monocytogenes Response to Sanitizer Treatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria and Data Extraction
2.3. Estimation of Summary Effects
2.4. Statistic Analysis
3. Results and Discussion
3.1. Characteristics of the Extracted Information
3.2. Effect Size Estimation by Sanitizer
3.3. Effect Size Estimation by L. monocytogenes Biofilm Status
3.4. Effect Size Estimation by Matrix
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Carpentier, B.; Cerf, O. Review—Persistence of Listeria monocytogenes in Food Industry Equipment and Premises. Int. J. Food Microbiol. 2011, 145, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Disson, O.; Moura, A.; Lecuit, M. Making Sense of the Biodiversity and Virulence of Listeria monocytogenes. Trends Microbiol. 2021, 29, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Kallipolitis, B. Factors Contributing to Listeria monocytogenes Transmission and Impact on Food Safety. Curr. Opin. Food Sci. 2020, 9, 9–17. [Google Scholar] [CrossRef]
- Jacquet, C.; Catimel, B.; Brosch, R.; Buchrieser, C.; Dehaumont, P.; Goulet, V.; Lepoutre, A.; Veit, P.; Rocourt, J. Investigations Related to the Epidemic Strain Involved in the French Listeriosis Outbreak in 1992. Appl. Environ. Micobiol. 1995, 61, 2242–2246. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, S. Multistate Outbreak of Listeriosis Associated with Jensen Farms Cantaloupe—United States, August–September 2011. Am. J. Transplant. 2011, 11, 2768–2769. [Google Scholar] [CrossRef]
- Smith, A.M.; Tau, N.P.; Smouse, S.L.; Allam, M.; Ismail, A.; Ramalwa, N.R.; Disenyeng, B.; Ngomane, M.; Thomas, J. Outbreak of Listeria monocytogenes in South Africa, 2017–2018: Laboratory Activities and Experiences Associated with Whole-Genome Sequencing Analysis of Isolates. Foodborne Pathog. Dis. 2019, 16, 524–530. [Google Scholar] [CrossRef] [Green Version]
- Borges, T.; Moretti, L.; Silva, M.; Tondo, E.; Pereira, K. Salmonella Sensitivity to Sodium Hypochlorite and Citric Acid in Washing Water of Lettuce Residues. J. Food Saf. 2020, 40, e12748. [Google Scholar] [CrossRef]
- Truchado, P.; Gil, M.; Allende, A. Peroxyacetic Acid and Chlorine Dioxide Unlike Chlorine Induce Viable but Non-Culturable (VBNC) Stage of Listeria monocytogenes and Escherichia coli O157:H7 in Wash Water. Food Microbiol. 2021, 100, 103866. [Google Scholar] [CrossRef]
- Wang, R.Y.; Shen, X.; Su, Y.; Critzer, F.; Zhu, M.-J. Chlorine and Peroxyacetic Acid Inactivation of Listeria monocytogenes in Simulated Apple Dump Tank Water. Food Control 2023, 144, 109314. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, X.; Chen, Y.; Lin, M.; Tang, J.; Lin, Q.; Fang, L.; Li, M.; Hung, Y.; Lin, H. Recent Trends and Applications of Electrolyzed Oxidizing Water in Fresh Foodstuff Preservation and Safety Control. Food Chem. 2022, 369, 130873. [Google Scholar] [CrossRef]
- Vyrostkova, J.; Pipova, M.; Semjon, B.; Jevinova, P.; Regecova, I.; Mal’ova, J. Antibacterial Effects of Hydrogen Peroxide and Caprylic Acid on Selected Foodborne Bacteria. Polish Pol. J. Vet. Sci. 2020, 23, 439–446. [Google Scholar] [CrossRef]
- Pietrysiak, E.; Kummer, J.; Hanrahan, I.; Ganjyal, G. Hurdle Effect of Hot Air Impingement Drying and Surfactant-Sanitizer Wash on Removal of Listeria innocua from Fresh Apples. Pol. J. Vet. Sci. 2020, 83, 1488–1494. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Kang, J.; Woo, H.; Song, K. Inactivation of Listeria monocytogenes and Escherichia coli O157:H7 Inoculated on Fresh-Cut Romaine Lettuce by Peanut Skin Extract/Benzethonium Chloride Emulsion Washing. Food Control 2021, 119, 107479. [Google Scholar] [CrossRef]
- Sheng, L.; Shen, X.; Zhu, M. Screening of Non-Pathogenic Surrogates of Listeria monocytogenes Applicable for Chemical Antimicrobial Interventions of Fresh Apples. Food Control 2020, 110, 106977. [Google Scholar] [CrossRef]
- Skowron, K.; Hulisz, K.; Gryn, G.; Olszewska, H.; Wiktorczyk, N.; Paluszak, Z. Comparison of Selected Disinfectants Efficiency against Listeria monocytogenes Biofilm Formed on Various Surfaces. Int. Microbiol. 2018, 21, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Dhowlaghar, N.; Abeysundara, P.; Nannapaneni, R.; Schilling, M.; Chang, S.; Cheng, W.; Sharma, C. Growth and Biofilm Formation by Listeria monocytogenes in Catfish Mucus Extract on Four Food Contact Surfaces at 22 and 10 Degrees C and Their Reduction by Commercial Disinfectants. J. Food Prot. 2018, 81, 59–67. [Google Scholar] [CrossRef]
- Pacheappan, G.; Samsudin, N.; Hasan, H. The Effects of Different Disinfectants and Application Conditions on Microbial Contaminants at Dairy Processing Line. Food Process. Preserv. 2022, 46, e16172. [Google Scholar] [CrossRef]
- Hoelzer, K.; Pouillot, R.; Van Doren, J.M.; Dennis, S. Reduction of Listeria monocytogenes Contamination on Produce—A Quantitative Analysis of Common Liquid Fresh Produce Wash Compounds. Food Control 2014, 46, 430–440. [Google Scholar] [CrossRef]
