Alcoholic Fermentation as a Source of Congeners in Fruit Spirits
Abstract
:1. Introduction
2. Spirits Are More than Just Alcohol and Water—They Conclude the Essence of the Scent
3. The Research of Spirits Aroma Approach
4. Aroma Compounds in Spirts
4.1. Aroma Compounds Treated during Alcohol Fermentation
4.1.1. Higher Alcohols
4.1.2. Esters
4.1.3. Acids
4.1.4. Carbonyl Compounds
4.1.5. Volatile Phenols and Other Aroma Active Compounds
4.2. Factors Influencing the Development of Aroma Compounds
4.2.1. Saccharomyces and Non-Saccharomyces Yeasts in Spirit Production
4.2.2. Nitrogen Content
4.2.3. Metal Ions Content
4.2.4. pH Value
4.2.5. Temperature
5. Aroma Active Compounds
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Satora, P.; Tuszyński, T. Chemical characteristics of Śliwowica Łącka and other plum brandies. J. Sci. Food Agric. 2008, 88, 167–174. [Google Scholar] [CrossRef]
- Lukić, I.; Tomas, S.; Milicević, B.; Radeka, S.; Peršuric, Ð. Behaviour of Volatile Compounds during Traditional Alembic Distillation of Fermented Muscat Blanc and Muškat Ruža Porecki Grape Marcs. J. Inst. Brew. 2011, 117, 440–450. [Google Scholar] [CrossRef]
- Arrieta-Garay, Y.; García-Llobodanin, L.; Pérez-Correa, J.R.; López-Vázquez, C.; Orriols, I.; Lopez, F. Aromatically Enhanced Pear Distillates from Blanquilla and Conference Varieties Using a Packed Column. J. Agric. Food Chem. 2013, 61, 4936–4942. [Google Scholar] [CrossRef] [PubMed]
- Spaho, N.; Dürr, P.; Grba, S.; Velagić-Habul, E.; Blesić, M. Effects of distillation cut on the distribution of higher alcohols and esters in brandy produced from three plum varieties. J. Inst. Brew. 2013, 119, 48–56. [Google Scholar] [CrossRef]
- Rodriguez-Solana, R.; Galego, L.R.; Perez-Santin, E.; Romano, A. Production method and varietal source influence the volatile profiles of spirits prepared from fig fruits (Ficus carica L.). Eur. Food Res. Technol. 2018, 244, 2213–2229. [Google Scholar] [CrossRef]
- Popović, B.; Mitrović, O.; Leposavić, A.; Paunović, S.; Jevremović, D.; Nikićević, N.; Tešević, V. Chemical and sensory characterization of plum spirits obtained from cultivar Čačanska Rodna and its parent cultivars. J. Serb. Chem. Soc. 2019, 84, 1381–1390. [Google Scholar] [CrossRef]
- Januszek, M.; Satora, P.; Tarko, T. Oenological Characteristics of Fermented Apple Musts and Volatile Profile of Brandies Obtained from Different Apple Cultivars. Biomolecules 2020, 10, 853. [Google Scholar] [CrossRef]
- Schwarz, M.; Rodríguez-Dodero, M.C.; Jurado, M.S.; Puertas, B.; Barroso, C.G.; Guillén, D.A. Analytical Characterization and Sensory Analysis of Distillates of Different Varieties of Grapes Aged by an Accelerated Method. Foods 2020, 9, 277. [Google Scholar] [CrossRef]
- Magdas, D.A.; Cristea, G.; Pîrnau, A.; Feher, I.; Hategan, A.R.; Dehelean, A. Authentication of Transylvanian Spirits Based on Isotope and Elemental Signatures in Conjunction with Statistical Methods. Foods 2021, 10, 3000. [Google Scholar] [CrossRef]
- Bathgate, G.N. A review of malting and malt processing for whisky distillation. J. Inst. Brew. 2016, 122, 197–211. [Google Scholar] [CrossRef]
- Awad, P.; Athès, V.; Esteban Decloux, M.; Ferrari, G.; Snakkers, G.; Raguenaud, P.; Giampaoli, P. Evolution of Volatile Compounds during the Distillation of Cognac Spirit. J. Agric. Food Chem. 2017, 65, 7736–7748. [Google Scholar] [CrossRef]
- Lourenço, S.; Anjos, O.; Caldeira, I.; Alves, S.O.; Santos, N.; Canas, S. Natural Blending as a Novel Technology for the Production Process of AgedWine Spirits: Potential Impact on Their Quality. Appl. Sci. 2022, 12, 10055. [Google Scholar] [CrossRef]
- Spaho, N. Distillation techniques in the fruit spirits production. In Distillation—Innovative Applications and Modeling; Mendes Fernandes, M., Ed.; IntechOpen: London, UK, 2017; Chapter 6; pp. 129–152. [Google Scholar]
- Spaho, N.; Đukic-Ratković, D.; Nikićević, N.; Blesić, M.; Tešević, V.; Mijatović, B.; Smajić Murtić, M. Aroma compounds in barrel aged apple distillates from two different distillation techniques. J. Inst. Brew. 2019, 125, 389–397. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Xu, Y. Distilled beverage aging: A review on aroma characteristics, maturation mechanisms, and artificial aging techniques. Compr. Rev. Food Sci. 2023, 22, 502–534. [Google Scholar] [CrossRef]
- Tsakiris, A.; Kallithraka, S.; Kourkoutas, Y. Grape brandy production, composition and sensory evaluation. J. Sci. Food Agric. 2014, 94, 404–414. [Google Scholar] [CrossRef]
- Coldea, T.E.; Socaciu, C.; Moldovan, Z.; Mudura, E. Minor Volatile Compounds in Traditional Homemade Fruit Brandies from Transylvania-Romania, As Determined by GC-MS Analysis. Not. Bot. Horti Agrobot. Cluj-Napoca 2014, 42, 530–537. [Google Scholar] [CrossRef]
- Wiśniewska, P.; Śliwińska, M.; Namieśnik, J.; Wardencki, W.; Dymerski, T. The Verification of the Usefulness of Electronic Nose Based on Ultra-Fast Gas Chromatography and Four Different Chemometric Methods for Rapid Analysis of Spirit Beverages. J. Anal. Methods Chem. 2016, 2016, 8763436. [Google Scholar] [CrossRef]
- Matijašević, S.; Popović-Djordjević, J.; Ristić, R.; Ćirković, D.; Ćirković, B.; Popović, T. Volatile Aroma Compounds of Brandy ‘Lozovača’ Produced from Muscat Table Grapevine Cultivars (Vitis vinifera L.). Molecules 2019, 24, 2485. [Google Scholar] [CrossRef]
- Pineda-Amaya, A.C.; Ocaña-Rios, I.; García-Aguilera, M.E.; Nolasco-Cancino, H.; Quiroz-García, B.; Esturau-Escofet, N.; Ruiz-Terán, F. 1H-NMR profile of mezcal and its distillation fractions using two sample preparation methods: Direct analysis and solid-phase extraction. Chem. Pap. 2021, 75, 4249–4259. [Google Scholar] [CrossRef]
