Effects of Different Probiotics on the Volatile Components of Fermented Coffee Were Analyzed Based on Headspace-Gas Chromatography-Ion Mobility Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instrumentation
2.3. Coffee Sample Preparation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Coffee Flavor Composition Analysis Based on HS-GC-IMS
3.2. Effects of Fermented Coffee with Single Probiotics on the Characteristic Components of Coffee Flavor
3.3. Common Effects of Fermented Coffee with Probiotics on Characteristic Components of Coffee Flavor
3.4. Aroma Matching Matrix for All Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Florian, S.; Elias, M.V.; Su, F.X.; Fisk, I.D.; Olivier, R.; Jeremy, H. Shade trees: A determinant to the relative success of organic versus conventional coffee production. Agrofor. Syst. 2018, 92, 1535–1549. [Google Scholar] [CrossRef]
- Mohammedsani, A.A. Influence of harvesting and postharvest processing methods on the quality of Arabica coffee (Coffea arabica L.) in Eastern Ethiopia. ISABB J. Food Agric. Sci. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Gilberto, V.M.P.; Neto, D.P.C.; Medeiros, A.B.P.; Soccol, V.T.; Neto, E.; Woiciechowski, A.L.; Soccol, C.R. Potential of lactic acid bacteria to improve the fermentation and quality of coffee during on-farm processing. Int. J. Food Sci. Technol. 2016, 51, 1689–1695. [Google Scholar] [CrossRef]
- Gilberto, V.M.P.G.; Thomaz, S.V.; Kaur, B.S.; Ensei, N.; Ricardo, S.C. Microbial ecology and starter culture technology in coffee processing. Crit. Rev. Food Sci. Nutr. 2017, 57, 2775–2788. [Google Scholar] [CrossRef]
- Heperkan, D. Microbiota of table olive fermentations and criteria of selection for their use as starters. Front. Microbiol. 2013, 4, 143. [Google Scholar] [CrossRef]
- Wang, C.H.; Sun, J.C.; Lassabliere, B.; Yu, B.; Zhao, F.F.; Zhao, F.J.; Chen, Y.; Liu, S.Q. Potential of lactic acid bacteria to modulate coffee volatiles and effect of glucose supplementation: Fermentation of green coffee beans and impact of coffee roasting. J. Sci. Food Agric. 2018, 99, 409–420. [Google Scholar] [CrossRef]
- Natalia, A.M.; Andrés, M.G.; Natividad, J.C.; Rocío, G.D.; Cristina, A.; Lourdes, A. Target vs spectral fingerprint data analysis of Iberian ham samples for avoiding labelling fraud using headspace-gas chromatography–ion mobility spectrometry. Food Chem. 2018, 246, 65–73. [Google Scholar] [CrossRef]
- Gonzalez-Rios, O.; Suarez-Quiroz, M.L.; Boulanger, R.; Barel, M.; Guyot, B.; Guiraud, J.P.; Sabine, S.G. Impact of “ecological” post-harvest processing on coffee aroma: II. Roasted coffee. J. Food Compos. Anal. 2006, 20, 297–307. [Google Scholar] [CrossRef]
- Evangelista, S.R.; Miguel, M.G.C.P.; Cordeiro, C.S.; Silva, C.F.; Pinheiro, A.C.M.; Schwan, R.F. Inoculation of starter cultures in a semi-dry coffee (Coffea arabica) fermentation process. Food Microbiol. 2014, 44, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.L.; Mun, W.C.; Philip, C.; Bin, Y.; Shao, Q.L. Modulation of coffee aroma via the fermentation of green coffee beans with Rhizopus oligosporus: I. Green coffee. Food Chem. 2016, 211, 916–924. [Google Scholar] [CrossRef]
- Marinos, X.; Alexandra, S.; Kyriaki, R.P.; Eleftherios, A.; Tarantilis, P.A.; Pappas, C.S. Response Surface Methodology to Optimize the Isolation of Dominant Volatile Compounds from Monofloral Greek Thyme Honey Using SPME-GC-MS. Molecules 2021, 26, 3612. [Google Scholar] [CrossRef]