- Nunes Silva, B.; Cadavez, V.; Teixeira, J.A.; Ellouze, M.; Gonzales-Barron, U. Cardinal Parameter Meta-Regression Models Describing Listeria monocytogenes Growth in Broth. Food Res. Int. 2020, 136, 109476. [Google Scholar] [CrossRef]
- den Besten, H.M.W.; Zwietering, M.H. Meta-Analysis for Quantitative Microbiological Risk Assessments and Benchmarking Data. Food Sci. Technol. 2012, 25, 34–39. [Google Scholar] [CrossRef]
- Prado-Silva, L.; Cadavez, V.; Gonzales-Barron, U.; Rezende, A.; Sant’Ana, A. Meta-Analysis of the Effects of Sanitizing Treatments on Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes Inactivation in Fresh Produce. Appl. Environ. Microbiol. 2015, 81, 8008–8021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afari, G.; Hung, Y. A Meta-Analysis on the Effectiveness of Electrolyzed Water Treatments in Reducing Foodborne Pathogens on Different Foods. Food Control 2018, 93, 150–164. [Google Scholar] [CrossRef]
- Hoelzer, K.; Fanaselle, W.; Pouillot, R.; Van Doren, J.M.; Dennis, S. Virus Inactivation on Hard Surfaces or in Suspension by Chemical Disinfectants: Systematic Review and Meta-Analysis of Norovirus Surrogates. J. Food Prot. 2013, 76, 1006–1016. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Clin Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef]
- Annavajhala, M.K.; Gomez-Simmonds, A.; Macesic, N.; Sullivan, S.B.; Kress, A.; Khan, S.D.; Giddins, M.J.; Stump, S.; Kim, G.I.; Narain, R.; et al. Colonizing Multidrug-Resistant Bacteria and the Longitudinal Evolution of the Intestinal Microbiome after Liver Transplantation. Nat. Commun. 2019, 10, 4715. [Google Scholar] [CrossRef] [Green Version]
- Bokulich, N.A.; Dillon, M.R.; Zhang, Y.; Rideout, J.R.; Bolyen, E.; Li, H.; Albert, P.S.; Caporaso, J.G. Q2-Longitudinal: Longitudinal and Paired-Sample Analyses of Microbiome Data. mSystems 2018, 3, e00219-18. [Google Scholar] [CrossRef] [Green Version]
- van Houwelingen, H.C.; Arends, L.R.; Stijnen, T. Advanced Methods in Meta-Analysis: Multivariate Approach and Meta-Regression. Statist. Med. 2002, 21, 589–624. [Google Scholar] [CrossRef]
- Higgins, J.P.T. Measuring Inconsistency in Meta-Analyses. BMJ-Br. Med. J. 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Rahnama, H.; Azari, R.; Yousefi, M.H.; Berizi, E.; Mazloomi, S.M.; Hosseinzadeh, S.; Derakhshan, Z.; Ferrante, M.; Conti, G.O. A Systematic Review and Meta-Analysis of the Prevalence of Bacillus cereus in Foods. Food Control 2023, 143, 109250. [Google Scholar] [CrossRef]
- Sun, T.; Liu, Y.; Qin, X.; Aspridou, Z.; Zheng, J.; Wang, X.; Li, Z.; Dong, Q. The Prevalence and Epidemiology of Salmonella in Retail Raw Poultry Meat in China: A Systematic Review and Meta-Analysis. Foods 2021, 10, 2757. [Google Scholar] [CrossRef]
- Ofori, I.; Maddila, S.; Lin, J.; Jonnalagadda, S.B. Chlorine Dioxide Oxidation of Escherichia coli in Water—A Study of the Disinfection Kinetics and Mechanism. J. Environ. Health Part A 2017, 52, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, C.; Xu, P.; Wang, X.C. Mechanisms of Ultraviolet Disinfection and Chlorination of Escherichia coli: Culturability, Membrane Permeability, Metabolism, and Genetic Damage. J. Environ. Sci. 2018, 65, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Cho, G.-L.; Ha, J.-W. Synergistic effect of citric acid and xenon light for inactivating foodborne pathogens on spinach leaves. Food Res. Int. 2021, 142, 110210. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Qin, Y.; Zuo, J.; Liu, T.; Xiao, J. Comparison of the Sterilization Efficiency of 3 Disinfectants for Dropped Anterior Cruciate Ligament Grafts: A Systematic Review and Meta-Analysis. Orthop. J. Sport. Med. 2021, 9, 23259671211002873. [Google Scholar] [CrossRef]
- Feliciano, L.; Lee, J.; Pascall, M. Transmission Electron Microscopic Analysis Showing Structural Changes to Bacterial Cells Treated with Electrolyzed Water and an Acidic Sanitizer. J. Food Sci. 2012, 77, M182–M187. [Google Scholar] [CrossRef]
- Xu, H.; Teo, K.; Neo, H.; Liu, Y. Chemically Inhibited ATP Synthesis Promoted Detachment of Different-Age Biofilms from Membrane Surface. Appl. Microbiol. Biotechnol. 2012, 95, 1073–1082. [Google Scholar] [CrossRef]
- Zameer, F.; Gopal, S. Impact of Hydrogen Peroxide on Growth and Survival of Listeria monocytogenes Biofilms. E-J. Chem. 2010, 7, 1008–1012. [Google Scholar] [CrossRef] [Green Version]
- Wong, H.S.; Townsend, K.M.; Fenwick, S.G.; Maker, G.; Trengove, R.D.; O’Handley, R.M. Comparative Susceptibility of Salmonella Typhimurium Biofilms of Different Ages to Disinfectants. Biofouling 2010, 26, 859–864. [Google Scholar] [CrossRef]
- Magalhaes, R.; Ferreira, V.; Brandao, T.; Palencia, R.; Almeida, G.; Teixeira, P. Persistent and Non-Persistent Strains of Listeria monocytogenes: A Focus on Growth Kinetics under Different Temperature, Salt, and PH Conditions and Their Sensitivity to Sanitizers. Food Microbiol. 2016, 57, 103–108. [Google Scholar] [CrossRef]
