Botanical Origin Influence on Some Honey Physicochemical Characteristics and Antioxidant Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Honey Samples
2.3. Botanical Origin Identification
2.4. Physicochemical Determinations
2.5. Bioactive Compound Determinations
2.6. UV-Vis and ATR-FTIR Analysis
2.7. Chemometric Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Melissopalynological Analysis
3.2. Botanical Origin Effect on Honey Quality Indicators
3.3. Geographical Origin Effect on Honey Quality Indicators
3.4. Correlation Matrix between Quality Indicators of Honey
3.5. ATR-FTIR and Chemometric Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alvarez-Suarez, J.M.; Tulipani, S.; Romandini, S.; Bertoli, E.; Battino, M. Contribution of honey in nutrition and human health: A review. Mediterr. J. Nutr. Metab. 2010, 3, 15–23. [Google Scholar] [CrossRef]
- Kunieda, T.; Fuyiyuki, T.; Kucharski, R.; Foret, S.; Ament, S.A.; Toth, A.L.; Ohashi, K.; Takeuchi, H.; Kamikouchi, A.; Kage, E.; et al. Carbohydrate metabolism genes and pathways in insects: Insights from the honey bee genome. Insect Mol. Biol. 2006, 15, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Nicolson, S.W.; Human, H.; Pirk, C.W.W. Honey bees save energy in honey processing by dehydrating nectar before returning to the nest. Sci. Rep. 2022, 12, 16224. [Google Scholar] [CrossRef] [PubMed]
- Hills, S.P.; Mitchell, P.; Wells, C.; Russell, M. Honey supplementation and exercise: A systematic review. Nutrients 2019, 11, 1586. [Google Scholar] [CrossRef]
- Şenyurt, M.; Karadeniz, T.; Bak, T. Loquat as a source of nectar and pollen in the winter for beekeeping. Sci. Papers Ser. B Hortic. 2012, 56, 319–322. [Google Scholar]
- Agriculture.ec.europa.eu. Available online: https://agriculture.ec.europa.eu/system/files/2022-10/market-presentation-honey_autumn2022_en.pdf (accessed on 3 February 2023).
- Martos, I.; Ferreres, F.; Yao, L.; D’Arcy, B.; Caffin, N.; Tomás-Barberán, F.A. Flavonoids in monospecific eucalyptus honeys from Australia. J. Agric. Food Chem. 2000, 48, 4744–4748. [Google Scholar] [CrossRef]
- Dimitrova, B.; Gevrenova, R.; Anklam, E. Analysis of phenolic acids in honeys of different floral origin by solid-phase extraction and high-performance liquid chromatography. Phytochem. Anal. 2007, 18, 24–32. [Google Scholar] [CrossRef]
- Molan, P.C.; Betts, J.A. Clinical usage of honey as a wound dressing: An update. J. Wound Care 2004, 13, 353–356. [Google Scholar] [CrossRef]
- Pérez, R.A.; Iglesias, M.T.; Pueyo, E.; Gonzalez, M.; de Lorenzo, C. Amino acid composition and antioxidant capacity of Spanish honeys. J. Agric. Food Chem. 2007, 55, 360–365. [Google Scholar] [CrossRef]
- Iglesias, M.T.; De Lorenzo, C.; Del Carmen Polo, M.; Martín-Alvarez, P.J.; Pueyo, E. Usefulness of amino acid composition to discriminate between honeydew and floral honeys. Application to honeys from a small geographic area. J. Agric. Food Chem. 2004, 52, 84–89 . [Google Scholar] [CrossRef]
- Castro-Vázquez, L.; Díaz-Maroto, M.C.; González-Viñas, M.A.; de la Fuente, E.; Pérez-Coello, M.S. Influence of storage conditions on chemical composition and sensory properties of citrus honey. J. Agric. Food Chem. 2008, 56, 1999–2006 . [Google Scholar] [CrossRef]
- Mashhadi, A.; Bavali, A.; Mokhtari, F. Assay of honey freshness by a novel optical technique. Sci. Rep. 2022, 12, 901. [Google Scholar] [CrossRef]
- Conti, M.E.; Stripeikis, J.; Campanella, L.; Cucina, D.; Tudino, M.B. Characterization of Italian honeys (Marche Region) on the basis of their mineral content and some typical quality parameters. Chem. Cent. J. 2007, 1, 14 . [Google Scholar] [CrossRef]
- Cooper, R.A.; Molan, P.C.; Harding, K.G. The sensitivity to honey of Gram-positive cocci of clinical significance isolated from wounds. J. Appl. Microbiol. 2002, 93, 857–863. [Google Scholar] [CrossRef]