- Ryan, D.; Shellie, R.; Tranchida, P.; Casilli, A.; Mondello, L.; Marriott, P. Analysis of roasted coffee bean volatiles by using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J. Chromatogr. A 2004, 1054, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Juerg, B.; Luigi, P.; Ruth, K.; Rainer, P.; Felix, E. Coffee roasting and aroma formation: Application of different time-temperature conditions. J. Agric. Food Chem. 2008, 56, 5836–5846. [Google Scholar] [CrossRef]
- Kenji, K.; Hideki, M. Investigation of the change in the flavor of a coffee drink during heat processing. J. Agric. Food Chem. 2003, 51, 2674–2678. [Google Scholar] [CrossRef]
- Chen, Y.P.; Cai, D.D.; Li, W.Q.; Blank, I.; Liu, Y. Application of gas chromatography-ion mobility spectrometry (GC-IMS) and ultrafast gas chromatography electronic-nose (uf-GC E-nose) to distinguish four Chinese freshwater fishes at both raw and cooked status. J. Food Biochem. 2021, 46, e13840. [Google Scholar] [CrossRef]
- Gallegos, J.; Arce, C.; Jordano, R.; Arce, L.; Medina, L.M. Target identification of volatile metabolites to allow the differentiation of lactic acid bacteria by gas chromatography-ion mobility spectrometry. Food Chem. 2017, 220, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, N.; Birkenmeier, M.; Sanders, D.; Rohn, S.; Weller, P. Resolution-optimized headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) for non-targeted olive oil profiling. Anal. Bioanal. Chem. 2017, 409, 3933–3942. [Google Scholar] [CrossRef] [PubMed]
- Koczulla, R.; Hattesohl, A.; Schmid, S.; Bödeker, B.; Maddula, S.; Baumbach, J.I. MCC/IMS as potential noninvasive technique in the diagnosis of patients with COPD with and without alpha 1-antitrypsin deficiency. Int. J. Ion Mobil. Spectrom. 2011, 14, 177–185. [Google Scholar] [CrossRef]
- Roman, R.M.; Eduardo, V.; Stefan, M.; Antonio, R.M.; Andriy, K.; Ursula, T. Identification of terpenes and essential oils by means of static headspace gas chromatography-ion mobility spectrometry. Anal. Bioanal. Chem. 2017, 409, 6595–6603. [Google Scholar] [CrossRef]
- Christina, L.C.; Stephan, G.; Marc, G.; Katrin, F.; Xing, Z.; Herbert, H. The novel use of gas chromatography-ion mobility-time of flight mass spectrometry with secondary electrospray ionization for complex mixture analysis. Int. J. Ion Mobil. Spectrom. 2011, 14, 23–30. [Google Scholar] [CrossRef]
- Gerhardt, N.; Birkenmeier, M.; Schwolow, S.; Rohn, S.; Weller, P. Volatile-Compound Fingerprinting by Headspace-Gas-Chromatography Ion-Mobility Spectrometry (HS-GC-IMS) as a Benchtop Alternative to 1H NMR Profiling for Assessment of the Authenticity of Honey. Anal. Chem. 2018, 90, 1777–1785. [Google Scholar] [CrossRef] [PubMed]
- Natalia, A.M.; María, G.N.; Ana, C.; Natalia, C.; Pilar, V.; Ignacio, L.G.; Manuel, H.C. Untargeted headspace gas chromatography-Ion mobility spectrometry analysis for detection of adulterated honey. Talanta 2019, 205, 120123. [Google Scholar] [CrossRef]