- Lin, M.; Chiang, M.; Pan, C.; Chou, C. Heat Shock and Cold Shock Treatments Affect the Survival of Listeria monocytogenes and Salmonella typhimurium Exposed to Disinfectants. J. Food Prot. 2012, 75, 695–700. [Google Scholar] [CrossRef]
- Ortiz-Sola, J.; Abadias, M.; Colas-Meda, P.; Sanchez, G.; Bobo, G.; Vinas, I. Evaluation of a Sanitizing Washing Step with Different Chemical Disinfectants for the Strawberry Processing Industry. Int. J. Food Microbiol. 2020, 334, 108810. [Google Scholar] [CrossRef] [PubMed]
- Sheng, L.; Shen, X.; Su, Y.; Korany, A.; Knueven, C.; Zhu, M. The Efficacy of Sodium Acid Sulfate on Controlling Listeria monocytogenes on Apples in a Water System with Organic Matter. Food Microbiol. 2020, 92, 103595. [Google Scholar] [CrossRef] [PubMed]
- Norhana, M.; Poole, S.; Deeth, H.; Dykes, G. The Effects of Temperature, Chlorine and Acids on the Survival of Listeria and Salmonella Strains Associated with Uncooked Shrimp Carapace and Cooked Shrimp Flesh. Food Microbiol. 2010, 27, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Korany, A.; Hua, Z.; Green, T.; Hanrahan, I.; El-Shinawy, S.; El-Kholy, A.; Hassan, G.; Zhu, M. Efficacy of Ozonated Water, Chlorine, Chlorine Dioxide, Quaternary Ammonium Compounds and Peroxyacetic Acid Against Listeria monocytogenes Biofilm on Polystyrene Surfaces. Front. Microbiol. 2018, 9, 2296. [Google Scholar] [CrossRef]
- Kim, M.; Park, S.; Ha, S. Synergistic Effect of a Combination of Ultraviolet-C Irradiation and Sodium Hypochlorite to Reduce Listeria monocytogenes Biofilms on Stainless Steel and Eggshell Surfaces. Food Control 2016, 70, 103–109. [Google Scholar] [CrossRef]
- Choi, N.-Y.; Kim, B.-R.; Bae, Y.-M.; Lee, S.-Y. Biofilm Formation, Attachment, and Cell Hydrophobicity of Foodborne Pathogens under Varied Environmental Conditions. J. Korean Soc. Appl. Biol. Chem. 2013, 56, 207–220. [Google Scholar] [CrossRef]
- Fan, Y.; Qiao, J.; Lu, Z.; Fen, Z.; Tao, Y.; Lv, F.; Zhao, H.; Zhang, C.; Bie, X. Influence of Different Factors on Biofilm Formation of Listeria monocytogenes and the Regulation of CheY Gene. Food Res. Int. 2020, 137, 109405. [Google Scholar] [CrossRef]
- Huang, K.; Nitin, N. Enhanced Removal of Escherichia coli O157:H7 and Listeria innocua from Fresh Lettuce Leaves Using Surfactants during Simulated Washing. Food Control 2017, 79, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Warning, A.; Datta, A.K. Interdisciplinary Engineering Approaches to Study How Pathogenic Bacteria Interact with Fresh Produce. J. Food Eng. 2013, 114, 426–448. [Google Scholar] [CrossRef]
- Ijabadeniyi, O.; Mnyandu, E. Inactivation of Heat Adapted and Chlorine Adapted Listeria monocytogenes ATCC 7644 on Tomatoes Using Sodium Dodecyl Sulphate, Levulinic Acid and Sodium Hypochlorite Solution. Ital. J. Food Saf. 2017, 6, 5916. [Google Scholar] [CrossRef]
- Akbas, M.; Olmez, H. Inactivation of Escherichia Coli and Listeria monocytogenes on Iceberg Lettuce by Dip Wash Treatments with Organic Acids. Lett. Appl. Microbiol. 2007, 44, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Hernando, A.; Guevara-Franco, J.; Alonso-Calleja, C.; Capita, R. Effect of the Temperature of the Dipping Solution on the Antimicrobial Effectiveness of Various Chemical Decontaminants against Pathogenic and Spoilage Bacteria on Poultry. J. Food Prot. 2013, 76, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, J.; Grzybowski, V.; Cuppini, M.; Flach, J.; Steffens, C.; Toniazzo, G.; Cansian, R. Listeria monocytogenes Adhesion to Food Processing Surfaces (Boning Knives) and the Removal Efficacy of Different Sanitizers. J. Food Sci. 2016, 28, 733–743. [Google Scholar]
- Chen, H.; Zhong, Q. Antibacterial Activity of Acidified Sodium Benzoate against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in Tryptic Soy Broth and on Cherry Tomatoes. Int. J. Food Microbiol. 2018, 274, 38–44. [Google Scholar] [CrossRef]
- Deza, M.; Araujo, M.; Garrido, M. Inactivation of Escherichia coli O157:H7, Salmonella Enteritidis and Listeria monocytogenes on the Surface of Tomatoes by Neutral Electrolyzed Water. Lett. Appl. Microbiol. 2003, 37, 482–487. [Google Scholar] [CrossRef]
- Ding, T.; Rahman, S.; Oh, D. Inhibitory Effects of Low Concentration Electrolyzed Water and Other Sanitizers against Foodborne Pathogens on Oyster Mushroom. Food Control 2011, 22, 318–322. [Google Scholar] [CrossRef]
- Ding, T.; Dong, Q.; Rahman, S.; Oh, D. Response Surface Modeling of Listeria monocytogenes Inactivation on Lettuce Treated with Electrolyzed Oxidizing Water. J. Food Process Eng. 2011, 34, 1729–1745. [Google Scholar] [CrossRef]
- Domenech, E.; Botella, S.; Ferrus, M.; Escriche, I. The Role of the Consumer in the Reduction of Listeria monocytogenes in Lettuces by Washing at Home. Food Control 2013, 29, 98–102. [Google Scholar] [CrossRef]
- Forghani, F.; Oh, D. Hurdle Enhancement of Slightly Acidic Electrolyzed Water Antimicrobial Efficacy on Chinese Cabbage, Lettuce, Sesame Leaf and Spinach Using Ultrasonication and Water Wash. Food Microbiol. 2013, 36, 40–45. [Google Scholar] [CrossRef]
