Analysis of Phospholipids in Digestion Using Hybrid IDA and SWATH Acquisition: An Example for Krill Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. In Vitro Digestion
2.4. LC-MS Analysis for Phospholipids
2.5. Determination of Particle Characterization
2.6. Data Processing and Statistical Analysis
3. Results and Discussion
3.1. Identification of PC and LPC Species Using IDA
3.2. Establishment of a Mathematical Model for PC and LPC
3.3. Model-Assisted Identification for SWATH Results
3.4. Analysis of PC and LPC Species in the Final Digestive Products
3.5. Alterations in Digestive Behavior
4. Outlook
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schverer, M.; O’Mahony, S.M.; O’Riordan, K.J.; Donoso, F.; Roy, B.L.; Stanton, C.; Dinan, T.G.; Schellekens, H.; Cryan, J.F. Dietary phospholipids: Role in cognitive processes across the lifespan. Neurosci. Biobehav. Rev. 2020, 111, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Verardo, V.; Gómez-Caravaca, A.M.; Arráez-Román, D.; Hettinga, K. Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products. Int. J. Mol. Sci. 2017, 18, 173. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Cao, C.; Li, R.; Cao, P.; Li, Q.; Liu, Y. Lipid composition modulates the intestine digestion rate and serum lipid status of different edible oils: A combination of in vitro and in vivo studies. Food Funct. 2019, 10, 1490–1503. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, Z.; Zhang, H.; Decker, E.A.; McClements, D.J. Influence of lipid type on gastrointestinal fate of oil-in-water emulsions: In vitro digestion study. Food Res. Int. 2015, 75, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Zhao, X.; Wang, S.; Zhang, M.; Yao, W.; Yuan, Y. Determination of related substances in egg yolk lecithin by HPLC-CAD and characterization of its profiling by HPLC-Q-TOF-MS. J. Pharm. Biomed. Anal. 2022, 221, 115079. [Google Scholar] [CrossRef]
- Monakhova, Y.B.; Diehl, B.W.K. Automated multicomponent phospholipid analysis using (31)P NMR spectroscopy: Example of vegetable lecithin and krill oil. Anal. Bioanal. Chem. 2018, 410, 7891–7900. [Google Scholar] [CrossRef] [PubMed]
- Tavazzi, I.; Fontannaz, P.; Lee, L.Y.; Giuffrida, F. Quantification of glycerophospholipids and sphingomyelin in human milk and infant formula by high performance liquid chromatography coupled with mass spectrometer detector. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1072, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Takeda, H.; Izumi, Y.; Takahashi, M.; Paxton, T.; Tamura, S.; Koike, T.; Yu, Y.; Kato, N.; Nagase, K.; Shiomi, M.; et al. Widely-targeted quantitative lipidomics method by supercritical fluid chromatography triple quadrupole mass spectrometry [S]. J. Lipid Res. 2018, 59, 1283–1293. [Google Scholar] [CrossRef]
- Raetz, M.; Bonner, R.; Hopfgartner, G. SWATH-MS for metabolomics and lipidomics: Critical aspects of qualitative and quantitative analysis. Metabolomics 2020, 16, 71. [Google Scholar] [CrossRef]
- Vaňková, Z.; Peterka, O.; Chocholoušková, M.; Wolrab, D.; Jirásko, R.; Holčapek, M. Retention dependences support highly confident identification of lipid species in human plasma by reversed-phase UHPLC/MS. Anal. Bioanal. Chem. 2022, 414, 319–331. [Google Scholar] [CrossRef]