- Hu, X.; Wang, R.R.; Guo, J.J.; Ge, K.D.; Li, G.Y.; Fu, F.H.; Ding, S.G.; Shan, Y.; McPhee, D.J.; Michael, C. Changes in the Volatile Components of Candied Kumquats in Different Processing Methodologies with Headspace-Gas Chromatography-Ion Mobility Spectrometry. Molecules 2019, 24, 3053. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Delgado, R.; Arce, L.; Guamán, A.V.; Pardo, A.; Marco, S.; Valcárcel, M. Direct coupling of a gas-liquid separator to an ion mobility spectrometer for the classification of different white wines using chemometrics tools. Talanta 2011, 84, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Gallegos, J.; Garrido-Delgado, R.; Arce, L.; Medina, L.M. Volatile Metabolites of Goat Cheeses Determined by Ion Mobility Spectrometry. Potential Applications in Quality Control. Food Anal. Methods 2015, 8, 1699–1709. [Google Scholar] [CrossRef]
- Zhi, Y.; Yuan, H.Y.; Qu, M.Z.; Zeng, X.G.; Huang, H.Y.; Ren, F.; Chen, N.H. Direct authentication of three Chinese materia medica species of the Lilii Bulbus family in terms of volatile components by headspace-gas chromatography-ion mobility spectrometry. Anal. Methods 2019, 11, 530–536. [Google Scholar] [CrossRef]
- Liu, Y.J.; Gong, X.; Jing, W.; Lin, L.J.; Zhou, W.; He, J.N.; Li, J.H. Fast discrimination of avocado oil for different extracted methods using headspace-gas chromatography-ion mobility spectroscopy with PCA based on volatile organic compounds. Open Chem. 2021, 19, 367–376. [Google Scholar] [CrossRef]
- Cavanna, D.; Zanardi, S.; Dall’Asta, C.; Suman, M. Ion mobility spectrometry coupled to gas chromatography: A rapid tool to assess eggs freshness. Food Chem. 2019, 271, 691–696. [Google Scholar] [CrossRef]
- Yoo, S.R.; Min, S.; Prakash, A.; Min, D.B. Off-odor Study with γ-Irradiated Orange Juice Using Sensory and Volatile Compound Analyses. J. Food Sci. 2003, 68, 1259–1264. [Google Scholar] [CrossRef]
- Yazid, A.M.; Shuhaimi, M.; Hajaratul, N.M.; Yaakob, C.M. Tentative Identification of Volatile Flavor Compounds in Commercial Budu, a Malaysian Fish Sauce, Using GC-MS. Molecules 2012, 17, 5062–5080. [Google Scholar] [CrossRef]
- Fernández de Palencia, P.; de la Plaza, M.; Mohedano, M.L.; Martínez-Cuesta, M.C.; Requena, T.; López, P.; Peláez, C. Enhancement of 2-methylbutanal formation in cheese by using a fluorescently tagged Lacticin 3147 producing Lactococcus lactis strain. Int. J. Food Microbiol. 2004, 93, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Api, A.M.; Belsito, D.; Botelho, D.; Bruze, M.; Burton, G.A.; Buschmann, J.; Dagli, M.L.; Date, M.; Dekant, W.; Deodhar, C.; et al. RIFM fragrance ingredient safety assessment, 4-methyl-2-pentanone, CAS Registry Number 108-10-1. Food Chem. Toxicol. 2019, 130 (Suppl. 1), 110587. [Google Scholar] [CrossRef] [PubMed]
- Maga, J.A. Furans in foods. CRC Crit. Rev. Food Sci. Nutr. 1979, 11, 355–400. [Google Scholar] [CrossRef]
- Pu, D.; Zhang, H.Y.; Zhang, Y.Y.; Sun, B.G.; Ren, F.Z.; Chen, H.T.; He, J.N. Characterization of the aroma release and perception of white bread during oral processing by gas chromatography-ion mobility spectrometry and temporal dominance of sensations analysis. Food Res. Int. 2019, 123, 612–622. [Google Scholar] [CrossRef]
- Jovana, T.I.; Dušan, V.; Aleksandra, D.; Dejan, B.; Vladimir, D.; Marija, G.J.; Nenad, M. Design of biocompatible immobilized Candida rugosa lipase with potential application in food industry. J. Sci. Food Agric. 2016, 96, 4281–4287. [Google Scholar] [CrossRef]
- Gu, S.Q.; Wu, N.; Wang, X.C.; Zhang, J.J.; Ji, S.R. Analysis of Key Odor Compounds in Steamed Chinese Mitten Crab (Eriocheir sinensis). Adv. Mater. Res. 2014, 941, 1026–1035. Available online: https://doi.org/10.4028/www.scientific.net/AMR.941-944.1026 (accessed on 14 March 2023).