- Gurtler, J. Two Generally Recognized as Safe Surfactants plus Acidulants Inactivate Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes in Suspension or on Dip-Inoculated Grape Tomatoes. J. Food Prot. 2020, 83, 637–643. [Google Scholar] [CrossRef]
- Inatsu, Y.; Weerakkody, K.; Bari, M.; Hosotani, Y.; Nakamura, N.; Kawasaki, S. The Efficacy of Combined (NaClO and Organic Acids) Washing Treatments in Controlling Escherichia coli O157:H7, Listeria monocytogenes and Spoilage Bacteria on Shredded Cabbage and Bean Sprout. LWT 2017, 85, 1–8. [Google Scholar] [CrossRef]
- Jeon, M.; Ha, J. Synergistic Bactericidal Effect and Mechanism of X-ray Irradiation and Citric Acid Combination against Food-Borne Pathogens on Spinach Leaves. Food Microbiol. 2020, 91, 103543. [Google Scholar] [CrossRef] [PubMed]
- Juneja, V.; Osoria, M.; Altuntas, E.; Salazar, J.; Kumar, G.; Sehgal, S.; Baker, D. Inactivation of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Spp. on Dates by Antimicrobial Washes. J. Food Process. Preserv. 2021, 45, e15282. [Google Scholar] [CrossRef]
- Jung, S.; Song, K. Effects of Lactic Acid and Lemongrass Oil Treatment on the Pre-Existing Microorganisms and Foodborne Pathogens in Tatsoi (Brassica Rapa Var. Rosularis) Baby Leaves. J. Food Sci. Technol. 2015, 52, 7556–7560. [Google Scholar] [CrossRef]
- Kang, J.; Kang, D. Enhanced Antimicrobial Effect of Organic Acid Washing against Foodborne Pathogens on Broccoli by Vacuum Impregnation. Int. J. Food Microbiol. 2016, 217, 85–93. [Google Scholar] [CrossRef]
- Kang, J.; Song, K. Antibacterial Activity of the Noni Fruit Extract Against Listeria monocytogenes and Its Applicability as a Natural Sanitizer for the Washing of Fresh-Cut Produce. Food Microbiol. 2019, 84, 103260. [Google Scholar] [CrossRef]
- Kang, J.; Park, S.; Park, J.; Song, K. Surfactant Type Affects the Washing Effect of Cinnamon Leaf Essential Oil Emulsion on Kale Leaves. Food Chem. 2019, 271, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Duan, J.; Su, Y.-C. Effects of Electrolyzed Oxidizing Water on Reducing Listeria monocytogenes Contamination on Seafood Processing Surfaces. Int. J. Food Microbiol. 2006, 106, 248–253. [Google Scholar] [CrossRef]
- Neo, S.; Lim, P.; Phua, L.; Khoo, G.; Kim, S.; Lee, S.; Yuk, H. Efficacy of Chlorine and Peroxyacetic Acid on Reduction of Natural Microflora, Escherichia coli O157:H7, Listeria monocytogenes and Salmonella spp. on Mung Bean Sprouts. Food Microbiol. 2013, 36, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Ngnitcho, P.; Khan, I.; Tango, C.; Hussain, M.; Oh, D. Inactivation of Bacterial Pathogens on Lettuce, Sprouts, and Spinach Using Hurdle Technology. Innov. Food Sci. Emerg. Technol. 2017, 43, 68–76. [Google Scholar] [CrossRef]
- Ozer, N.; Demirci, A. Electrolyzed Oxidizing Water Treatment for Decontamination of Raw Salmon Inoculated with Escherichia coli O157:H7 and Listeria monocytogenes Scott A and Response Surface Modeling. J. Food Eng. 2006, 72, 234–241. [Google Scholar] [CrossRef]
- Park, C.; Hung, Y.; Doyle, M.; Ezeike, G.; Kim, C. Pathogen Reduction and Quality of Lettuce Treated with Electrolyzed Oxidizing and Acidified Chlorinated Water. J. Food Sci. 2001, 66, 1368–1372. [Google Scholar] [CrossRef]
- Possas, A.; Perez-Rodriguez, F.; Tarlak, F.; Garcia-Gimeno, R. Quantifying and Modelling the Inactivation of Listeria monocytogenes by Electrolyzed Water on Food Contact Surfaces. J. Food Eng. 2021, 290, 110287. [Google Scholar] [CrossRef]
- Qi, H.; Hung, Y. Effectiveness of Activated Persulfate in Removal of Foodborne Pathogens from Romaine Lettuce. Food Control 2019, 106, 106708. [Google Scholar] [CrossRef]
- Rahman, S.; Ding, T.; Oh, D. Effectiveness of Low Concentration Electrolyzed Water to Inactivate Foodborne Pathogens under Different Environmental Conditions. Int. J. Food Microbiol. 2010, 139, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Ding, T.; Oh, D. Inactivation Effect of Newly Developed Low Concentration Electrolyzed Water and Other Sanitizers against Microorganisms on Spinach. Food Control 2010, 21, 1383–1387. [Google Scholar] [CrossRef]
- Ramos, B.; Brandao, T.; Teixeira, P.; Silva, C. Balsamic Vinegar from Modena: An Easy and Effective Approach to Reduce Listeria monocytogenes from Lettuce. Food Control 2014, 42, 38–42. [Google Scholar] [CrossRef]
- Rangel-Vargas, E.; Luna-Rojo, A.; Cadena-Ramirez, A.; Torres-Vitela, M.; Gomez-Aldapa, C.; Villarruel-Lopez, A.; Tellez-Jurado, A.; Villagomez-Ibarra, J.; Reynoso-Camacho, R.; Castro-Rosas, J. Behavior of 11 Foodborne Bacteria on Whole and Cut Mangoes Var. Ataulfo and Kent and Antibacterial Activities of Hibiscus Sabdariffa Extracts and Chemical Sanitizers Directly onto Mangoes Contaminated with Foodborne Bacteria. J. Food Prot. 2018, 81, 743–753. [Google Scholar] [CrossRef]
- Riazi, S.; Matthews, K.R. Failure of Foodborne Pathogens to Develop Resistance to Sanitizers Following Repeated Exposure to Common Sanitizers. Int. Biodeterior. Biodegrad. 2011, 65, 374–378. [Google Scholar] [CrossRef]
