Formation, Structural Characterization, and Functional Properties of Corn Starch/Zeaxanthin Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Corn Starch/Zeaxanthin Composites
2.3. Zeaxanthin Content and Encapsulation Efficiency
2.4. Structural Characterization of Corn Starch/Zeaxanthin Composites
2.4.1. Light and Polarized-Light Microscopy
2.4.2. Scanning Electron Microscopy
2.4.3. X-ray Diffraction
2.4.4. Fourier Transform Infrared Spectroscopy
2.4.5. Small Angle X-ray Scattering
2.4.6. Differential Scanning Calorimetry
2.5. Storage Stability
2.6. In Vitro Gastric and Intestinal Digestion
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effect of Reaction Parameters on the Zeaxanthin Content and Encapsulation Efficiency
3.1.1. Effect of Reaction Temperature
3.1.2. Effect of Starch Concentration
3.1.3. Effect of Reaction Time
3.2. Structural Characterization
3.2.1. Morphology
3.2.2. Crystalline Characteristics
3.2.3. FTIR
3.2.4. Cluster and Fractal Characteristics
3.2.5. Thermal Properties
3.3. Storage Stability
3.4. In Vitro Digestion
3.5. The Underlying Mechanism on the Formation of Corn Starch/Zeaxanthin Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Sajilata, M.; Singhal, R.; Kamat, M. The carotenoid pigment zeaxanthin—A review. Compr. Rev. Food Sci. Food Saf. 2008, 7, 29–49. [Google Scholar] [CrossRef]
- Ribaya-Mercado, J.D.; Blumberg, J.B. Lutein and zeaxanthin and their potential roles in disease prevention. J. Am. Coll. Nutr. 2004, 23, 567–587. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.G.; Camões, M.F.G.; Oliveira, L. Carotenoid stability in fruits, vegetables and working standards—Effect of storage temperature and time. Food Chem. 2014, 156, 37–41. [Google Scholar] [CrossRef]
- Mayer-Miebach, E.; Behsnilian, D. Stability and bioavailability of lycopene, lutein and zeaxanthin in fruits and vegetables as affected by thermal processing. Stewart Postharvest Rev. 2006, 5, 1–10. [Google Scholar]
- Zhu, F. Encapsulation and delivery of food ingredients using starch based systems. Food Chem. 2017, 229, 542–552. [Google Scholar] [CrossRef]
- Charve, J.p.; Reineccius, G.A. Encapsulation performance of proteins and traditional materials for spray dried flavors. J. Agric. Food Chem. 2009, 57, 2486–2492. [Google Scholar] [CrossRef]
- Tonon, R.V.; Pedro, R.B.; Grosso, C.R.; Hubinger, M.D. Microencapsulation of flaxseed oil by spray drying: Effect of oil load and type of wall material. Dry. Technol. 2012, 30, 1491–1501. [Google Scholar] [CrossRef]
- Shi, Y.; Zhou, S.; Fan, S.; Ma, Y.; Li, D.; Tao, Y.; Han, Y. Encapsulation of bioactive polyphenols by starch and their impacts on gut microbiota. Curr. Opin. Food Sci. 2021, 38, 102–111. [Google Scholar] [CrossRef]
- Han, S.; Choi, S.-H.; Kim, W.; Kim, B.-Y.; Baik, M.-Y. Infusion of catechin into native corn starch granules for drug and nutrient delivery systems. Food Sci. Biotechnol. 2015, 24, 2035–2040. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Huber, K.C. Preparation and characterization of corn starch-β-carotene composites. Carbohydr. Polym. 2016, 136, 394–401. [Google Scholar] [CrossRef]
- Sweedman, M.C.; Hasjim, J.; Schäfer, C.; Gilbert, R.G. Structures of octenylsuccinylated starches: Effects on emulsions containing β-carotene. Carbohydr. Polym. 2014, 112, 85–93. [Google Scholar] [CrossRef]