- Moon, J.K.; Shibamoto, T. Role of roasting conditions in the profile of volatile flavor chemicals formed from coffee beans. J. Agric. Food Chem. 2009, 57, 5823–5831. [Google Scholar] [CrossRef] [PubMed]
- Vernin, G.; Vernin, C.; Pieribattesti, J.C.; Roque, C. Analysis of the Volatile Compounds of Psidium cattleianum Sabine Fruit from Reunion Island. J. Essent. Oil Res. 1998, 10, 353–362. [Google Scholar] [CrossRef]
- Lasekan, O.; Muniady, M.; Lin, M.; Dabaj, F. Identification of characteristic aroma compounds in raw and thermally processed African giant snail (Achatina fulica). Chem. Cent. J. 2018, 12, 43. [Google Scholar] [CrossRef]
- Liu, S.Q.; Holland, R.; Crow, V. Synthesis of ethyl butanoate by a commercial lipase in aqueous media under conditions relevant to cheese ripening. J. Dairy Res. 2003, 70, 359–363. [Google Scholar] [CrossRef]
No. | Aroma Compound | Functional Group | CAS | RI | Rt [sec] | Dt [RIP rel] | a Odour Description |
---|---|---|---|---|---|---|---|
1 | Phenylacetaldehyde | aldehyde | 122-78-1 | 1037.9 | 828.360 | 1.259 | hyacinth, unpleasant, pungent, bitter flavor, sweet, fruit-like. |
2 | 5-Methylfurfural-M | aldehyde | 620-02-0 | 974.5 | 655.980 | 1.127 | sweet, spicy, warm, caramel. |
3 | 5-Methylfurfural-D | aldehyde | 620-02-0 | 975.2 | 657.735 | 1.473 | sweet, spicy, warm, caramel. |
4 | Benzaldehyde | aldehyde | 100-52-7 | 961.4 | 623.805 | 1.145 | sweet, oily, almond, cherry, nutty, woody. |
5 | gamma-Butyrolactone-M | ester | 96-48-0 | 925.4 | 541.710 | 1.082 | faint, sweet, aromatic, buttery, milky, creamy, peach. |
6 | gamma-Butyrolactone-D | ester | 96-48-0 | 927.2 | 545.610 | 1.301 | faint, sweet, aromatic, buttery, milky, creamy, peach. |
7 | Methional | aldehyde | 3268-49-3 | 930.5 | 552.630 | 1.391 | potato, musty, tomato, cheeses, onion, beefy brothy, egg, seafood. |
8 | 2-Acetylfuran-M | furans | 1192-62-7 | 916.0 | 522.210 | 1.120 | sweet, balsam, almond, cocoa, caramel, coffee. |
9 | 2-Acetylfuran-D | furans | 1192-62-7 | 914.3 | 518.700 | 1.440 | sweet, balsam, almond, cocoa, caramel, coffee. |
10 | Furfuryl alcohol | alcohol | 98-00-0 | 865.3 | 430.170 | 1.307 | burnt, sweet, caramellic and brown. |
11 | Furfural | furans | 98-01-1 | 837.4 | 388.050 | 1.345 | almond. |
12 | 2-Methylpyrazine | pyrazine | 109-08-0 | 839.8 | 391.560 | 1.395 | nutty, cocoa, green, roasted, chocolate, meaty. |
13 | Dimethyl disulfide | sulfur-containing | 624-92-0 | 734.0 | 262.470 | 0.986 | diffuse, intense onion odor. |
14 | 2-Methylbutan-1-ol | alcohol | 137-32-6 | 778.3 | 311.415 | 1.473 | cooked, roasted aroma with fruity or alcoholic undernotes. |