- Paolini, M.; Tonidandel, L.; Larcher, R. Development, validation and application of a fast GC-FID method for the analysis of volatile compounds in spirit drinks and wine. Food Control 2022, 136, 108873. [Google Scholar] [CrossRef]
- Bhardwaj, K.S.; Dwivedi, K.; Agarwal, D.D. A Review: GC Method Development and validation. Int. Anal. Bioanal. Chem. 2016, 6, 1–7. [Google Scholar]
- He, X.; Yangming, H.; Górska-Horczyczak, E.; Wierzbicka, A.; Jeleń, H.H. Rapid analysis of Baijiu volatile compounds fingerprint for their aroma and regional origin authenticity assessment. Food Chem. 2021, 337, 128002. [Google Scholar] [CrossRef]
- Zenilda, L.; Cardeal, P.; Marriott, J. Comprehensive two-dimensional gas chromatography–mass spectrometry analysis and comparison of volatile organic compounds in Brazilian cachaça and selected spirits. Food Chem. 2009, 112, 747–755. [Google Scholar]
- Vyviurska, O.; Pysarevska, S.; Jánošková, N.; Špánik, I. Comprehensive two-dimensional gas chromatographic analysis of volatile organic compounds in distillate of fermented Sorbus domestica fruit. Open Chem. 2015, 13, 96–104. [Google Scholar] [CrossRef]
- Yao, F.; Yi, B.; Shen, C.; Tao, F.; Liu, Y.; Lin, Z.; Xu, P. Chemical Analysis of the Chinese Liquor Luzhoulaojiao by Comprehensive Two-Dimensional Gas Chromatography/Time-of-Flight Mass Spectrometry. Sci. Rep. 2015, 5, 9553. [Google Scholar] [CrossRef]
- Wisniewska, P.; Sliwinska, M.; Dymerski, T.; Wardencki, W.; Namiesnik, J. Comparison of an Electronic Nose Based on Ultrafast Gas Chromatography, Comprehensive Two Dimensional Gas Chromatography, and Sensory Evaluation for an Analysis of Type of Whisky. J. Chem. 2017, 2017, 2710104. [Google Scholar] [CrossRef]
- Mogollón, N.G.S.; Alexandrino, G.L.; de Almeida, J.R.; Niño-Ruiz, Z.; Peña-Delgado, J.G.; Torres-Gutiérrez, R.; Augusto, F. Comprehensive two-dimensional gas chromatography–mass spectrometry combined with multivariate data analysis for pattern recognition in Ecuadorian spirits. Chem. Cent. J. 2018, 12, 102. [Google Scholar] [CrossRef]
- Ferracane, A.; Manousi, N.; Tranchida, P.Q.; Zachariadis, G.A.; Mondello, L.; Rosenberg, E. Exploring the volatile profile of whiskey samples using solid-phase microextraction Arrow and comprehensive two-dimensional gas chromatography-mass spectrometry. J. Chromatogr. A 2022, 1676, 463241. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.; Chin, Y.-W.; Lee, J.-Y.; Kim, T.-W.; Jang, H.W. Analysis of Volatile Compounds in Soju, a Korean Distilled Spirit, by SPME-Arrow-GC/MS. Foods 2020, 9, 1422. [Google Scholar] [CrossRef]
- Barnes, Q.; Vial, J.; Thiébaut, D.; De Saint Jores, C.; Steyer, D.; Contamin, M.-A.; Papaiconomou, N.; Fernandez, X. Characterization of Flavor Compounds in Distilled Spirits: Developing a Versatile Analytical Method Suitable for Micro-Distilleries. Foods 2022, 11, 3358. [Google Scholar] [CrossRef] [PubMed]
- Chambers, E.; Koppel, K. Associations of volatile compounds with sensory aroma and flavor: The complex nature of flavor. Molecules 2013, 18, 4887–4905. [Google Scholar] [CrossRef] [PubMed]
- Hanousek Čiča, K.; Rupert, M.; Koczoń, P.; Derewiaka, D.; Gajdoš-Kljusurić, J.; Petravić-Tominac, V.; Mrvčić, J.; Stanzer, D. Characterisation of flavour compounds in Biska—A herbal spirit produced with mistletoe. J. Inst. Brew. 2019, 125, 143–154. [Google Scholar] [CrossRef]
- Ivanović, S.; Simić, K.; Tešević, V.; Vujisić, L.; Ljekočević, M.; Gođevac, D. GC-FID-MS Based Metabolomics to Access Plum Brandy Quality. Molecules 2021, 26, 1391. [Google Scholar] [CrossRef]
- Bajer, T.; Hill, M.; Ventura, K.; Bajerová, P. Authentification of fruit spirits using HS-SPME/GC-FID and OPLS methods. Sci. Rep. 2020, 10, 18965. [Google Scholar] [CrossRef]
- Hanousek Čiča, K.; Lukin, P.; Derewiaka, D.; Mrvčić, J.; Stanzer, D. Chemical Composition, Physical Properties, and Aroma Profile of Ethanol Macerates of Mistletoe (Viscum album). Beverages 2022, 8, 46. [Google Scholar] [CrossRef]
- Ding, X.; Wu, C.; Huang, J.; Zhou, R. Changes in Volatile Compounds of Chinese Luzhou-Flavor Liquor during the Fermentation and Distillation Process. J. Food Sci. 2015, 80, 2373–2381. [Google Scholar] [CrossRef]
- Hanousek-Čiča, K.; Pezer, M.; Mrvčić, J.; Stanzer, D.; Čačić, J.; Jurak, V.; Krajnović, M.; Gajdoš-Kljusurić, J. Identification of phenolic and alcoholic compounds in wine spirits and their classification by use of multivariate analysis. J. Serb. Chem. Soc. 2019, 84, 663–677. [Google Scholar] [CrossRef]
- Mrvčić, J.; Trontel, A.; Hanousek Čiča, K.; Vahčić, N.; Nikićević, N.; Spaho, N.; Mihaljević Žulj, M.; Brodski, A.; Jurak, V.; Krajnović, M.; et al. Chemical and sensorial characteristics of traditional fruit spirits from Southeast Europe. Glas. Zašt. Bilja 2021, 44, 80–89. [Google Scholar] [CrossRef]
- Anjos, O.; Caldeira, I.; Roque, R.; Pedro, S.I.; Lourenço, S.; Canas, S. Screening of Different Ageing Technologies of Wine Spirit by Application of Near-Infrared (NIR) Spectroscopy and Volatile Quantification. Processes 2020, 8, 736. [Google Scholar] [CrossRef]
- García-Moreno, M.V.; Sánchez-Guillén, M.M.; Mier, M.R.; Delgado-González, M.J.; Rodríguez-Dodero, M.C.; García-Barroso, C.; Guillén-Sánchez, D.A. Use of Alternative Wood for the Ageing of Brandy de Jerez. Foods 2020, 9, 250. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Liu, Y.; Wang, J.; Shuang, Q. Assessment of key aroma compounds in fresh jujube brandy by GC-O-MS and odor activity value. J. Food Process. Preserv. 2020, 44, 14494. [Google Scholar] [CrossRef]