- Raetz, M.; Duchoslav, E.; Bonner, R.; Hopfgartner, G. Hybrid SWATH/MS and HR-SRM/MS acquisition for phospholipidomics using QUAL/QUANT data processing. Anal. Bioanal. Chem. 2019, 411, 5681–5690. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yin, Y.; Zhu, Z.J. Advancing untargeted metabolomics using data-independent acquisition mass spectrometry technology. Anal. Bioanal. Chem. 2019, 411, 4349–4357. [Google Scholar] [CrossRef]
- Chen, X.; Peng, X.; Sun, X.; Pan, L.; Shi, J.; Gao, Y.; Lei, Y.; Jiang, F.; Li, R.; Liu, Y.; et al. Development and Application of Feature-Based Molecular Networking for Phospholipidomics Analysis. J. Agric. Food Chem. 2022, 70, 7815–7825. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Huan, T. Comparison of Full-Scan, Data-Dependent, and Data-Independent Acquisition Modes in Liquid Chromatography-Mass Spectrometry Based Untargeted Metabolomics. Anal. Chem. 2020, 92, 8072–8080. [Google Scholar] [CrossRef]
- Xie, D.; Gong, M.; Wei, W.; Jin, J.; Wang, X.; Wang, X.; Jin, Q. Antarctic Krill (Euphausia superba) Oil: A Comprehensive Review of Chemical Composition, Extraction Technologies, Health Benefits, and Current Applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 514–534. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhao, M.; Ennahar, S.; Bindler, F.; Marchioni, E. Determination of phosphatidylethanolamine molecular species in various food matrices by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS2). Anal. Bioanal. Chem. 2012, 403, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.W.; Zhou, D.Y.; Liu, Y.F.; Zhao, Q.; Liu, Z.Y.; Song, L.; Zhou, X.; Zhang, J.R.; Zhu, B.W. Extraction and Characterization of Phospholipid-Enriched Oils from Antarctic Krill (Euphausia Superba) with Different Solvents. J. Aquat. Food Prod. Technol. 2018, 27, 292–304. [Google Scholar] [CrossRef]
- Castro-Gomez, M.P.; Holgado, F.; Rodriguez-Alcala, L.M.; Montero, O.; Fontecha, J. Comprehensive Study of the Lipid Classes of Krill Oil by Fractionation and Identification of Triacylglycerols, Diacylglycerols, and Phospholipid Molecular Species by Using UPLC/QToF-MS. Food Anal. Meth. 2015, 8, 2568–2580. [Google Scholar] [CrossRef]
- Jia, W.; Zhang, M.; Zhang, R.; Xu, M.; Xue, M.; Song, W.; Shi, L. Bioaccessibility of phospholipids in homogenized goat milk: Lipid digestion ecology through INFOGEST model. Food Chem. 2022, 386, 132770. [Google Scholar] [CrossRef]
- Xie, D.; Jin, J.; Sun, J.; Liang, L.; Wang, X.; Zhang, W.; Wang, X.; Jin, Q. Comparison of solvents for extraction of krill oil from krill meal: Lipid yield, phospholipids content, fatty acids composition and minor components. Food Chem. 2017, 233, 434–441. [Google Scholar] [CrossRef]
- Winther, B.; Hoem, N.; Berge, K.; Reubsaet, L. Elucidation of phosphatidylcholine composition in krill oil extracted from Euphausia superba. Lipids 2011, 46, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Le Grandois, J.; Marchioni, E.; Zhao, M.; Giuffrida, F.; Ennahar, S.; Bindler, F. Investigation of natural phosphatidylcholine sources: Separation and identification by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS2) of molecular species. J. Agric. Food Chem. 2009, 57, 6014–6020. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Thomas, M.J. Phospholipid profiling by tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009, 877, 2709–2715. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.J.; Liu, S.J.; Zhu, Q.F.; Guo, N.; Wang, Y.L.; Yuan, B.F.; Feng, Y.Q. Establishment of Liquid Chromatography Retention Index Based on Chemical Labeling for Metabolomic Analysis. Anal. Chem. 2018, 90, 8412–8420. [Google Scholar] [CrossRef] [PubMed]