15 | Ethyl acrylate | ester | 140-88-5 | 725.5 | 254.085 | 1.410 | pungent odor. |
16 | 2-Ethylfuran-D | furans | 3208-16-0 | 714.2 | 243.750 | 1.330 | smoky burnt, warm, sweet, coffee-like. |
17 | 3-Pentanone | ketone | 96-22-0 | 697.1 | 229.515 | 1.356 | acetone-like odor. |
18 | 2-Pentanone | ketone | 107-87-9 | 684.6 | 220.350 | 1.373 | sweet, fruity, banana. |
19 | 2-Methylbutanal | aldehyde | 96-17-3 | 659.7 | 204.555 | 1.401 | fruity, musty with a berry nuance, musty, nutty, cereal, caramel. |
20 | 3-Methylbutanal | aldehyde | 590-86-3 | 646.0 | 197.145 | 1.409 | acrid, pungent, apple. |
21 | Acetic acid | organic acid | 64-19-7 | 626.6 | 187.590 | 1.324 | sour pungent, cider vinegar, malty. |
22 | Ethyl acetate | ester | 141-78-6 | 609.0 | 179.595 | 1.339 | fruity, brandy, pineapple. |
23 | 2-Butanone | ketone | 78-93-3 | 588.8 | 170.820 | 1.248 | sweet apricot. |
24 | Methylpropanal | aldehyde | 78-84-2 | 560.0 | 158.340 | 1.283 | a characteristic sharp, pungent odor. |
25 | Methyl acetate | ester | 79-20-9 | 536.0 | 148.005 | 1.196 | fruity, fresh, rum and whiskey |
26 | Acetone | ketone | 67-64-1 | 510.8 | 137.085 | 1.119 | pleasant odor. |
27 | Ethanol | alcohol | 64-17-5 | 467.9 | 118.560 | 1.046 | fruity. |
28 | Limonene | terpene | 138-86-3 | 1017.6 | 770.835 | 1.216 | sweet, orange, citrus, terpy. |
29 | 3-Methylbutanol | alcohol | 30899-19-5 | 742.6 | 271.245 | 1.338 | fusel, fermented, fruity, banana, ethereal, cognac. |
30 | (E)-3-Hexen-1-ol | alcohol | 928-97-2 | 859.1 | 420.420 | 1.529 | grassy green aroma. |
31 | Ethyl propanoate | ester | 105-37-3 | 709.7 | 239.850 | 1.452 | rum, pineapple. |
32 | Nonanal | aldehyde | 124-19-6 | 1105.2 | 1028.040 | 1.477 | sweet waxy, orange. |
33 | Myrcene | terpene | 123-35-3 | 992.6 | 702.780 | 1.219 | terpy, herbaceous, woody, rosy, celery, carrot. |
34 | beta-Pinene | terpene | 127-91-3 | 969.8 | 644.280 | 1.216 | woody, piney, turpentine, minty, eucalyptus, camphoraceous. |
35 | alpha-Pinene | terpene | 80-56-8 | 928.1 | 547.560 | 1.216 | citrus, spicy, pine, turpentine. |
36 | Ethyl hexanoate | ester | 123-66-0 | 1006.5 | 740.220 | 1.339 | fruity, pineapple, banana. |
37 | Heptanal | aldehyde | 111-71-7 | 901.2 | 492.960 | 1.333 | pungent odor. |
38 | Cyclohexanone | ketone | 108-94-1 | 891.2 | 474.240 | 1.150 | peppermint, acetone. |
39 | Styrene | terpene | 100-42-5 | 883.5 | 460.590 | 1.503 | aromatic odor. |
40 | Ethyl pentanoate | ester | 539-82-2 | 885.9 | 464.880 | 1.258 | fruity. |
41 | 1-Hexanol | alcohol | 111-27-3 | 876.4 | 448.500 | 1.327 | herbaceous, fragrant, mild, sweet, green fruity odor and aromatic. |