- Taormina, P.J.; Niemira, B.A.; Beuchat, L.R. Inhibitory activity of honey against foodborne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. Int. J. Food Microbiol. 2001, 69, 217–225 . [Google Scholar] [CrossRef]
- Molan, P. Why honey is effective as a medicine: 2. The scientific explanation of its effects. Bee World 2001, 82, 22–40. [Google Scholar] [CrossRef]
- Bogdanov, S.; Jurendic, T.; Sieber, R.; Gallmann, P. Honey for nutrition and health: A review. J. Am. Coll. Nutr. 2008, 27, 677–689 . [Google Scholar] [CrossRef]
- Weston, R.J. The contribution of catalase and other natural products to the antibacterial activity of honey: A review. Food Chem. 2000, 71, 235–239 . [Google Scholar] [CrossRef]
- Davies, A.M.C. Amino acid analysis of honeys from eleven countries. J. Apic. Res. 1975, 14, 29–39 . [Google Scholar] [CrossRef]
- David, M.; Hategan, A.R.; Berghian-Grosan, C.; Magdas, D.A. The development of honey recognition models based on the association between ATR-IR spectroscopy and advanced statistical tools. Int. J. Mol. Sci. 2022, 23, 9977. [Google Scholar] [CrossRef]
- Bunaciu, A.A.; Aboul-Enein, H.Y. Honey discrimination using Fourier transform-infrared spectroscopy. Chemistry 2022, 4, 848–854. [Google Scholar] [CrossRef]
- Von Der Ohe, W.; Persano Oddo, L.; Piana, M.L.; Morlot, M.; Martin, P. Harmonized methods of melissopalynology. Apidologie 2004, 35, S18–S25 . [Google Scholar] [CrossRef]
- Gan, Z.; Yang, Y.; Li, J.; Wen, X.; Zhu, M.; Jiang, Y.; Ni, Y. Using sensor and spectral analysis to classify botanical origin and determine adulteration of raw honey. J. Food Eng. 2016, 178, 151–158 . [Google Scholar] [CrossRef]
- Kelly, J.F.D.; Downey, G.; Fouratier, V. Initial study of honey adulteration by sugar solutions using midinfrared (MIR) spectroscopy and chemometrics. J. Agric. Food Chem. 2004, 52, 33–39 . [Google Scholar] [CrossRef] [PubMed]
- Mendes, E.; Duarte, N. Mid-infrared spectroscopy as a valuable tool to tackle food analysis: A literature review on coffee, dairies, honey, olive oil and wine. Foods 2021, 10, 477. [Google Scholar] [CrossRef]
- Lichtenberg-Kraag, B.; Hedtke, C.; Bienefeld, K. Infrared spectroscopy in routine quality analysis of honey. Apidologie 2002, 33, 327–337 . [Google Scholar] [CrossRef]
- Nayik, G.A.; Nanda, V. Physico-chemical, enzymatic, mineral and colour characterization of three different varieties of honeys from Kashmir valley of India with a multivariate approach. Pol. J. Food Nutr. Sci. 2015, 65, 101–108. [Google Scholar] [CrossRef]
- Tewari, J.; Irudayaraj, J. Quantification of saccharides in multiple floral honeys using Fourier transform infrared microattenuated total reflectance spectroscopy. J. Agric. Food Chem. 2004, 52, 3237–3243. [Google Scholar] [CrossRef]
- Odeh, I.; Abulafi, S.; Dewik, H.; Alnajjar, I.; Imam, A.; Dembitsky, V.; Hanus, L. A variety of volatile compounds as markers in Palestinian honey from Thymus capitatus, Thymelaea hirsuta, and Tolpis virgata. Food Chem. 2007, 101, 1393–1397 . [Google Scholar] [CrossRef]
- Tsagkaris, A.S.; Koulis, G.A.; Danezis, G.P.; Martakos, I.; Dasenaki, M.; Georgiou, C.A.; Thomaidis, N.S. Honey authenticity: Analytical techniques, state of the art and challenges. RSC Adv. 2021, 11, 11273–11294 . [Google Scholar] [CrossRef]
- Gallardo-Velázquez, T.; Osorio-Revilla, G.; Zuñiga-deLoa, M.; Rivera-Espinoza, Y. Application of FTIR-HATR spectroscopy and multivariate analysis to the quantification of adulterants in Mexican honeys. Food Res. Int. 2009, 42, 313–318. [Google Scholar] [CrossRef]
- Ciursă, P.; Pauliuc, D.; Dranca, F.; Ropciuc, S.; Oroian, M. Detection of honey adulterated with agave, corn, inverted sugar, maple and rice syrups using FTIR analysis. Food Control 2021, 130, 108266. [Google Scholar] [CrossRef]
- Bogdanov, S. Harmonized Methods of the International Honey Commission. 2009. Available online: http://www.ihc-platform.net/ihcmethods2009.pdf (accessed on 10 March 2023).