- de Campo, C.; Dick, M.; dos Santos, P.P.; Costa, T.M.H.; Paese, K.; Guterres, S.S.; de Oliveira Rios, A.; Flores, S.H. Zeaxanthin nanoencapsulation with Opuntia monacantha mucilage as structuring material: Characterization and stability evaluation under different temperatures. Colloids Surf. A Physicochem. Eng. Asp. 2018, 558, 410–421. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, G.; Wanbin, Z.; Minghao, J.; Wei, Y.; Hao, J.; Liu, X.; Gan, Z.; Sun, A. Nanoencapsulation of zeaxanthin extracted from Lycium barbarum L. by complex coacervation with gelatin and CMC. Food Hydrocoll. 2021, 112, 106280. [Google Scholar] [CrossRef]
- Li, S.; Wang, C.; Fu, X.; Li, C.; He, X.; Zhang, B.; Huang, Q. Encapsulation of lutein into swelled cornstarch granules: Structure, stability and in vitro digestion. Food Chem. 2018, 268, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; He, X.; Fu, X.; Huang, Q. In vitro digestion and physicochemical properties of wheat starch/flour modified by heat-moisture treatment. J. Cereal Sci. 2015, 63, 109–115. [Google Scholar] [CrossRef]
- Li, S.; Huang, L.; Zhang, B.; Chen, C.; Fu, X.; Huang, Q. Fabrication and characterization of starch/zein nanocomposites with pH-responsive emulsion behavior. Food Hydrocoll. 2021, 112, 106341. [Google Scholar] [CrossRef]
- Lopez-Rubio, A.; Flanagan, B.M.; Gilbert, E.P.; Gidley, M.J. A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolym. Orig. Res. Biomol. 2008, 89, 761–768. [Google Scholar] [CrossRef]
- Li, S.; Li, C.; Yang, Y.; He, X.; Zhang, B.; Fu, X.; Tan, C.P.; Huang, Q. Starch granules as Pickering emulsifiers: Role of octenylsuccinylation and particle size. Food Chem. 2019, 283, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Fan, X.; Ma, H.; Li, C.; Li, E.; Gilbert, R.G. Characterization of the baking-induced changes in starch molecular and crystalline structures in sugar-snap cookies. Carbohydr. Polym. 2021, 256, 117518. [Google Scholar] [CrossRef]
- Li, S.; Zhang, B.; Li, C.; Fu, X.; Huang, Q. Pickering emulsion gel stabilized by octenylsuccinate quinoa starch granule as lutein carrier: Role of the gel network. Food Chem. 2020, 305, 125476. [Google Scholar] [CrossRef]
- Doblado-Maldonado, A.F.; Gomand, S.V.; Goderis, B.; Delcour, J.A. The extent of maize starch crystal melting as a critical factor in the isolation of amylose via aqueous leaching. Food Hydrocoll. 2016, 61, 36–47. [Google Scholar] [CrossRef]
- Landrum, J.T.; Bone, R.A. Lutein, zeaxanthin, and the macular pigment. Arch. Biochem. Biophys. 2001, 385, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.; He, X.; Huang, Q. The physicochemical properties of swelled maize starch granules complexed with lauric acid. Food Hydrocoll. 2013, 32, 365–372. [Google Scholar] [CrossRef]
- Cheng, W.; Luo, Z.; Li, L.; Fu, X. Preparation and characterization of debranched-starch/phosphatidylcholine inclusion complexes. J. Agric. Food Chem. 2015, 63, 634–641. [Google Scholar] [CrossRef]
- Chen, X.; He, X.; Zhang, B.; Fu, X.; Li, L.; Huang, Q. Structure, physicochemical and in vitro digestion properties of ternary blends containing swollen maize starch, maize oil and zein protein. Food Hydrocoll. 2018, 76, 88–95. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch retrogradation: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Ren, Y.; Jiang, L.; Wang, W.; Xiao, Y.; Liu, S.; Luo, Y.; Shen, M.; Xie, J. Effects of Mesona chinensis Benth polysaccharide on physicochemical and rheological properties of sweet potato starch and its interactions. Food Hydrocoll. 2020, 99, 105371. [Google Scholar] [CrossRef]