42 | Ethyl 3-methylbutanoate-M | ester | 108-64-5 | 850.2 | 406.770 | 1.259 | strong, fruity, vinous, apple. |
43 | Ethyl 3-methylbutanoate-D | ester | 108-64-5 | 851.7 | 409.110 | 1.651 | strong, fruity, vinous, apple. |
44 | 2-Methylbutyric acid | organic acid | 116-53-0 | 831.9 | 380.250 | 1.205 | acidic sour, pungent, ripe fruit leather, lingonberry, dirty cheesy, fermented pineapple fruity. |
45 | Butyl acetate | ester | 123-86-4 | 810.4 | 351.390 | 1.237 | fruity, sweet, pineapple. |
46 | Hexanal-M | aldehyde | 66-25-1 | 791.6 | 327.600 | 1.259 | green, fatty, leafy, vegetative, fruity, woody. |
47 | Hexanal-D | aldehyde | 66-25-1 | 791.6 | 327.600 | 1.559 | green, fatty, leafy, vegetative, fruity, woody. |
48 | Ethyl butanoate | ester | 105-54-4 | 795.3 | 332.085 | 1.206 | fruity. |
49 | 1-Pentanol | alcohol | 71-41-0 | 766.0 | 296.985 | 1.251 | intense fusel, fermented, bready. |
50 | Ethyl 2-methylpropanoate-M | ester | 97-62-1 | 754.2 | 283.725 | 1.193 | fruity. |
51 | Ethyl 2-methylpropanoate-D | ester | 97-62-1 | 754.2 | 283.725 | 1.562 | fruity. |
52 | 4-Methyl-2-pentanone-M | ketone | 108-10-1 | 733.8 | 262.275 | 1.176 | sweet, ethereal, banana, fruity. |
53 | 4-Methyl-2-pentanone-D | ketone | 108-10-1 | 733.2 | 261.690 | 1.472 | sweet, ethereal, banana, fruity. |
54 | 3-Methyl-3-buten-1-ol | alcohol | 763-32-6 | 733.6 | 262.080 | 1.247 | NA |
55 | Propyl acetate-M | ester | 109-60-4 | 711.1 | 241.020 | 1.163 | fruity, pear, raspberry. |
56 | Propyl acetate-D | ester | 109-60-4 | 709.9 | 240.045 | 1.476 | fruity, pear, raspberry. |
57 | 2-Ethylfuran-M | furans | 3208-16-0 | 713.5 | 243.165 | 1.065 | smoky burnt odor. |
58 | Pentanal-M | aldehyde | 110-62-3 | 691.9 | 225.615 | 1.195 | winey, fermented, bready, cocoa chocolate. |
59 | Pentanal-D | aldehyde | 110-62-3 | 692.2 | 225.810 | 1.420 | winey, fermented, bready, cocoa chocolate. |
60 | Methyl isobutyrate | ester | 547-63-7 | 699.3 | 231.270 | 1.443 | apple, pineapple, pricot. |
61 | 2-Propanol | alcohol | 67-63-0 | 515.3 | 139.035 | 1.179 | unpleasant odor and a burning taste. |
Group Comparison | A vs. B | A vs. C | A vs. D | A vs. E | ||||
---|---|---|---|---|---|---|---|---|
Green coffee (G) | ↑15 | ↓12 | ↑19 | ↓9 | ↑18 | ↓12 | ↑15 | ↓11 |
2-Methylpyrazine | Furfural # | Benzaldehyde *# | Ethyl acrylate *# | Dimethyl disulfide | Furfural # | Dimethyl disulfide | 2-Ethylfuran-D | |
Dimethyl disulfide # | 2-Ethylfuran-D | 2-Methylpyrazine | 2-Ethylfuran-D | 2-Methylbutanal | 2-Methylpyrazine *# | 2-Methylbutanal | Acetic acid | |
Ethyl acrylate * | 3-Pentanone * | Dimethyl disulfide # | Acetic acid # | 3-Methylbutanal | 2-Ethylfuran-D | Acetone | Ethyl acetate # | |