- Codex Alimentations Draft Revised Standard for Standard for Honey (at Step 10 of the Codex Procedure) Alinorm. Codex Alimentarius Commission; FAO: Rome, Italy, 2001; Volume 25, pp. 19–26.
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of melissopalynology. Bee World 1978, 59, 139–157. [Google Scholar] [CrossRef]
- Dubois, M.; Giles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356 . [Google Scholar] [CrossRef]
- White, J.W., Jr. Spectrophotometric method for hydroxymethylfurfural in honey. J. AOAC Int. 1979, 62, 509–514. [Google Scholar] [CrossRef]
- Ciucu-Paraschiv, M.; Hoza, D. The effect of foliar application with organic and inorganic products on the biochemical quality indicators of highbush blueberry (Vaccinium corymbosum L.). Sci. Papers Ser. B Hortic. 2021, 65, 48–57. [Google Scholar]
- Giura, S.; Botu, M.; Vulpe, M.; Vîjan, L.E.; Mitrea, R. Evolution of the polyphenols, flavonoids, and tannins content in walnut leaves and green walnut husk during growing season. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 1264–1271 . [Google Scholar] [CrossRef]
- Tudor-Radu, M.; Vijan, L.E.; Tudor-Radu, C.M.; Tița, I.; Sima, R.; Mitrea, R. Assessment of ascorbic acid, polyphenols, flavonoids, anthocyanins and carotenoids content in tomato fruits. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 477–483. [Google Scholar] [CrossRef]
- Lazar, M.A.; Catana, M.; Catana, L.; Burnete, A.G.; Teodorescu, R.I.; Asanica, A.C.; Belc, N. Valorisation of aronia melanocarpa pomace for development of functional ingredients with high nutritional value and antioxidant capacity. Sci. Papers Ser. B Hortic. 2020, 64, 403–410. [Google Scholar]
- Topală, C.M.; Tătaru, L.D. Rapid method for the discrimination of Romanian wines based on mid-infrared spectroscopy and chemometrics. Rev. Chim. 2018, 69, 469–473. [Google Scholar] [CrossRef]
- Topală, C.M.; Tătaru, L.D. ATR-FTIR spectroscopy coupled with chemical and chemometric analysis to distinguish between some sweet wines. Rev. Chim. 2019, 70, 2355–2361. [Google Scholar] [CrossRef]
- Topală, C.M.; Vîjan, L.E.; Giura, S.; Botu, M. Attenuated total reflection Fourier transform infrared (ATR-FTIR): A method for the biochemical study of walnut leaves. Curr. Trends Nat. Sci. 2020, 9, 266–272. [Google Scholar] [CrossRef]
- Kędzierska-Matysek, M.; Teter, A.; Stryjecka, M.; Skałecki, P.; Domaradzki, P.; Rudaś, M.; Florek, M. Relationships linking the colour and elemental concentrations of blossom honeys with their antioxidant activity: A chemometric approach. Agriculture 2021, 11, 702. [Google Scholar] [CrossRef]
- Bodó, A.; Radványi, L.; Kőszegi, T.; Csepregi, R.; Nagy, D.U.; Farkas, Á.; Kocsis, M. Quality evaluation of light- and dark-colored Hungarian honeys, focusing on botanical origin, antioxidant capacity and mineral content. Molecules 2021, 26, 2825. [Google Scholar] [CrossRef] [PubMed]
- Uršulin-Trstenjak, N.; Puntarić, D.; Levanić, D.; Gvozdić, V.; Pavlek, Ž.; Puntarić, A.; Puntarić, E.; Puntarić, I.; Vidosavljević, D.; Lasić, D.; et al. Pollen, physicochemical, and mineral analysis of Croatian acacia honey samples: Applicability for identification of botanical and geographical origin. J. Food Qual. 2017, 2017, 8538693 . [Google Scholar] [CrossRef]
- Dobre, I.; Alexe, P.; Escuredo, O.; Seijo, C.M. Palynological evaluation of selected honeys from Romania. Grana 2013, 52, 113–121 . [Google Scholar] [CrossRef]
- Persano Oddo, L.; Piro, R. Main European unifloral honeys: Descriptive sheets. Apidologie 2004, 35, S38–S81. [Google Scholar] [CrossRef]
- Halagarda, M.; Groth, S.; Popek, S.; Rohn, S.; Pedan, V. Antioxidant activity and phenolic profile of selected organic and conventional honeys from Poland. Antioxidants 2020, 9, 44. [Google Scholar] [CrossRef]
- Oroian, M.; Ropciuc, S. Honey authentication based on physicochemical parameters and phenolic compounds. Comput. Electr. Agric. 2017, 138, 148–156. [Google Scholar] [CrossRef]