- Raičević, D.; Popović, T.; Jančić, D.; Šuković, D.; Pajović-Šćepanović, R. The Impact of Type of Brandy on the Volatile Aroma Compounds and Sensory Properties of Grape Brandy in Montenegro. Molecules 2022, 27, 2974. [Google Scholar] [CrossRef] [PubMed]
- Perestrelo, R.; Caldeira, M.; Rodrigues, F.; Pereira, J.A.M.; Câmara, J.S. DLLμE/GC-MS as a Powerful Analytical Approach to Establish the Volatilomic Composition of Different Whiskeys. Beverages 2022, 8, 53. [Google Scholar] [CrossRef]
- Canas, S.; Anjos, O.; Caldeira, I.; Fernandes, T.A.; Santos, N.; Lourenço, S.; Granja-Soares, J.; Fargeton, L.; Boissier, B.; Catarino, S. Micro-oxygenation level as a key to explain the variation in the colour and chemical composition of wine spirits aged with chestnut wood staves. LWT 2022, 154, 112658. [Google Scholar] [CrossRef]
- Oliveira-Alves, S.; Lourenço, S.; Anjos, O.; Fernandes, T.A.; Caldeira, I.; Catarino, S.; Canas, S. Influence of the Storage in Bottle on the Antioxidant Activities and Related Chemical Characteristics of Wine Spirits Aged with Chestnut Staves and Micro-Oxygenation. Molecules 2022, 27, 106. [Google Scholar] [CrossRef]
- Valcárcel-Muñoz, M.J.; Butrón-Benítez, D.; Guerrero-Chanivet, M.; García-Moreno, M.V.; Rodríguez-Dodero, M.C.; Guillén-Sánchez, D.A. Influence of alcoholic strength on the characteristics of Brandy de Jerez aged in Sherry Casks®. J. Food Compos. Anal. 2022, 111, 104618. [Google Scholar] [CrossRef]
- Johnson, A.J.; Hopfer, H.; Heymann, H.; Ebeler, S.E. Aroma Perception and Chemistry of Bitters in Whiskey Matrices: Modeling the Old-Fashioned. Chem. Percept. 2017, 10, 135–148. [Google Scholar] [CrossRef]
- Mihajilov-Krstev, T.M.; Denić, M.S.; Zlatković, B.K.; Stankov-Jovanović, V.P.; Mitić, V.D.; Stojanović, G.S.; Radulović, N.S. Inferring the origin of rare fruit distillates from compositional data using multivariate statistical analyses and the identification of new flavour constituents. J. Sci. Food Agric. 2015, 95, 1217–1235. [Google Scholar] [CrossRef]
- Vivas, N.; Picard, M.; Bourden-Nonier, M.F.; Vivas de Gaulejac, N.; Mouche, C.; Rossy, C. Heartwood dry extract: A key fraction for the quality and the diversity of rums and spirits. J. Inst. Brew. 2021, 127, 59–69. [Google Scholar] [CrossRef]
- Malfondet, N.; Brunerie, P.; Le Quéré, J.L. Discrimination of French wine brandy origin by PTR-MS headspace analysis using ethanol ionization and sensory assessment. Anal. Bioanal. Chem. 2021, 413, 3349–3368. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Sun, Z.; Lin, L.; Zhang, C.; Wei, C. Analysis of the Effect of Mixed Fermentation on the Quality of Distilled Jujube Liquor by Gas Chromatography-Ion Mobility Spectrometry and Flavor Sensory Description. Foods 2023, 12, 795. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Chanivet, M.; Ortega-Gavilán, F.; Bagur-González, M.G.; Valcarecl-Munoz, M.J.; Garcia-Moreno, M.V.; Guillen-Sanchez, D.A. Pattern Recognition of GC-FID Profiles of Volatile Compounds in Brandy de Jerez Using a Chemometric Approach Based on Their Instrumental Fingerprints. Food Bioprocess Technol. 2023, 16, 1–13. [Google Scholar] [CrossRef]
- Coldea, T.E.; Socaciu, C.; Tofană, M.; Vekony, E.; Ranta, N. Impact of Distillation Process on the Major Volatile Compounds as Determined by GC-FID Analysis in Apple Brandy Originated from Transylvania, Romania. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca 2012, 62, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Liang, R.; Huang, J.; Zhou, R.; Chen, Z.; Wu, C.; Zhou, R.; Liao, X. Volatile Compounds of Raw Spirits from Different Distilling Stages of Luzhou-flavor Spirit. Food Sci. Technol. Res. 2014, 20, 283–293. [Google Scholar] [CrossRef]
- He, F.; Yang, S.; Zhang, G.; Xu, L.; Li, H.; Sun, J.; Huang, M.; Zheng, F.; Sun, B. Exploration of key aroma active compounds in strong flavor Baijiu during the distillation by modern instrument detection technology combined with multivariate statistical analysis methods. J. Food Compos. Anal. 2022, 110, 104577. [Google Scholar] [CrossRef]
- Popović, B.; Gavrilović-Damnjanović, J.; Mitrović, O.; Ogašanović, D.; Nikićević, N.; Tešević, V. Major volatile components and sensory characteristics of plum brandies produced from plum cultivars developed in Čačak. Acta Hortic. 2009, 825, 575–582. [Google Scholar] [CrossRef]
- Santos, C.C.; Duarte, W.F.; Carreiro, S.C.; Schwan, R.F. Inoculated fermentation of orange juice (Citrus sinensis L.) for production of a citric fruit spirit. J. Inst. Brew. 2013, 119, 280–287. [Google Scholar] [CrossRef]
- Belcerek, M.; Pielech-Przybylska, K.; Patelski, P.; Dziekońska-Kubczak, U.; Strąk, E. The effect of distillation conditions and alcohol content in ‘heart’ fractions on the concentration of aroma volatiles and undesirable compounds in plum brandies. J. Inst. Brew. 2017, 123, 452–463. [Google Scholar] [CrossRef]
- Pham, T.M.; Sun, W.; Bujna, E.; Hoschke, Á.; Friedrich, L.; Nguyen, Q.D. Optimization of Fermentation Conditions for Production of Hungarian Sour Cherry Spirit Using Response Surface Methodology. Fermentation 2021, 7, 209. [Google Scholar] [CrossRef]
- Darıcı, M.; Özcan, K.; Beypınar, D.; Cabaroglu, T. Sensory Lexicon and Major Volatiles of Rakı Using Descriptive Analysis and GC-FID/MS. Foods 2021, 10, 1494. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, M.G.; Pretorius, I.S. Yeast and its Importance to Wine Aroma—A Review. S. Afr. J. Enol. Vitic. 2000, 21, 97–129. [Google Scholar] [CrossRef]