- Cebo, M.; Calderón Castro, C.; Schlotterbeck, J.; Gawaz, M.; Chatterjee, M.; Lämmerhofer, M. Untargeted UHPLC-ESI-QTOF-MS/MS analysis with targeted feature extraction at precursor and fragment level for profiling of the platelet lipidome with ex vivo thrombin-activation. J. Pharm. Biomed. Anal. 2021, 205, 114301. [Google Scholar] [CrossRef]
- Lin, M.; Wang, Z.; Wang, D.; Chen, X.; Zhang, J.L. Mathematical Model-Assisted UHPLC-MS/MS Method for Global Profiling and Quantification of Cholesteryl Esters in Hyperlipidemic Golden Hamsters. Anal. Chem. 2019, 91, 4504–4512. [Google Scholar] [CrossRef]
- Sun, X.; Shi, J.; Li, R.; Chen, X.; Zhang, S.; Xu, Y.J.; Liu, Y. SWATH-MS2&1: Development and Validation of a Pseudotargeted Lipidomics Method for the Analysis of Glycerol Esters in Milk. J. Agric. Food Chem. 2022, 70, 3331–3343. [Google Scholar]
- Guo, J.; Shen, S.; Xing, S.; Huan, T. DaDIA: Hybridizing Data-Dependent and Data-Independent Acquisition Modes for Generating High-Quality Metabolomic Data. Anal. Chem. 2021, 93, 2669–2677. [Google Scholar] [CrossRef]
- Liebisch, G.; Fahy, E.; Aoki, J.; Dennis, E.A.; Durand, T.; Ejsing, C.S.; Fedorova, M.; Feussner, I.; Griffiths, W.J.; Köfeler, H.; et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 2020, 61, 1539–1555. [Google Scholar] [CrossRef]
- Zhang, T.T.; Xu, J.; Wang, Y.M.; Xue, C.H. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Prog. Lipid Res. 2019, 75, 100997. [Google Scholar] [CrossRef]
- Yan, J.; Yang, Z.; Qiao, X.; Kong, Z.; Dai, L.; Wu, J.; Xu, X.; McClements, D.J. Interfacial characteristics and in vitro digestion of emulsion coated by single or mixed natural emulsifiers: Lecithin and/or rice glutelin hydrolysates. J. Sci. Food Agric. 2022, 102, 2990–2999. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, Å.; Duan, R.D. Pancreatic and mucosal enzymes in choline phospholipid digestion. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 316, G425–G445. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.H.; Lim, S.J.; Ryu, Y.M.; Park, H.R.; Suh, H.J.; Han, S.H. Absorption rate of krill oil and fish oil in blood and brain of rats. Lipids Health Dis. 2018, 17, 162. [Google Scholar] [CrossRef] [PubMed]
- Sugasini, D.; Thomas, R.; Yalagala, P.C.R.; Tai, L.M.; Subbaiah, P.V. Dietary docosahexaenoic acid (DHA) as lysophosphatidylcholine, but not as free acid, enriches brain DHA and improves memory in adult mice. Sci. Rep. 2017, 7, 11263. [Google Scholar] [CrossRef] [PubMed]
- Hachem, M.; Belkouch, M.; Lo Van, A.; Picq, M.; Bernoud-Hubac, N.; Lagarde, M. Brain targeting with docosahexaenoic acid as a prospective therapy for neurodegenerative diseases and its passage across blood brain barrier. Biochimie 2020, 170, 203–211. [Google Scholar] [CrossRef]
- Xia, Z.W.; Zhang, J.G.; Ni, Z.J.; Zhang, F.; Thakur, K.; Hu, F.; Wei, Z.J. Functional and emulsification characteristics of phospholipids and derived o/w emulsions from peony seed meal. Food Chem. 2022, 389, 133112. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.D.; Qi, Y.M.; Zheng, L.; Wu, C.L.; Wang, Z.J.; Teng, F. Preparation and digestibility of fish oil nanoemulsions stabilized by soybean protein isolate-phosphatidylcholine. Food Hydrocoll. 2020, 100, 105310. [Google Scholar] [CrossRef]