- Ma, S.; Zhu, P.; Wang, M. Effects of konjac glucomannan on pasting and rheological properties of corn starch. Food Hydrocoll. 2019, 89, 234–240. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.; Liu, J.; Xie, F.; Chen, L. Supramolecular structure of A-and B-type granules of wheat starch. Food Hydrocoll. 2013, 31, 68–73. [Google Scholar] [CrossRef]
- Suzuki, T.; Chiba, A.; Yarno, T. Interpretation of small angle X-ray scattering from starch on the basis of fractals. Carbohydr. Polym. 1997, 34, 357–363. [Google Scholar] [CrossRef]
- Stribeck, N. X-ray Scattering of Soft Matter; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Tarahi, M.; Shahidi, F.; Hedayati, S. Physicochemical, pasting, and thermal properties of native corn starch–mung bean protein isolate composites. Gels 2022, 8, 693. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.-P.; Luo, Z.-G.; Peng, X.-C. Encapsulation of vitamin E and soy isoflavone using spiral dextrin: Comparative structural characterization, release kinetics, and antioxidant capacity during simulated gastrointestinal tract. J. Agric. Food Chem. 2018, 66, 10598–10607. [Google Scholar] [CrossRef] [PubMed]
- Junejo, S.A.; Ding, L.; Fu, X.; Xiong, W.; Zhang, B.; Huang, Q. Pea cell wall integrity controls the starch and protein digestion properties in the INFOGEST in vitro simulation. Int. J. Biol. Macromol. 2021, 182, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Hu, Y.; Li, S.; Yi, X.; Shao, S.; Yu, W.; Li, E. Biological factors controlling starch digestibility in human digestive system. Food Sci. Hum. Wellness 2023, 12, 351–358. [Google Scholar] [CrossRef]
- Shi, L.; Zhou, J.; Guo, J.; Gladden, I.; Kong, L. Starch inclusion complex for the encapsulation and controlled release of bioactive guest compounds. Carbohydr. Polym. 2021, 274, 118596. [Google Scholar] [CrossRef] [PubMed]
Zeaxanthin | Corn Starch | Corn Starch/Zeaxanthin Composites | |
---|---|---|---|
Peak 1 | |||
To (°C) | 68.5 ± 1.2 b | 76.1 ± 1.0 a | 76.3 ± 1.1 a |
Tp (°C) | 72.5 ± 0.5 b | 81.4 ± 0.6 a | 81.5 ± 0.6 a |
Tc (°C) | 75.8 ± 0.2 b | 85.7 ± 0.9 a | 86.5 ± 1.1 a |
ΔH (J/g) | 6.3 ± 0.6 a | 5.6 ± 0.9 b | 5.8 ± 1.3 b |
Peak 2 | |||
To (°C) | - | - | 100.8 ± 0.5 |
Tp (°C) | - | - | 105.9 ± 0.6 |
Tc (°C) | - | - | 109.0 ± 0.5 |
ΔH (J/g) | - | - | 0.47 ± 0.05 |
Samples | R2 | t1/2 (d) | Retention after 21 d (%) |
---|---|---|---|
Zeaxanthin | 0.99 | 13 | 32 |
Corn starch/zeaxanthin composites | 0.96 | 43 | 72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Feng, D.; Li, E.; Gilbert, R.G. Formation, Structural Characterization, and Functional Properties of Corn Starch/Zeaxanthin Composites. Foods 2023, 12, 2076. https://doi.org/10.3390/foods12102076
Li S, Feng D, Li E, Gilbert RG. Formation, Structural Characterization, and Functional Properties of Corn Starch/Zeaxanthin Composites. Foods. 2023; 12(10):2076. https://doi.org/10.3390/foods12102076
Chicago/Turabian StyleLi, Songnan, Duo Feng, Enpeng Li, and Robert G. Gilbert. 2023. "Formation, Structural Characterization, and Functional Properties of Corn Starch/Zeaxanthin Composites" Foods 12, no. 10: 2076. https://doi.org/10.3390/foods12102076
APA StyleLi, S., Feng, D., Li, E., & Gilbert, R. G. (2023). Formation, Structural Characterization, and Functional Properties of Corn Starch/Zeaxanthin Composites. Foods, 12(10), 2076. https://doi.org/10.3390/foods12102076