- Belda, I.; Ruiz, J.; Esteban-Fernández, A.; Navascués, E.; Marquina, D.; Santos, A.; Moreno-Arribas, M.V. Microbial Contribution to Wine Aroma and Its Intended Use for Wine Quality Improvement. Molecules 2017, 22, 189. [Google Scholar] [CrossRef] [PubMed]
- Mendes-Ferreira, A.; Barbosa, C.; Lage, P.; Mendes-Faia, A. The impact of nitrogen on yeast fermentation and wine quality. Ciênc. Téc. Vitiv. 2011, 26, 17–32. [Google Scholar]
- Stewart, G.G. The Production of Secondary Metabolites with Flavour Potential during Brewing and Distilling Wort Fermentations. Fermentation 2017, 3, 63. [Google Scholar] [CrossRef]
- Willner, B.; Granvogl, M.; Schieberle, P. Characterization of the key aroma compounds in Bartlett pear brandies by means of the sensomics concept. J. Agric. Food Chem. 2013, 61, 9583–9593. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Y.; Guan, X.; Qin, W.; Zhang, X.; Ding, Y.; Yang, W.; Zhou, J.; Yu, X. Characterization of key aroma compounds in melon spirits using the sensomics concept. LWT 2022, 161, 113341. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Barroca, M.J.; Coldea, T.E.; Bartkiene, E.; Anjos, O. Apple Fermented Products: An Overview of Technology, Properties and Health Effects. Processes 2021, 9, 223. [Google Scholar] [CrossRef]
- Wang, X.; Guo, W.; Sun, B.; Li, H.; Zheng, F.; Li, J.; Meng, N. Characterization of Key Aroma-Active Compounds in Two Types of Peach Spirits Produced by Distillation and Pervaporation by Means of the Sensomics Approach. Foods 2022, 11, 2598. [Google Scholar] [CrossRef]
- López, F.; Rodríguez-Bencomo, J.J.; Orriols, I.; Pérez-Correa, J.R. Fruit brandies. In Science and Technology of Fruit Wine Production; Kosseva, M.R., Joshi, V.K., Panesar, P.S., Eds.; Academic Press: New York, NY, USA, 2017; pp. 531–556. [Google Scholar]
- Rodríguez Madrera, R.; Hevia, A.G.; Suárez Valles, B. Comparative study of two aging systems for cider brandy making. Changes in chemical composition. LWT 2013, 54, 513–520. [Google Scholar] [CrossRef]
- Tian, T.; Ruan, S.; Zhao, Y.; Li, J.; Yang, C.; Cao, H. Multi-objective evaluation of freshly distilled brandy: Characterisation and distribution patterns of key odour-active compounds. Food Chem. X 2022, 14, 100276. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zou, W.; Shen, C.H.; Yang, J.G. Basic flavor types and component characteristics of Chinese traditional liquors: A review. J. Food Sci. 2020, 85, 4096–4107. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.F.; Lan, Y.B.; Gao, X.T.; Xie, H.; An, Z.Y.; Lv, Z.H.; Duan, C.Q.; Wu, G.F. Characterization of odor-active compounds in the head, heart, and tail fractions of freshly distilled spirit from Spine grape (Vitis davidii Foex) wine by gas chromatography-olfactometry and gas chromatography-mass spectrometry. Food Res. Int. 2020, 137, 109388. [Google Scholar] [CrossRef]
- Niu, Y.; Liu, Y.; Xiao, Z. Evaluation of Perceptual Interactions between Ester Aroma Components in Langjiu by GC-MS, GC-O, Sensory Analysis, and Vector Model. Foods 2020, 9, 183. [Google Scholar] [CrossRef] [PubMed]
- Osafune, Y.; Toshida, K.; Han, J.; Isogai, A.; Mukai, N. Characterisation and threshold measurement of aroma compounds contributing to the quality of Honkaku shochu and Awamori. J. Inst. Brew. 2020, 126, 131–135. [Google Scholar] [CrossRef]
- Zhao, L.; Ruan, S.; Yang, X.; Chen, Q.; Shi, K.; Lu, K.; He, L.; Liu, S.; Song, Y. Characterization of volatile aroma compounds in litchi (Heiye) wine and distilled spirit. Food Sci. Nutr. 2021, 9, 5914–5927. [Google Scholar] [CrossRef]
- Spaho, N.; Gaši, F.; Leitner, E.; Blesić, M.; Akagić, A.; Žuljević, S.O.; Kurtović, M.; Ratković, D.Đ.; Murtić, M.S.; Akšić, M.F.; et al. Characterization of Volatile Compounds and Flavor in Spirits of Old Apple and Pear Cultivars from the Balkan Region. Foods 2021, 10, 1258. [Google Scholar] [CrossRef]
- Spaho, N.; Gaši, F.; Leitner, E.; Akagić, A.; Blesić, M.; Meland, M. Improving the Flavor Profile of Apple Spirits Using Traditional Cultivars. ACS Food Sci. Technol. 2023, 3, 414–427. [Google Scholar] [CrossRef]
- Carpena, M.; Fraga-Corral, M.; Otero, P.; Nogueira, R.A.; Garcia-Oliveira, P.; Prieto, M.A.; Simal-Gandara, J. Secondary Aroma: Influence of Wine Microorganisms in Their Aroma Profile. Foods 2021, 10, 51. [Google Scholar] [CrossRef]
- Loncaric, A.; Patljak, M.; Blaževic, A.; Jozinovic, A.; Babic, J.; Šubaric, D.; Pichler, A.; Flanjak, I.; Kujundžic, T.; Miličević, B. Changes in Volatile Compounds during Grape Brandy Production from ‘Cabernet Sauvignon’ and ‘Syrah’ Grape Varieties. Processes 2022, 10, 988. [Google Scholar] [CrossRef]
- Januszek, M.; Satora, P.; Wajda, Ł.; Tarko, T. Saccharomyces bayanus Enhances Volatile Profile of Apple Brandies. Molecules 2020, 25, 3127. [Google Scholar] [CrossRef] [PubMed]
- Faletar, J.; Blesic, M.; Smajic, M.; Begic-Akagic, A.; Alihodzic, A.; Spaho, N. Dynamics of evaporation of the certain volatiles during plum brandy distillation. In Proceedings of the 24th International Scientific-Expert-Conference of Agriculture and Food Industry, Sarajevo, Bosnia and Herzegovina, 25–28 September 2013; pp. 204–208. [Google Scholar]
- Hong, J.; Wang, J.; Zhang, C.; Zhao, Z.; Tian, W.; Wu, Y.; Chen, H.; Zhao, D.; Sun, J. Correction: Unraveling variation on the profile aroma compounds of strong aroma type of Baijiu in different regions by molecular matrix analysis and olfactory analysis. RSC Adv. 2021, 11, 34262. [Google Scholar] [CrossRef] [PubMed]