2-Methylbutanal | Acetic acid # | 2-Methylbutanal | Methyl acetate # | Methyl propanal | Acetic acid # | Heptanal # | Methyl acetate | |
3-Methylbutanal | Ethyl acetate # | 3-Methylbutanal | (E)-3-Hexen-1-ol * | Acetone | Ethyl Acetate # | Ethyl pentanoate # | Cyclohexanone * | |
Methyl propanal | 2-Butanone | Methyl propanal | Ethyl 3-methylbutanoate-M | Heptanal# | 2-Butanone | 1-Hexanol * | Ethyl 3-methylbutanoate-M | |
Ethyl pentanoate | Methyl acetate | Acetone | 3-Methyl-3-buten-1-ol | Ethyl pentanoate # | Methyl acetate | 2-Methylbutyric acid | Hexanal-D * | |
2-Methylbutyric acid | Ethyl 3-methylbutanoate-M | Heptanal # | 2-Ethylfuran-M # | 2-Methylbutyric acid | Ethyl 3-methylbutanoate-M # | Butyl acetate # | 2-Ethylfuran-M | |
Hexanal-M | Ethyl 2-methylpropanoate-D | Cyclohexanone * | 2-Propanol | Butyl acetate # | ethyl 2-methylpropanoate-D | Ethyl butanoate | Pentanal-M * | |
Hexanal-D | 3-Methyl-3-buten-1-ol | 2-Methylbutyric acid | - | Hexanal-M # | 3-Methyl-3-buten-1-ol | 1-Pentano l# | Pentanal-D * | |
Ethyl 2-methylpropanoate-M | 2-Ethylfuran-M | Butyl acetate # | - | Hexanal-D | 2-Ethylfuran-M | Ethyl 2-methylpropanoate-M | 2-Propanol | |
4-Methyl-2-pentanone-M | 2-Propanol | Hexanal-M # | - | Ethyl butanoate | 2-Propanol | 4-Methyl-2-pentanone-M | - | |
Propyl acetate-M | - | Hexanal-D | - | 1-Pentanol # | - | 4-Methyl-2-pentanone-D * | - | |
Pentanal-M | - | Ethyl 2-methyl-propanoate-M | - | Ethyl 2-methylpropanoate-M | - | 3-Methyl-3-buten-1-ol * | - | |
Pentanal-D | - | 4-Methyl-2-pentanone-M | - | 4-Methyl-2-pentanone-M | - | Propyl acetate-M | - | |
- | - | Propyl acetate-M | - | Propyl acetate-M | - | - | - | |
- | - | Propyl acetate-D* | - | Pentanal-M | - | - | - | |
- | - | Pentanal-M | - | Pentanal-D | - | - | - | |
- | - | Pentanal-D | - | - | - | - | - | |
Roasted coffee (R) | ↑8 | ↓15 | ↑13 | ↓20 | ↑8 | ↓20 | ↑12 | ↓15 |
Dimethyl disulfide | gamma-Butyrolactone-M | Phenylacetaldehyde | 5-Methylfurfural-M * | 2-Pentanone | gamma-Butyrolactone-D | Phenylacetaldehyde | gamma-Butyrolactone-M | |
2-Methylbutan-1-ol * | gamma-Butyrolactone-D | Benzaldehyde * | gamma-Butyrolactone-D | 2-Butanone | 2-Acetylfuran-M | 2-Pentanone | gamma-Btyrolactone-D | |
2-Pentanone | 2-Acetylfuran-M | Dimethyl disulfide | 2-Acetylfuran-M | Methyl acetate | Furfural | 2-Butanone | 2-Acetylfuran-M | |
2-Butanone | Furfural | 2-Pentanone | Furfuryl alcohol * | Heptanal | 2-Methylpyrazine | Methyl acetate | Furfural | |
Methyl acetate | 2-Methylpyrazine | 2-Butanone | Furfural | Ethyl pentanoate | Ethyl acrylate | (E)-3-Hexen-1-ol | 2-Methylpyrazine | |