- Sheng, L.; Shen, X.; Ulloa, O.; Suslow, T.; Hanrahan, I.; Zhu, M. Evaluation of JC9450 and Neutral Electrolyzed Water in Controlling Listeria monocytogenes on Fresh Apples and Preventing Cross-Contamination. Front. Microbiol. 2020, 10, 3128. [Google Scholar] [CrossRef]
- Singh, P.; Hung, Y.; Qi, H. Efficacy of Peracetic Acid in Inactivating Foodborne Pathogens on Fresh Produce Surface. J. Food Sci. 2018, 83, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Szabo, E.; Simons, L.; Coventry, M.; Cole, M. Assessment of Control Measures to Achieve a Food Safety Objective of Less than 100 CFU of Listeria monocytogenes per Gram at the Point of Consumption for Fresh Precut Iceberg Lettuce. J. Food Prot. 2003, 66, 256–264. [Google Scholar] [CrossRef]
- Tango, C.; Khan, I.; Kounkeu, P.; Momna, R.; Hussain, M.; Oh, D. Slightly Acidic Electrolyzed Water Combined with Chemical and Physical Treatments to Decontaminate Bacteria on Fresh Fruits. Food Microbiol. 2017, 67, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Udompijitkul, P.; Daeschel, M.; Zhao, Y. Antimicrobial Effect of Electrolyzed Oxidizing Water against Escherichia coli O157:H7 and Listeria monocytogenes on Fresh Strawberries (Fragaria × Ananassa). J. Food Sci. 2007, 72, M397–M406. [Google Scholar] [CrossRef]
- Wade, W.; Scouten, A.; McWatters, K.; Wick, R.; Demirci, A.; Fett, W.; Beuchat, L. Efficacy of Ozone in Killing Listeria monocytogenes on Alfalfa Seeds and Sprouts and Effects on Sensory Quality of Sprouts. J. Food Prot. 2003, 66, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Walton, J.; Hill, D.; Protheroe, R.; Nevill, A.; Gibson, H. Investigation into the Effect of Detergents on Disinfectant Susceptibility of Attached Escherichia coli and Listeria monocytogenes. J. Appl. Microbiol. 2008, 105, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, S.; Chang, T.; Shi, L.; Yang, H.; Shao, Y.; Feng, W.; Cui, M. Efficacy of Lactic Acid in Reducing Foodborne Pathogens in Minimally Processed Lotus Sprouts. Food Control 2013, 30, 721–726. [Google Scholar] [CrossRef]
- Wang, S.; Chen, J.; Wakeling, C.; Bach, S.; Orban, S.; Delaquis, P. Disinfection of Alfalfa and Radish Sprouting Seed Using Oxidizing Agents and Treatments Compliant with Organic Food Production Principles. J. Food Prot. 2020, 83, 779–787. [Google Scholar] [CrossRef]
- Yoon, J.; Jeong, D.; Lee, S.; Choi, S.; Jeong, M.; Lee, S.; Kim, S. Decontamination of Listeria monocytogenes in King Oyster Mushrooms (Pleurotus eryngii) by Combined Treatments with Organic Acids, Nisin, and Ultrasound. LWT 2021, 144, 111207. [Google Scholar] [CrossRef]
- Yuk, H.; Yoo, M.; Yoon, J.; Marshall, D.; Oh, D. Effect of Combined Ozone and Organic Acid Treatment for Control of Escherichia coli O157:H7 and Listeria monocytogenes on Enoki Mushroom. J. Food Saf. 2007, 18, 548–553. [Google Scholar] [CrossRef]
- Aarnisalo, K.; Salo, S.; Miettinen, H.; Suihko, M.; Wirtanen, G.; Autio, T.; Lunden, J.; Korkeala, H.; Sjoberg, A. Bactericidal Efficiencies of Commercial Disinfectants against Listeria monocytogenes on Surfaces. J. Food Saf. 2000, 20, 237–250. [Google Scholar] [CrossRef]
- Arevalos-Sanchez, M.; Regalado, C.; Martin, S.; Meas-Vong, Y.; Cadena-Moreno, E.; Garcia-Almendarez, B. Effect of Neutral Electrolyzed Water on Lux-Tagged Listeria monocytogenes EGDe Biofilms Adhered to Stainless Steel and Visualization with Destructive and Non-Destructive Microscopy Techniques. Food Control 2013, 34, 472–477. [Google Scholar] [CrossRef]
- Ayebah, B.; Hung, Y.; Frank, J. Enhancing the Bactericidal Effect of Electrolyzed Water on Listeria monocytogenes Biofilms Formed on Stainless Steel. J. Food Prot. 2005, 68, 1375–1380. [Google Scholar] [CrossRef] [PubMed]
- Ban, G.; Kang, D. Effect of Sanitizer Combined with Steam Heating on the Inactivation of Foodborne Pathogens in a Biofilm on Stainless Steel. Food Microbiol. 2016, 55, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Bodur, T.; Cagri-Mehmetoglu, A. Removal of Listeria monocytogenes, Staphylococcus aureus and Escherichia coli O157:H7 Biofilms on Stainless Steel Using Scallop Shell Powder. Food Control 2012, 25, 1–9. [Google Scholar] [CrossRef]
- Cabeca, T.; Pizzolitto, A.; Pizzolitto, E. Activity of Disinfectants Against Foodborne Pathogens in Suspension and Adhered to Stainless Steel Surfaces. Braz. J. Microbiol. 2012, 43, 1112–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.; Zhao, T.; Doyle, M. Control of Pathogens in Biofilms on the Surface of Stainless Steel by Levulinic Acid plus Sodium Dodecyl Sulfate. Int. J. Food Microbiol. 2015, 207, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Chorianopoulos, N.; Giaouris, E.; Skandamis, P.; Haroutounian, S.; Nychas, G. Disinfectant Test against Monoculture and Mixed-Culture Biofilms Composed of Technological, Spoilage and Pathogenic Bacteria: Bactericidal Effect of Essential Oil and Hydrosol of Satureja Thymbra and Comparison with Standard Acid-Base Sanitizers. J. Appl. Microbiol. 2008, 104, 1586–1596. [Google Scholar] [CrossRef]