- Portugal, C.B.; Paron de Silva, A.; Bortoletto, A.M.; Alcarde, A.R. How native yeasts may influence the chemical profile of the Brazilian spirit, cachaça? Food Res. Int. 2017, 91, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Spaho, N.; Blesić, M.; Kurtović, M.; Borovac, B. Content of harmful chemical compounds that may persist in plum spirits: Scientific Study and Research. Chem. Chem. Eng. 2022, 23, 307–320. [Google Scholar]
- Vyviurska, O.; Matura, F.; Furdíková, K.; Špánik, I. Volatile fingerprinting of the plum brandies produced from different fruit varieties. J. Food Sci. Technol. 2017, 54, 4284–4301. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, N.D.; Capone, D.L.; Ugliano, M.; Taylor, D.K.; Skouroumounis, G.K.; Sefton, M.A.; Elsey, G.M. Formation of Damascenone under both commercial and model fermentation conditions. J. Agric. Food Chem. 2011, 59, 1338–1343. [Google Scholar] [CrossRef]
- Bisson, L.F. Stuck and sluggish fermentations. Am. J. Enol. Vitic. 1999, 50, 107–119. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, Z. Volatile Compounds of Young Wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay Varieties Grown in the Loess Plateau Region of China. Molecules 2010, 15, 9184–9196. [Google Scholar] [CrossRef]
- Walker, G.; Bringhurst, T.; Brosnan, J. The ideal distillers yeast. Brew. Distill. Int. 2011, 7, 30–32. [Google Scholar]
- Pauley, M.; Maskell, D. Mini-Review: The Role of Saccharomyces cerevisiae in the Production of Gin and Vodka. Beverages 2017, 3, 13. [Google Scholar] [CrossRef]
- Ellis, D.J.; Kerr, E.D.; Schenk, G.; Schulz, B.L. Metabolomics of non-Saccharomyces Yeasts in Fermented Beverages. Beverages 2022, 8, 41. [Google Scholar] [CrossRef]
- Ubeda, J.; Maldonado, M.; Chiva, G.R.; Guillamon, J.M.; Briones, A. Biodiversity of non-Saccharomyces yeasts in distilleries of the La Mancha region (Spain). FEMS Yeast Res. 2014, 14, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Delač Salopek, D.; Horvat, I.; Hranilovi´c, A.; Plavša, T.; Radeka, S.; Paskovi´c, I.; Luki´c, I. Diversity of Volatile Aroma Compound Composition Produced by non-Saccharomyces Yeasts in the Early Phase of Grape Must Fermentation. Foods 2022, 11, 3088. [Google Scholar] [CrossRef] [PubMed]
- Bovo, B.; Carlot, M.; Lombardi, A.; Lomolino, G.; Lante, A.; Giacomini, A.; Corich, V. Exploring the use of Saccharomyces cerevisiae commercial strain and Saccharomycodes ludwigii natural isolate for grape marc fermentation to improve sensory properties of spirits. Food Microbiol. 2014, 41, 33–41. [Google Scholar] [CrossRef]
- Nurgel, C.; Erten, H.; Canbas, A.; Cabaroglu, T.; Selli, S. Influence of Saccharomyces cerevisiae strains on fermentation and flavor compounds of white wines made from cv. Emir grown in Central Anatolia, Turkey. J. Ind. Microbiol. Biotechnol. 2002, 29, 28–33. [Google Scholar] [CrossRef]
- Kwak, H.S.; Seo, J.S.; Hur, Y.; Shim, H.S.; Leo, Y.; Kim, M.; Jeong, Y. Influence of yeast strains on the physicochemical characteristics, methanol and acetaldehyde profiles and volatile compounds for Korean rice distilled spirit. J. Inst. Brew. 2015, 121, 574–580. [Google Scholar] [CrossRef]
- Gil, J.V.; Mateo, J.J.; Jimenz, M.; Pastor, A.; Hureta, T. Aroma Compounds in Wine as Influenced by Apiculate Yeasts. J. Food Sci. 1996, 61, 1247–1250. [Google Scholar] [CrossRef]
- Miguel, G.A.; Carlsen, S.; Arneborg, N.; Saerens, S.M.G.; Laulund, S.; Knudsen, G.M. non-Saccharomyces yeasts for beer production: Insights into safety aspects and considerations. Int. J. Food Microbiol. 2022, 383, 109951. [Google Scholar] [CrossRef]
- Liu, S.; Laaksonen, O.; Li, P.; Gu, Q.; Yang, B. Use of non-Saccharomyces yeasts in berry wine production: Inspiration from their applications in winemaking. J. Agric. Food Chem. 2022, 70, 736–750. [Google Scholar] [CrossRef]
- Varela, C. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl. Microbiol. Biotechnol. 2016, 100, 9861–9874. [Google Scholar] [CrossRef]
- Benito, Á.; Calderón, F.; Benito, S. The Influence of non-Saccharomyces Species on Wine Fermentation Quality Parameters. Fermentation 2019, 5, 54. [Google Scholar] [CrossRef]
- Fejzullahu, F.; Kiss, Z.; Kun-Farkas, G.; Kun, S. Influence of non-Saccharomyces Strains on Chemical Characteristics and Sensory Quality of Fruit Spirit. Foods 2021, 10, 1336. [Google Scholar] [CrossRef] [PubMed]
- Nunez-Guerrero, M.E.; Paez-Lerma, J.B.; Rutiaga-Quinones, O.M.; GonzalezHerrera, S.M.; Soto-Cruz, N.O. Performance of mixtures of Saccharomyces and non-Saccharomyces native yeasts during alcoholic fermentation of Agave duranguensis juice. Food Microbiol. 2016, 54, 72–78. [Google Scholar] [CrossRef]
- Redondo, J.M.; Puertas, B.; Cantos-Villar, E.; Jiménez-Hierro, M.J.; Carbú, M.; Garrido, C.; Puiz-Moreno, M.J.; Moreno-Rojas, J.M. Impact of sequential inoculation with the non-Saccharomyces, T. delbrueckii and M. pulcherrima combined with Saccharomyces cerevisiae strains on chemicals and sensory profile of rosé wines. J. Agric. Food Chem. 2021, 69, 1598–1609. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, M.; Zhao, D.; Zheng, J.; Dai, M.; Li, X.; Li, W.; Zhang, C.; Sun, B. Simulated Fermentation of Strong-Flavor Baijiu through Functional Microbial Combination to Realize the Stable Synthesis of Important Flavor Chemicals. Foods 2023, 12, 644. [Google Scholar] [CrossRef]
- Comitini, F.; Agarbati, A.; Canonico, L.; Ciani, M. Yeast Interactions and Molecular Mechanisms in Wine Fermentation: A Comprehensive Review. Int. J. Mol. Sci. 2021, 22, 7754. [Google Scholar] [CrossRef]