- Singh, H.; Sarkar, A. Behaviour of protein-stabilised emulsions under various physiological conditions. Adv. Colloid Interface Sci. 2011, 165, 47–57. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, L.; Tian, S.; Yang, K.; Xie, J. Phospholipid composition and emulsifying properties of rice bran lecithin from enzymatic degumming. LWT 2020, 117, 108588. [Google Scholar] [CrossRef]
- Çelebioğlu, H.Y.; Lee, S.; Chronakis, I.S. Interactions of salivary mucins and saliva with food proteins: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 64–83. [Google Scholar] [CrossRef]
- Ogawa, S.; Decker, E.A.; McClements, D.J. Production and characterization of O/W emulsions containing droplets stabilized by lecithin-chitosan-pectin mutilayered membranes. J. Agric. Food Chem. 2004, 52, 3595–3600. [Google Scholar] [CrossRef] [PubMed]
- Hsu, F.F.; Turk, J. Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: Mechanisms of fragmentation and structural characterization. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009, 877, 2673–2695. [Google Scholar] [CrossRef] [PubMed]
- Hsu, F.F.; Turk, J. Characterization of phosphatidylinositol, phosphatidylinositol-4-phosphate, and phosphatidylinositol-4,5-bisphosphate by electrospray ionization tandem mass spectrometry: A mechanistic study. J. Am. Soc. Mass Spectrom. 2000, 11, 986–999. [Google Scholar] [CrossRef] [PubMed]
Unsaturation Degrees | Regression Equation | Linearity R2 | Carbon Numbers | Regression Equation | Linearity R2 |
n = 1 | Y = 0.061X + 4.191 | 0.9960 | C = 32 | Y = −0.110X + 6.265 | 0.9990 |
n = 2 | Y = 0.058X + 4.183 | 0.9938 | C = 34 | Y = −0.087X + 6.345 | 0.9910 |
n = 3 | Y = 0.058X + 4.088 | 0.9915 | C = 36 | Y = −0.103X + 6.512 | 0.9654 |
n = 4 | Y = 0.058X + 4.009 | 0.9159 | C = 38 | Y = −0.096X + 6.605 | 0.9792 |
n = 5 | Y = 0.061X + 3.832 | 0.9893 | C = 39 | Y = −0.082X + 6.631 | 0.9051 |
n = 6 | Y = 0.060X + 3.783 | 0.9942 | C = 40 | Y = −0.088X + 6.695 | 0.9875 |
n = 7 | Y = 0.069X + 3.321 | 0.9694 | C = 41 | Y = −0.099X + 6.865 | 0.9508 |
n = 8 | Y = 0.099X + 2.059 | 0.9976 | C = 42 | Y = −0.092X + 6.855 | 0.9963 |
n = 9 | Y = 0.083X + 2.560 | 0.9919 | C = 44 | Y = −0.080X + 6.882 | 0.9989 |
n = 10 | Y = 0.071X + 2.939 | 0.9999 | |||
Unsaturation Degrees | Regression Equation | Linearity R2 | Carbon Numbers | Regression Equation | Linearity R2 |
n = 0 | Y = 0.172X + 1.965 | 0.9975 | C = 16 | Y = −0.223X + 4.698 | 0.9883 |
n = 1 | Y = 0.171X + 1.700 | 0.9990 | C = 18 | Y = −0.221X + 5.023 | 0.9656 |
n = 2 | Y = 0.166X + 1.583 | 0.9547 | C = 22 | Y = −0.223X + 5.724 | 0.9979 |
Regression Equation | Linearity R2 | Regression Equation | Linearity R2 | ||
Y = 0.062X1 − 0.090X2 + 4.216 | 0.9453 | Y = 0.168X1 − 0.225X2 + 2.007 | 0.9896 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Wang, Y.; Liu, Y.; Xu, Y. Analysis of Phospholipids in Digestion Using Hybrid IDA and SWATH Acquisition: An Example for Krill Oil. Foods 2023, 12, 2020. https://doi.org/10.3390/foods12102020
Shi J, Wang Y, Liu Y, Xu Y. Analysis of Phospholipids in Digestion Using Hybrid IDA and SWATH Acquisition: An Example for Krill Oil. Foods. 2023; 12(10):2020. https://doi.org/10.3390/foods12102020
Chicago/Turabian StyleShi, Jiachen, Yanan Wang, Yuanfa Liu, and Yongjiang Xu. 2023. "Analysis of Phospholipids in Digestion Using Hybrid IDA and SWATH Acquisition: An Example for Krill Oil" Foods 12, no. 10: 2020. https://doi.org/10.3390/foods12102020
APA StyleShi, J., Wang, Y., Liu, Y., & Xu, Y. (2023). Analysis of Phospholipids in Digestion Using Hybrid IDA and SWATH Acquisition: An Example for Krill Oil. Foods, 12(10), 2020. https://doi.org/10.3390/foods12102020