Ethyl hexanoate | Ethyl acrylate | (E)-3-Hexen-1-ol | 2-Methylpyrazine | Butyl acetate | 2-Methylbutanal | Ethyl hexanoate | ethyl acrylate | |
Heptanal | 3-Methylbutanal | Ethyl hexanoate | Ethyl acrylate | Hexanal-M | 3-Methylbutanal | Heptanal | 3-Methylbutanal | |
1-Pentanol | Acetic acid | Heptanal | 2-Methylbutanal | 1-Pentanol | Acetic acid | Ethyl pentanoate | Ethyl acetate | |
- | Ethyl acetate | Ethyl pentanoate | 3-Methylbutanal | - | Ethyl acetate | Ethyl 3-methylbutanoate-M | Acetone | |
- | Acetone | Ethyl 3-methylbutanoate-M | Acetic acid | - | Methyl propanal | Butyl acetate | Ethyl propanoate | |
- | Ethyl propanoate | Butyl acetate | Ethyl acetate | - | Acetone | Hexanal-M | Ethyl butanoate | |
- | Ethyl butanoate | Hexanal-M | Methyl propanal | - | 3-Methylbutanol * | 1-Pentanol | Ethyl 2-methylpropanoate-M | |
- | 4-Methyl-2-pentanone-M | 1-Pentanol | Methyl acetate * | - | Ethyl propanoate | - | 4-Methyl-2-pentanone-M | |
- | 4-Methyl-2-pentanone-D | - | Acetone | - | Ethyl 3-methylbutanoate-M * | - | 4-Methyl-2-pentanone-D | |
- | Propyl acetate-M | - | Ethyl propanoate | - | Ethyl butanoate | - | Propyl acetate-M | |
- | - | - | Ethyl butanoate | - | Ethyl 2-methylpropanoate-M | - | - | |
- | - | - | 4-Methyl-2-pentanone-M | - | 4-Methyl-2-pentanone-M | - | - | |
- | - | - | 4-Methyl-2-pentanone-D | - | 4-Methyl-2-pentanone-D | - | - | |
- | - | - | Propyl acetate-M | - | Propyl acetate-M | - | - | |
- | - | - | 2-Ethylfuran-M * | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Wang, Y.; Wang, D.; He, Z.; Gong, J.; Tan, C. Effects of Different Probiotics on the Volatile Components of Fermented Coffee Were Analyzed Based on Headspace-Gas Chromatography-Ion Mobility Spectrometry. Foods 2023, 12, 2015. https://doi.org/10.3390/foods12102015
Zhao L, Wang Y, Wang D, He Z, Gong J, Tan C. Effects of Different Probiotics on the Volatile Components of Fermented Coffee Were Analyzed Based on Headspace-Gas Chromatography-Ion Mobility Spectrometry. Foods. 2023; 12(10):2015. https://doi.org/10.3390/foods12102015
Chicago/Turabian StyleZhao, Linfen, Yanhua Wang, Dongyu Wang, Zejuan He, Jiashun Gong, and Chao Tan. 2023. "Effects of Different Probiotics on the Volatile Components of Fermented Coffee Were Analyzed Based on Headspace-Gas Chromatography-Ion Mobility Spectrometry" Foods 12, no. 10: 2015. https://doi.org/10.3390/foods12102015
APA StyleZhao, L., Wang, Y., Wang, D., He, Z., Gong, J., & Tan, C. (2023). Effects of Different Probiotics on the Volatile Components of Fermented Coffee Were Analyzed Based on Headspace-Gas Chromatography-Ion Mobility Spectrometry. Foods, 12(10), 2015. https://doi.org/10.3390/foods12102015