- Bell, S.-J.; Henschke, P.A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Rollero, S.; Bloem, A.; Camarasa, C.; Sanchez, I.; Ortiz-Julien, A.; Sablayrolles, J.M.; Dequin, S.; Mouret, J.R. Combined effects of nutrients and temperature on the production of fermentative aromas by Saccharomyces cerevisiae during wine fermentation. Appl. Microbiol. Biotechnol. 2015, 99, 2291–2304. [Google Scholar] [CrossRef]
- Barbosa, C.; Mendes-Faia, A.; Mendes-Ferreira, A. The nitrogen source impacts major volatile compounds released by Saccharomyces cerevisiae during alcoholic fermentation. Int. J. Food Microbiol. 2012, 160, 87–93. [Google Scholar] [CrossRef]
- Barbosa, C.; Falco, V.; Mendes-Faia, A.; Mendes-Ferreira, A. Nitrogen addition influences formation of aroma compounds, volatile acidity and ethanol in nitrogen deficient media fermented by Saccharomyces cerevisiae wine strains. J. Biosci. Bioeng. 2009, 108, 99–104. [Google Scholar] [CrossRef]
- Walker, G.M. Metals in yeast fermentation processes. Adv. Appl. Microbiol. 2004, 54, 197–229. [Google Scholar] [PubMed]
- De Nicola1, R.; Walker, G.M. Zinc Interactions with Brewing Yeast: Impact on Fermentation Performance. J. Am. Soc. Brew. Chem. 2011, 69, 214–219. [Google Scholar] [CrossRef]
- Mrvčić, J.; Stehlik-Tomas, V.; Stanzer, D.; Škevin, D.; Grba, S. Optimization of bioprocess for production of copper-enriched biomass of industrially important microorganism Saccharomyces cerevisiae. J. Biosci. Bioeng. 2007, 103, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Mrvčić, J.; Stehlik-Tomas, V.; Grba, S. Incorporation of Copper Ions by Yeast Kluyveromyces marxianus during Cultivation on Whey. Acta Aliment. 2008, 37, 133–139. [Google Scholar] [CrossRef]
- De Nicola, R.; Hall, N.; Melville, S.G.; Walker, G.M. Influence of Zinc on Distiller’s Yeast: Cellular Accumulation of Zinc and Impact on Spirit Congeners. J. Inst. Brew. 2009, 115, 265–271. [Google Scholar] [CrossRef]
- Ribeiro-Filho, N.; Linforth, R.; Bora, N.; Powell, C.D.; Fisk, I.D. The role of inorganic-phosphate, potassium and magnesium in yeast-flavour formation. Food Res. Int. 2022, 162, 112044. [Google Scholar] [CrossRef]
- Ribeiro-Filho, N.; Linforth, R.; Powell, C.D.; Fisk, I.D. Influence of essential inorganic elements on flavour formation during yeast fermentation. Food Chem. 2021, 361, 130025. [Google Scholar] [CrossRef]
- Narendranath, N.V.; Power, R. Relationship between pH and medium dissolved solids in terms of growth and metabolism of lactobacilli and Saccharomyces cerevisiae during ethanol production. Appl. Environ. Microbiol. 2005, 71, 2239–2243. [Google Scholar] [CrossRef]
- Bovo, B.; Nardi, T.; Fontana, F.; Carlot, M.; Giacomini, A.; Corich, V. Acidification of grape marc for alcoholic beverage production: Effects on indigenous microflora and aroma profile after distillation. Int. J. Food Microbiol. 2012, 152, 100–106. [Google Scholar] [CrossRef]
- García-Llobodanin, L.; Senn, T.; Ferrando, M.; Güell, C.; López, F. Influence of the fermentation pH on the final quality of Blanquilla pear spirits. Int. J. Food Sci. Technol. 2010, 45, 839–848. [Google Scholar] [CrossRef]
- Hernandez-Gomez, L.F.; Ubeda-Iranzo, J.; Garcıa-Romero, E.; Briones-Perez, A. Comparative production of different melon dis-tillates: Chemical and sensory analyses. Food Chem. 2005, 90, 115–125. [Google Scholar] [CrossRef]
- Torija, M.J.; Beltran, G.; Novo, M.; Poblet, M.; Guillamón, J.M.; Mas, A.; Rozès, N. Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. Int. J. Food Microbiol. 2003, 85, 127–136. [Google Scholar] [CrossRef]
- Beltran, G.; Novo, M.; Leberre, V.; Sokol, S.; Labourdette, D.; Guillamon, J.M.; Mas, A.; Rozes, J.F.; Rozes, N. Integration of tran-scriptomic and metabolic analyses for understanding the global responses of low-temperature winemaking fermentations. FEMS Yeast Res. 2006, 6, 1167–1183. [Google Scholar] [CrossRef] [PubMed]
- Mallouchos, A.; Komaitis, M.; Koutinas, A.; Kanellaki, M. Wine fermentations by immobilized and free cells at different temper-atures. Effect of immobilization and temperature on volatile by-products. Food Chem. 2003, 80, 109–113. [Google Scholar] [CrossRef]
- Molina, A.M.; Swiegers, J.H.; Varela, C.; Pretorius, I.S.; Agosin, E. Influence of wine fermentation temperature on the synthesis of yeast-derived volatile aroma compounds. Appl. Microbiol. Biotechnol. 2007, 77, 675–687. [Google Scholar] [CrossRef]
- Peng, B.; Li, F.; Cui, L.; Guo, Y. Effects of fermentation temperature on key aroma compounds and sensory properties of apple wine. J. Food Sci. 2015, 80, 2937–2943. [Google Scholar] [CrossRef]
- Malherbe, S.; Fromion, V.; Hilgert, N.; Sablayrolles, J.M. Modeling the effects of assimilable nitrogen and temperature on fer-mentation kinetics in enological conditions. Biotechnol. Bioeng. 2004, 86, 261–272. [Google Scholar] [CrossRef]
- Mallouchos, A.; Reppa, P.; Aggelis, G.; Kanellaki, M.; Koutinas, A.A.; Komaitis, M. Grape skins as a natural support for yeast immobilization. Biotechnol. Lett. 2002, 24, 1331–1335. [Google Scholar] [CrossRef]
- Beltran, G.; Novo, M.; Guillamon, J.M.; Mas, A.; Rozes, N. Effect of fermentation temperature and culture media on the yeast lipid composition and volatile compounds. Int. J. Food Microbiol. 2008, 121, 169–177. [Google Scholar] [CrossRef]
- Perez, D.; Assof, M.; Bolcato, E.; Sari, S.; Fanzone, M. Combined effect of temperature and ammonium addition on fermentation profile and volatile aroma composition of Torrontes Riojano wines. LWT 2018, 87, 488–497. [Google Scholar] [CrossRef]