- Hua, Z.; Korany, A.; El-Shinawy, S.; Zhu, M. Comparative Evaluation of Different Sanitizers Against Listeria monocytogenes Biofilms on Major Food-Contact Surfaces. Front. Microbiol. 2019, 10, 2462. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, D.; Killington, A.; Fouhy, K.; Loh, M.; Malakar, P. The CDC Biofilm Bioreactor Is a Suitable Method to Grow Biofilms, and Test Their Sanitiser Susceptibilities, in the Dairy Context. Int. Dairy J. 2022, 126, 105264. [Google Scholar] [CrossRef]
- Liu, F.; Du, L.; Zhao, T.; Zhao, P.; Doyle, M. Effects of Phenyllactic Acid as Sanitizing Agent for Inactivation of Listeria monocytogenes Biofilms. Food Control 2017, 78, 72–78. [Google Scholar] [CrossRef]
- Pang, X.; Yuk, H. Effects of the Colonization Sequence of Listeria monocytogenes and Pseudomonas Fluorescens on Survival of Biofilm Cells under Food-Related Stresses and Transfer to Salmon. Food Microbiol. 2019, 82, 142–150. [Google Scholar] [CrossRef]
- Poimenidou, S.; Chrysadakou, M.; Tzakoniati, A.; Bikouli, V.; Nychas, G.; Skandamis, P. Variability of Listeria monocytogenes Strains in Biofilm Formation on Stainless Steel and Polystyrene Materials and Resistance to Peracetic Acid and Quaternary Ammonium Compounds. Int. J. Food Microbiol. 2016, 237, 164–171. [Google Scholar] [CrossRef]
- Robbins, J.; Fisher, C.; Moltz, A.; Martin, S. Elimination of Listeria monocytogenes Biofilms by Ozone, Chlorine, and Hydrogen Peroxide. J. Food Prot. 2005, 68, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Srey, S.; Park, S.; Jahid, I.; Oh, S.; Han, N.; Zhang, C.; Kim, S.; Cho, J.; Ha, S. Evaluation of the Removal and Destruction Effect of a Chlorine and Thiamine Dilaurylsulfate Combined Treatment on L. monocytogenes Biofilm. Foodborne Pathog. Dis. 2014, 11, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Stopforth, J.; Samelis, J.; Sofos, J.; Kendall, P.; Smith, G. Biofilm Formation by Acid-Adapted Nonadaoted Listeria monocytogenes in Fresh Its Beef Decontamination Washings and Its Subsequent Inactivation with Sanitizers. J. Food Prot. 2002, 65, 1717–1727. [Google Scholar] [CrossRef] [PubMed]
- Vaid, R.; Linton, R.; Morgan, M. Comparison of Inactivation of Listeria monocytogenes within a Biofilm Matrix Using Chlorine Dioxide Gas, Aqueous Chlorine Dioxide and Sodium Hypochlorite Treatments. Food Microbiol. 2010, 27, 979–984. [Google Scholar] [CrossRef] [PubMed]
- Arvaniti, M.; Tsakanikas, P.; Papadopoulou, V.; Giannakopoulou, A.; Skandamis, P. Listeria monocytogenes Sublethal Injury and Viable-but-Nonculturable State Induced by Acidic Conditions and Disinfectants. Microbiol. Spectr. 2021, 9, e01377-21. [Google Scholar] [CrossRef] [PubMed]
- Bridier, A.; Briandet, R.; Thomas, V.; Dubois-Brissonnet, F. Comparative Biocidal Activity of Peracetic Acid, Benzalkonium Chloride and Ortho-Phthalaldehyde on 77 Bacterial Strains. J. Hosp. Infect. 2011, 78, 208–213. [Google Scholar] [CrossRef]
- Dhowlaghar, N.; Shen, Q.; Nannapaneni, R.; Schilling, W.; Samala, A. Survival of Acid Stress Adapted Cells of Listeria monocytogenes Serotypes 1/2a and 4b in Commonly Used Disinfectants in Broth and Water Models. LWT 2019, 109, 201–206. [Google Scholar] [CrossRef]
- El-Zamkan, M.; Hendy, B.; Diab, H.; Marraiki, N.; Batiha, G.; Saber, H.; Younis, W.; Thangamani, S.; Alzahrani, K.; Ahmed, A. Control of Virulent Listeria monocytogenes Originating from Dairy Products and Cattle Environment Using Marine Algal Extracts, Silver Nanoparticles Thereof, and Quaternary Disinfectants. Infect. Drug Resist. 2021, 14, 2721–2739. [Google Scholar] [CrossRef] [PubMed]
- Forghani, F.; Park, J.; Oh, D. Effect of Water Hardness on the Production and Microbicidal Efficacy of Slightly Acidic Electrolyzed Water. Food Microbiol. 2015, 48, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Heinonen-Tanski, H.; Miettinen, H. Performic Acid as a Potential Disinfectant at Low Temperature. J. Food Process Eng. 2010, 33, 1159–1172. [Google Scholar] [CrossRef]
- Pangloli, P.; Hung, Y. Effects of Water Hardness and PH on Efficacy of Chlorine-Based Sanitizers for Inactivating Escherichia coli O157:H7 and Listeria monocytogenes. Food Control 2013, 32, 626–631. [Google Scholar] [CrossRef]
- Pleitner, A.; Trinetta, V.; Morgan, M.; Linton, R.; Oliver, H. Transcriptional and Phenotypic Responses of Listeria monocytogenes to Chlorine Dioxide. Appl. Environ. Microbiol. 2014, 80, 2951–2963. [Google Scholar] [CrossRef] [Green Version]
- Qi, H.; Huang, Q.; Hung, Y. Efficacy of Activated Persulfate in Inactivating Escherichia coil O157:H7 and Listeria monocytogenes. Int. J. Food Microbiol. 2018, 284, 40–47. [Google Scholar] [CrossRef]
- Rahman, S.; Park, J.; Wang, J.; Oh, D. Stability of Low Concentration Electrolyzed Water and Its Sanitization Potential against Foodborne Pathogens. J. Food Eng. 2012, 113, 548–553. [Google Scholar] [CrossRef]