- Torija, M.J. Ecología de Levaduras: Seleccion y Adaptacion a Fermentaciones Vínicas (Doctorado en Bioquímica). Ph.D. Thesis, Universidad Rovira I Virgili, Tarragona, Spain, 2002. [Google Scholar]
- Prusina, T.; Herjavec, S. Influence of Fermentation Temperature on the Quality of ‘Žilavka’Wines. Agric. Conspec. Sci. 2008, 73, 127–130. [Google Scholar]
- Reddy, L.V.A.; Reddy, O.V.S. Effect of fermentation conditions on yeast growth and volatile composition of wine produced from mango (Mangifera indica L.) fruit juice. Food Bioprod. Process. 2011, 89, 487–491. [Google Scholar] [CrossRef]
- Calderbank, J.; Hammond, J.R.M. Influence of higher alcohol availability on ester formation by yeast. J. Am. Soc. Brew. Chem. 1994, 52, 84–90. [Google Scholar] [CrossRef]
- Yilmaztekin, M.; Cabaroglu, T.; Erten, H. Effects of Fermentation Temperature and Aeration on Production of Natural Isoamyl Acetate by Williopsis saturnus var. saturnus. BioMed Res. Int. 2013, 2013, 870802. [Google Scholar] [PubMed]
- Pielech-Przybylska, K.; Balcerek, M.; Nowak, A.; Patelski, P.; Dziekońska-Kubczak, U. Influence of yeast on the yield of fermentation and volatile profile of ‘Węgierka Zwykła’ plum distillates. J. Inst. Brew. 2016, 122, 612–623. [Google Scholar] [CrossRef]
- Belitz, H.D.; Grosch, W.; Schieberle, P. Food Chemistry, 3rd ed.; Springer: Berlin, Germany, 2004; p. 344. [Google Scholar]
- Spaho, N.; Đukic-Ratković, D.; Nikićević, N.; Blesić, M.; Tešević, V.; Smajić Murtić, M. Some Important Aroma Active Compounds in Apple Distillates. In Proceedings of 10th Central European Congress on Food; Springer: Sarajevo, Bosnia and Herzegovina, 2022; pp. 420–429. [Google Scholar]
- Ferreira, V.; de la Fuente, A.; Sáenz-Navajas, M.P. Wine aroma vectors and sensory attributes. In Woodhead Publishing Series in Food Science, Technology and Nutrition, Managing Wine Quality, 2nd ed.; Reynolds, A.G., Ed.; Woodhead Publishing: Cambridge, UK, 2022; pp. 3–39. [Google Scholar]
Alcohols | Description | Threshold µg/L | Comment |
---|---|---|---|
Methanol | Narcotic ether smell, irritation, burning | 100,000 [74] | It is not by-product of alcohol fermentation, harmful |
1-Propanol | Fusel, solvent | 54,000 [75] | Formed from threonine |
1-Butanol | Alcoholic, fruity | 2733 [70] | |
2-Butanol | Alcoholic, pleasant odor | 50,000 [61] | |
2-Methyl-1-propanol | Burnt, fusel, solvent | 40,000 [70] | Mainly formed from valine |
3-Methyl-1-butanol | Fusel, solvent, pungent | 56,100.0 [67] | Mainly formed from leucine |
2-Methyl-1-butanol | Malty, nail polish-like | 45,000.0 [67] | Formed from isoleucine |
1-Pentanol | Fruity, sour, pungent | 4000 [70] | |
4-Methyl-1-pentanol | Alcoholic, plant, green | 1000 [75] | |
3-Methyl-1-pentanol | Alcoholic, plant, fruit, apple | 500 [75] | |
2-Phenylethanol | Flowery, honey-like | 2600 [75] | Formed from phenylalanine |
1-Hexanol | Grassy, almond-like, green | 5370 [70] | Originate from raw materials |
2-Hexenol | Fruity, green | 1510 [61] | |
3-Hexanol | Green | 1257 [70] | |
2-Ethyl-1-hexanol | Rose, green, fruity | 1280 [70] | |
3-(Z)-Hexanol | Fruity, green | 1000 [70] | |
2-Heptanol | Fruity, green | 26,600 [70] | |
3-furan-methanol | Roasted sesame | 2000 [61] | |
1-Octen-3-ol | Mushroom | 6.12 [75] | |
1-octanol | Fruity | 1100 [75] | |
3-Nonen-1-ol, (Z) | Cucumber rind, green, fatty | 10 [68] | Important sources of green and fatty flavors in melon spirits |
(E/Z)-3,6-nonadienol | Cucumber-like, green, fatty, | 1.3 [68] |
Esters | Description | Threshold µg/L | Comment |
---|---|---|---|
Ethyl acetate | Pineapple, apple-like odor, with astringent, brief taste, glue-like | 7500 [73] 32,600 [76] | In small quantity contributes to pleasant fruity aroma. It is discarded with the first fraction during distillation. |
Ethyl propionate | Banana | 19,000 [76] | Desirable aroma compounds in spirits |
Ethyl isobutyrate | Fruity, citrus, sweet | 57.47 [70] | |
Proyl acetate | Fruity | 4740 [76] | |
Isobutyl acetate | Banana, fruity, apple, | 922 [70] | |
Ethyl butanoate | Apple, pineapple, ripe fruit | 81.5 [70] | |
Ethyl 2-methylbutyrate | Fruity, pineapple, apple | 2.2 [77] | |
Ethyl isovalerate | Fruity, sweet | 6.89 [70] | |
Isoamyl acetate | Banana-like | 93.93 [70] | |
Ethyl (S)2-methylbutanoate | Fruity | 0.2 [67] | |
Ethyl pentanoate | Apple | 26.8 [76] | |
Butyl butyrate | Banana, pineapple | 110 [76] | |
Ethyl hexanoate | Sweet, fruity, green apple | 55 [70] | Beneficial for spirit, most abundant among fatty acid esters |
Hexyl acetate | Green, fruity | 1500 [70] | |
Isoamyl butyrate | Green apple | 20 [76] | |
Propyl hexanoate | Pineapple | 12,783.77 [76] | |
Benzyl acetate | Floral, sweet | 270 [70] | In water |
Diethyl succinate | Fruity Fusel-like and camphor-like | 353,193.25 [70] | Can be a consequence of malolactic fermentation |
Ethyl octanoate | Fruity, pineapple, pear, flowery | 12.87 [70] | |
Isopentyl hexanoate | Pineapple | 1400 [76] | |
2-Phenylethyl acetate | Honey-like, flowery | 108 [67] | Beneficial for spirit |
Ethyl lactate | Dairy, green fruity | 128,000 [70] | |
Isoamyl lactate | Fruity, nutty | 131,703.4 [70] | Associated with tail fraction |
Ethyl nonanoate | Fruity | 3150 [76] | |
Ethyl decanoate | Flowery, fruity, fatty | 1120 [70] | |
Ethyl benzoate | Flowery | 1430 [76] | |
Ethyl 9-decenoate | Fatty | 100 [78] | |
Ethyl dodecanoate | Leaf, fruity, sweet, creamy | 1500 [78] | |