- Serraino, A.; Veronese, G.; Alonso, S.; Matera, R.; Lugoboni, B.; Giacometti, F. Bactericidal Activity of Electrolyzed Oxidizing Water on Food Processing Surfaces. J. Food Sci. 2010, 22, 222–228. [Google Scholar]
- Skowron, K.; Walecka-Zacharska, E.; Grudlewska, K.; Bialucha, A.; Wiktorczyk, N.; Bartkowska, A.; Kowalska, M.; Kruszewski, S.; Gospodarek-Komkowska, E. Biocidal Effectiveness of Selected Disinfectants Solutions Based on Water and Ozonated Water against Listeria monocytogenes Strains. Microorganisms 2019, 7, 127. [Google Scholar] [CrossRef] [Green Version]
- Veasey, S.; Muriana, P. Evaluation of Electrolytically-Generated Hypochlorous Acid (‘Electrolyzed Water’) for Sanitation of Meat and Meat-Contact Surfaces. Foods 2016, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Venkitanarayanan, K.; Ezeike, G.; Hung, Y.; Doyle, M. Efficacy of Electrolyzed Oxidizing Water for Inactivating Escherichia coli O157:H7, Salmonella Enteritidis, and Listeria monocytogenes. Appl. Environ. Microbiol. 1999, 65, 4276–4279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Kendall, P.; Medeiros, L.; Sofos, J. Inactivation of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium with Compounds Available in Households. J. Food Prot. 2009, 72, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
Sanitizer | Parameter | Mean | SE | p | AIC | BIC |
---|---|---|---|---|---|---|
CA | Intercept (β0) | 2.93 | 0.76 | <0.05 | 48.21 | 52.05 |
Con (β1) | 1.17 | 0.32 | <0.05 | I² = 96.20% | ||
Time (β2) | 0.09 | 0.02 | <0.05 | |||
Temp (β3) | 0.01 | 0.01 | 1 NS | |||
Intercept (ϑ) | 1.25 | |||||
Residual (ε) | 0.09 | |||||
CDS | Intercept (β0) | 10.00 | 3.40 | <0.05 | 180.80 | 192.50 |
Con (β1) | 2.13 | 0.50 | <0.05 | I² = 99.30% | ||
Time (β2) | 0.06 | 0.02 | <0.05 | |||
Temp (β3) | 0.14 | 0.04 | <0.05 | |||
Intercept (ϑ) | 4.6 | |||||
Residual (ε) | 0.44 | |||||
PAA | Intercept (β0) | 7.49 | 1.21 | <0.05 | 330.50 | 345.80 |
Con (β1) | 1.34 | 0.29 | <0.05 | I² = 99.40% | ||
Time (β2) | 0.14 | 0.03 | <0.05 | |||
Temp (β3) | 0.02 | 0.01 | NS | |||
Intercept (ϑ) | 0.95 | |||||
Residual (ε) | 0.54 | |||||
EW | Intercept (β0) | 11.63 | 1.53 | <0.05 | 601.70 | 620.50 |
Con (β1) | 2.06 | 0.31 | <0.05 | I² = 99.80% | ||
Time (β2) | 0.02 | 0.01 | NS | |||
Temp (β3) | 0.04 | 0.06 | <0.05 | |||
Intercept (ϑ) | 2.47 | |||||
Residual (ε) | 0.59 | |||||
SH | Intercept (β0) | 4.63 | 0.90 | <0.05 | 385.00 | 402.20 |
Con (β1) | 0.85 | 0.21 | <0.05 | I² = 99.40% | ||
Time (β2) | 0.08 | 0.01 | <0.05 | |||
Temp (β3) | 0.03 | 0.01 | <0.05 | |||
Intercept (ϑ) | 1.62 | |||||
Residual (ε) | 0.39 | |||||
CH | Intercept (β0) | 52.95 | 6.04 | <0.05 | 59.24 | 62.63 |
Con (β1) | 1.75 | 0.14 | <0.05 | I² = 99.60% | ||
Time (β2) | −0.06 | 0.03 | NS | |||
Temp (β3) | −2 | 0.27 | <0.05 | |||
Intercept (ϑ) | 0.00 | |||||
Residual (ε) | 0.49 |
Status | Sanitizer | Parameter | Mean | SE | p | AIC | BIC |
---|---|---|---|---|---|---|---|
Plankton | PAA | Intercept (β0) | 12.28 | 3.12 | <0.05 | 170.50 | 180.12 |
Con (β1) | 2.46 | 0.68 | <0.05 | I² = 99.30% | |||
Time (β2) | 0.16 | 0.04 | <0.05 | ||||
Temp (β3) | 0.03 | 0.02 | 1 NS | ||||
Intercept (ϑ) | 2.72 | ||||||
Residual (ε) | 0.64 | ||||||
SH | Intercept (β0) | 7.02 | 6.02 | NS | 53.73 | 55.54 | |
Con (β1) | 0.30 | 1.53 | NS | I² = 97.30% | |||
Time (β2) | −0.02 | 0.03 | NS | ||||
Temp (β3) | 0.03 | 0.02 | NS | ||||
Intercept (ϑ) | 1.38 | ||||||
Residual (ε) | 0.39 | ||||||
HP | Intercept (β0) | 12.01 | 6.96 | NS | 135.90 | 146.77 | |
Con (β1) | 7.50 | 3.6 | <0.05 | I² = 93.00% | |||
Time (β2) | 0.09 | 0.04 | <0.05 | ||||
Temp (β3) | 0.15 | 0.19 | NS | ||||
Intercept (ϑ) | 0 | ||||||
Residual (ε) | 0.46 | ||||||
AA | Intercept (β0) | 12.47 | 6.12 | NS | 30.10 | 22.25 | |
Con (β1) | 9.77 | 4.44 | NS | I² = 98.40% | |||
Time (β2) | 0.22 | 0.12 | NS | ||||
Temp (β3) | 0.11 | 0.04 | NS | ||||
Intercept (ϑ) | 0.59 | ||||||
Residual (ε) | 0.54 | ||||||
CDS | Intercept (β0) | 10.21 | 5.89 | NS | 101.40 | 108.92 | |
Con (β1) | 2.24 | 0.58 | <0.05 | I² = 99.40% | |||
Time (β2) | 0.06 | 0.03 | <0.05 | ||||
Temp (β3) | 0.16 | 0.05 | <0.05 | ||||
Intercept (ϑ) | 8.01 | ||||||
Residual (ε) | 0.45 | ||||||
EW | Intercept (β0) | 14.83 | 2.44 | <0.05 | 276.60 | 289.98 | |
Con (β1) | 2.24 | 0.48 | <0.05 | I² = 99.90% | |||
Time (β2) | 0.11 | 0.1 | NS | ||||
Temp (β3) | 0.05 | 0.02 | NS | ||||
Intercept (ϑ) | 1.44 | ||||||
Residual (ε) | 0.74 | ||||||
Adhesion | PAA | Intercept (β0) | 8.25 | 3.92 | NS | 73.99 | 78.99 |
Con (β1) | 1.25 | 0.81 | NS | I² = 98.40% | |||
Time (β2) | 0.03 | 0.15 | NS | ||||
Temp (β3) | −0.02 | 0.05 | NS | ||||
Intercept (ϑ) | 0.83 | ||||||
Residual (ε) | 0.46 | ||||||
SH | Intercept (β0) | 2.26 | 0.83 | <0.05 | 170.8 | 182.41 | |
Con (β1) | 0.33 | 0.19 | NS | I² = 96.40% | |||
Time (β2) | 0.06 | 0.02 | <0.05 | ||||
Temp (β3) | 0.03 | 0.02 | NS | ||||
Intercept (ϑ) | 0.71 | ||||||
Residual (ε) | 0.44 | ||||||
AA | Intercept (β0) | 4.65 | 0.74 | <0.05 | 18.72 | 20.54 | |
Con (β1) | 0.47 | 0.17 | <0.05 | I² = 96.50% | |||
Time (β2) | 0.05 | 0.01 | <0.05 | ||||