Ethyl (E,Z)-2,4-decadienoate | Pear-like, metallic | 1000 [67] | Key congeners for Williams spirits |
Ethyl (E,E)-2,4-decadienoate | Pear-like, metallic | 1800 [67] | |
Ethyl tetradecanoate | Ether, sweet, flowery | 2000 [78] | May cause turbidity and flocculation of distillate |
Ethyl hexadecanoate | Waxy, oil | 1500 [78] | |
Ethyl (E)-cinnamate | Cinnamon-like | 0.8 [67] | |
Ethyl 3-phenylpropanoate | Fruity, flowery, wine | 125 [76] |
Acids | Description | Threshold µg/L | Comment |
---|---|---|---|
Acetic acid | Vinegar, acidic | 160,000 [70] | It is mainly discarded with the tail fraction during distillation. |
2-Methylpropaonic acid | Acidic, cheesy | 1580 [70] | In free form, they are mainly undesirable in spirits but are important as precursor of ester formation |
Butanoic acid | Sweaty, cheesy | 964 [70] | |
3-Methylbutaonic acid | Sweaty, dairy | 1050 [70] | |
3-Methyl pentatonic acid | Cheesy | 150 [85] | |
Pentatonic acid | Dairy | 390 [85] | |
Hexanoic acid | Acidic, cheese, sweaty Barbecue | 2520 [70] | |
Octanoic acid | Vegetable, fatty Sweaty cheese | 2700 [70] 500 [78] | |
Nonanoic acid | Coffee, acidity | 3560 [85] | |
Decanoic acid | Rancid, fatty, sweaty | 1000 [78] | |
Dodecanoic acid | Metal | 1500 [78] | |
Benzoic acid | Slightly pleasant and sweet, sour | >10,000 [74] | |
Lactic acid | Fatty odor, slightly acidic, astringent, thick | <235,000 [74] |
Carbonyl Compounds | Description | Threshold µg/L | Comment |
---|---|---|---|
Aldehyde acetal | Grassy odor, fruity, slightly sweet, astringent, refreshing | 50,000 to 100,000 [74] | |
Diethyl acetale | Sweet, fruity | 69 [70] | |
Acetone | Nail polish remover, solvent odor, weakly fruity, pungent | >200,000 [74] | Produced more by apiculate yeasts |
Butanone | Solvent odor, fruity, pungent, sweet | >80,000 [74] | |
2-Octanone | Hot milk, peanut, green | 250 [90] | |
(E)-β-damascenone | Fruity, flowery, minty, lemon, balsam, honey-like, cooked apple-like | 0.4 [67] | Potent aroma compound due to its very low threshold |
Ionne | Flowery, violet, rosa, spicy | 90 [73] | |
Acetaldehyde | Fruity, overripe bruised apples, sherry-like, stewed apple, pungent and irritating, astringent | 19,200 [67] | It is discarded with the first fraction during distillation. Pleasant in low conc. while in high conc. irritating |
Propanal | Grassy and pungent smell | 2500 [74] | Undesirable in spirits, often below their individual perception threshold |
Butanal | Green leaf, slightly fruity, slightly astringent and bitter | 280 [74] | |
2-Methylpropanal | Grape | 800 [73] | |
2-Methylbutanal | Grassy/sweet | 10.6 [67] | |
3-Methylbutanal | Grassy/sweet, stuffy smell | 2.9 [67] | |
Hexanal | Green/grassy | 158.0 [67] | |
(Z)-3-hexanal | Green/grassy | 45.0 [61] | |
(E)-2-nonanal | Fatty, green | 0.6 [67] | |
Nonanal | Waxy, aldehydic, citrus, fresh, slightly green lemon peel | 1 [91] | In wine |
Phenylacetaldehyde | Honey-like | 111 [67] | |
(E,E)-2,4-nonadienal | Fatty, green | 1.1 [67] | |
(E,E)-2,4-decadienal | Fatty, deep-fried | 2.6 [67] | |
Furfural | Roasted, sweet, Woody, almond | 122 [70] | Formed during distillation |
Benzaldehyde | Bitter almond | 4203.1 [70] | Important for stone fruit spirits |
4-hydroxy-3-methoxybenzaldehyde | Vanilla-like, sweet | 22 [67] | |
(E,E)-2,4-nonadienal | Fatty, green | 1.1 [67] |
Terpenes | Description | Threshold µg/L | Comment |
Linalool | Flowery, citrus | 14 [77] | Odoriferous monoterpenes do not show significant changes in their amount during yeast fermentations and originate mainly from fruit Recognition thresholds in 25% (v/v) ethanol solution |
Farnesol | Flowery | 1600 [77] | |
Geraniol | Flowery, citrus | 72 [77] | |
Nerol | Flowery, citrus, fruity | 1900 [77] | |
α-Terpineol | Minty, medicinal, turpentine, must | 7200 [77] | |
D-Citronellol | Clove | 100 [78] | |
β-Citronellol | Grass/cucumber | 100 [73] | |
trans-Nerolidol | Floral, tea | 400 [70] | In water |
trans-β-Ionone | Sweet, floral | 4.5 [70] | |
Eugenol | Seet, cloves | 21 [70] | |
cis-Geraniol | Rose | 300 [78] | |
Neroloxide | Rose | 6000 [78] | |
cis-Rose oxide | Rose, flowery | 20 [78] | |
trans-Rose oxide | Rose, flowery | 20 [78] | |
4-Terpeniol | Spicy/soil | 300 [73] | |
Lactones | Description | Threshold µg/L | Comment |
cis-Whiskey lactone | Fruity, cocoa, oakwood | 6 [78] | Aroma originated mainly from wood and from fruit |
trans-Whiskey lactone | 20 [78] | ||
γ-Butyrolactone | Fruity | 20 [70] | |
γ-Hexalactone | Tobacco | 359,000 [70] | |
γ-Nonanolactone | Milky notes | 90.66 [67] | |
γ-Decalactone | Apricot and peach | 10.87 [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanzer, D.; Hanousek Čiča, K.; Blesić, M.; Smajić Murtić, M.; Mrvčić, J.; Spaho, N. Alcoholic Fermentation as a Source of Congeners in Fruit Spirits. Foods 2023, 12, 1951. https://doi.org/10.3390/foods12101951
Stanzer D, Hanousek Čiča K, Blesić M, Smajić Murtić M, Mrvčić J, Spaho N. Alcoholic Fermentation as a Source of Congeners in Fruit Spirits. Foods. 2023; 12(10):1951. https://doi.org/10.3390/foods12101951
Chicago/Turabian StyleStanzer, Damir, Karla Hanousek Čiča, Milenko Blesić, Mirela Smajić Murtić, Jasna Mrvčić, and Nermina Spaho. 2023. "Alcoholic Fermentation as a Source of Congeners in Fruit Spirits" Foods 12, no. 10: 1951. https://doi.org/10.3390/foods12101951
APA StyleStanzer, D., Hanousek Čiča, K., Blesić, M., Smajić Murtić, M., Mrvčić, J., & Spaho, N. (2023). Alcoholic Fermentation as a Source of Congeners in Fruit Spirits. Foods, 12(10), 1951. https://doi.org/10.3390/foods12101951