Temp (β3) | −0.15 | 0.04 | <0.05 | ||||
Intercept (ϑ) | 0.39 | ||||||
Residual (ε) | 0.05 | ||||||
CA | Intercept (β0) | 3.27 | 0.78 | <0.05 | 40.05 | 45.96 | |
Con (β1) | 1.22 | 0.32 | <0.05 | I² = 93.00% | |||
Time (β2) | 0.07 | 0.02 | <0.05 | ||||
Temp (β3) | 0.01 | 0.01 | NS | ||||
Intercept (ϑ) | 1.21 | ||||||
Residual (ε) | 0.08 | ||||||
EW | Intercept (β0) | 11.75 | 1.64 | <0.05 | 279.90 | 294.85 | |
Con (β1) | 2.33 | 0.36 | <0.05 | I² = 99.00% | |||
Time (β2) | 0.01 | 0.01 | NS | ||||
Temp (β3) | 0.03 | 0.02 | NS | ||||
Intercept (ϑ) | 1.47 | ||||||
Residual (ε) | 0.45 | ||||||
LA | Intercept (β0) | 5.69 | 1.52 | <0.05 | 40.52 | 43.43 | |
Con (β1) | 1.08 | 0.26 | <0.05 | I² = 98.10% | |||
Time (β2) | 0.01 | 0.01 | NS | ||||
Temp (β3) | −0.09 | 0.07 | NS | ||||
Intercept (ϑ) | 0.82 | ||||||
Residual (ε) | 0.12 | ||||||
Biofilm | PAA | Intercept (β0) | 7.01 | 10 | NS | 101.60 | 110.40 |
Con (β1) | 0.09 | 0.57 | NS | I² = 99.80% | |||
Time (β2) | 0.14 | 0.1 | NS | ||||
Temp (β3) | −0.15 | 0.4 | NS | ||||
Intercept (ϑ) | 0 | ||||||
Residual (ε) | 0.48 | ||||||
SH | Intercept (β0) | 6.22 | 0.86 | <0.05 | 152.30 | 164.94 | |
Con (β1) | 1.39 | 0.23 | <0.05 | I² = 98.60% | |||
Time (β2) | 0.11 | 0.01 | <0.05 | ||||
Temp (β3) | 0.01 | 0.01 | NS | ||||
Intercept (ϑ) | 0.98 | ||||||
Residual (ε) | 0.28 | ||||||
HP | Intercept (β0) | 30.7 | 15.8 | NS | 25.73 | 27.58 | |
Con (β1) | 0.84 | 0.36 | <0.05 | I² = 98.90% | |||
Time (β2) | 0.19 | 0.05 | <0.05 | ||||
Temp (β3) | −1.33 | 0.73 | NS | ||||
Intercept (ϑ) | 1.33 | ||||||
Residual (ε) | 0.15 | ||||||
EW | Intercept (β0) | 98.1 | 20.6 | <0.05 | 18.83 | 15.15 | |
Con (β1) | 0.39 | 0.67 | NS | I² = 99.60% | |||
Time (β2) | 0.48 | 0.35 | NS | ||||
Temp (β3) | −3.84 | 0.92 | NS | ||||
Intercept (ϑ) | 0.32 | ||||||
Residual (ε) | 0.24 | ||||||
LA | Intercept (β0) | 12.87 | 13.5 | NS | 36.60 | 34.26 | |
Con (β1) | 1.94 | 0.81 | NS | I² = 88.60% | |||
Time (β2) | 0.00 | 0.00 | NS | ||||
Temp (β3) | −0.32 | 0.61 | NS | ||||
Intercept (ϑ) | 2.45 | ||||||
Residual (ε) | 0.19 |
Matrix | Sanitizer | Parameter | Mean | SE | p | AIC | BIC |
---|---|---|---|---|---|---|---|
Stainless steel | SH | Intercept (β0) | 37.58 | 14.75 | <0.05 | 96.80 | 105.95 |
Con (β1) | 2.21 | 0.32 | <0.05 | I² = 98.60% | |||
Time (β2) | 0.29 | 0.05 | <0.05 | ||||
Temp (β3) | −1.27 | 0.64 | 1 NS | ||||
Intercept (ϑ) | 1.48 | ||||||
Residual (ε) | 0.27 | ||||||
EW | Intercept (β0) | 23.81 | 22.77 | NS | 99.27 | 109.10 | |
Con (β1) | 3.72 | 0.42 | <0.05 | I² = 99.70% | |||
Time (β2) | 0.28 | 0.048 | <0.05 | ||||
Temp (β3) | −0.25 | 0.94 | NS | ||||
Intercept (ϑ) | 2.72 | ||||||
Residual (ε) | 0.64 | ||||||
Lettuce | SH | Intercept (β0) | 3.21 | 0.46 | <0.05 | 20.07 | 22.06 |
Con (β1) | 0.42 | 0.08 | <0.05 | I² = 93.30% | |||
Time (β2) | 0.01 | 0.01 | NS | ||||
Temp (β3) | 2 - | ||||||
Intercept (ϑ) | 0.41 | ||||||
Residual (ε) | 0.11 | ||||||
EW | Intercept (β0) | 5.67 | 1.57 | <0.05 | 55.83 | 62.37 | |
Con (β1) | 0.83 | 0.33 | <0.05 | I² = 95.20% | |||
Time (β2) | 0.06 | 0.05 | NS | ||||
Temp (β3) | 0.03 | 0.01 | <0.05 | ||||
Intercept (ϑ) | 1.52 | ||||||
Residual (ε) | 0.17 | ||||||
Egg shell | SH | Intercept (β0) | 7.59 | 1.63 | <0.05 | 6.73 | 1.50 |
Con (β1) | 1.69 | 0.41 | NS | I² = 66.50% | |||
Time (β2) | - | ||||||
Temp (β3) | - | ||||||
Intercept (ϑ) | 0.14 | ||||||
Residual (ε) | 0.11 | ||||||
Shrimp carapace | SH | Intercept (β0) | 0.96 | 0.18 | <0.05 | 91.87 | 99.92 |
Con (β1) | - | I² = 96.70% | |||||
Time (β2) | 0.12 | 0.01 | <0.05 | ||||
Temp (β3) | 0.03 | 0.01 | <0.05 | ||||
Intercept (ϑ) | 2.72 | ||||||
Residual (ε) | 0.64 | ||||||
Salmon fillet | EW | Intercept (β0) | −0.1 | 0.07 | NS | −0.45 | 0.54 |
Con (β1) | - | I² = 0.00% | |||||
Time (β2) | 0.01 | 0 | <0.05 | ||||
Temp (β3) | 0.03 | 0 | <0.05 | ||||
Intercept (ϑ) | 0.02 | ||||||
Residual (ε) | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M.; Dong, Q.; Liu, Y.; Sun, T.; Gu, M.; Zhu, H.; Xia, X.; Li, Z.; Wang, X.; Ma, Y.; et al. A Meta-Analysis and Systematic Review of Listeria monocytogenes Response to Sanitizer Treatments. Foods 2023, 12, 154. https://doi.org/10.3390/foods12010154
Hu M, Dong Q, Liu Y, Sun T, Gu M, Zhu H, Xia X, Li Z, Wang X, Ma Y, et al. A Meta-Analysis and Systematic Review of Listeria monocytogenes Response to Sanitizer Treatments. Foods. 2023; 12(1):154. https://doi.org/10.3390/foods12010154
Chicago/Turabian StyleHu, Minmin, Qingli Dong, Yangtai Liu, Tianmei Sun, Mingliang Gu, Huajian Zhu, Xuejuan Xia, Zhuosi Li, Xiang Wang, Yue Ma, and et al. 2023. "A Meta-Analysis and Systematic Review of Listeria monocytogenes Response to Sanitizer Treatments" Foods 12, no. 1: 154. https://doi.org/10.3390/foods12010154
APA StyleHu, M., Dong, Q., Liu, Y., Sun, T., Gu, M., Zhu, H., Xia, X., Li, Z., Wang, X., Ma, Y., Yang, S., & Qin, X. (2023). A Meta-Analysis and Systematic Review of Listeria monocytogenes Response to Sanitizer Treatments. Foods, 12(1), 154. https://doi.org/10.3390/foods12010154