- Iordache, P.; Rosca, I.; Cismaru, M. Plante Melifere de Foarte Mare si Mare Pondere Economico-Apicola; Editura Lumea apicola: București, Romania, 2008; pp. 51–53. [Google Scholar]
- Singh, I.; Singh, S. Honey moisture reduction and its quality. J. Food Sci. Technol. 2018, 55, 3861–3871. [Google Scholar] [CrossRef]
- Chaikham, P.; Prangthip, P. Alteration of antioxidative properties of longan flower-honey after high pressure, ultra-sonic and thermal processing. Food Biosci. 2015, 10, 1–7. [Google Scholar] [CrossRef]
- Turkmen, N.; Sari, F.; Poyrazoglu, E.S.; Velioglu, Y.S. Effects of prolonged heating on antioxidant activity and colour of honey. Food Chem. 2006, 95, 653–657. [Google Scholar] [CrossRef]
- Kowalski, S. Changes of antioxidant activity and formation of 5-hydroxymethylfurfural in honey during thermal and microwave processing. Food Chem. 2013, 141, 1378–1382. [Google Scholar] [CrossRef]
- Saxena, S.; Gautam, S.; Sharma, A. Physical, biochemical and antioxidant properties of some Indian honeys. Food Chem. 2010, 118, 391–397 . [Google Scholar] [CrossRef]
- Albu, A.; Radu-Rusu, R.-M.; Simeanu, D.; Radu-Rusu, C.-G.; Pop, I.M. Phenolic and Total Flavonoid Contents and Physicochemical Traits of Romanian Monofloral Honeys. Agriculture 2022, 12, 1378. [Google Scholar] [CrossRef]
- Boussaid, A.; Chouaibi, M.; Rezig, L.; Hellal, R.; Donsì, F.; Ferrari, G.; Hamdi, S. Physicochemical and bioactive properties of six honey samples from various floral origins from Tunisia. Arab. J. Chem. 2018, 11, 265–274. [Google Scholar] [CrossRef]
- Albu, A.; Radu-Rusu, C.G.; Pop, I.M.; Frunza, G.; Nacu, G. Quality Assessment of Raw Honey Issued from Eastern Romania. Agriculture 2021, 11, 247. [Google Scholar] [CrossRef]
- Baloš, M.Ž.; Popov, N.; Vidaković, S.; Pelić, D.L.; Pelić, M.; Mihaljev, Ž.; Jakšić, S. Electrical conductivity and acidity of honey. Arh. Vet. Med. 2018, 11, 91–101. [Google Scholar] [CrossRef]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant activity, total phenolic content, individual phenolics and physicochemical parameters suitability for Romanian honey authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef]
- Yadata, D. Detection of the electrical conductivity and acidity of honey from different areas of Tepi. Food Sci. Technol. 2014, 2, 59–63. [Google Scholar] [CrossRef]
- Directive 2014/63/EU of the European Parliament and of the Council amending Council Directive 2001/110/EC relating to honey. Off. J. Eur. Communities 2014, 57, L164. Available online: https://www.fsai.ie/uploadedFiles/Consol_Dir2001_110.pdf (accessed on 10 March 2023).
- Pauliuc, D.; Dranca, F.; Ropciuc, S.; Oroian, M. Advanced Characterization of Monofloral Honeys from Romania. Agriculture 2022, 12, 526. [Google Scholar] [CrossRef]
- Tananaki, C. Τα χαρακτηριστικά του μελιού από Πολύκομπο και από Παλιούρι. [The characteristics of Polygonum aviculare (knotweed) and Paliurus spina-christi (Jerusalem thorn) honeys]. Meliss. Ep. 2015, 29, 167–169, 326–327. (In Greek) [Google Scholar]
- Thrasyvoulou, A.; Tananaki, C.; Goras, G.; Karazafiris, E.; Dimou, M.; Liolios, V.; Kanelis, D.; Gounari, S. Legislation of honey criteria and standards. J. Apic. Res. 2018, 57, 88–96. [Google Scholar] [CrossRef]
- da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef] [PubMed]
- El Sohaimy, S.A.; Masry, S.H.D.; Shehata, M.G. Physicochemical characteristics of honey from different origins. Ann. Agric. Sci. 2015, 60, 279–287. [Google Scholar] [CrossRef]
- Tomczyk, M.; Tarapatskyy, M.; Dżugan, M. The influence of geographical origin on honey composition studied by Polish and Slovak honeys. Czech J. Food Sci. 2019, 37, 232–238. [Google Scholar] [CrossRef]
- Abdulkhaliq, A.; Swaileh, K.M. Physico-chemical properties of multi-floral honey from the West Bank, Palestine. Int. J. Food Prop. 2017, 20, 447–454. [Google Scholar] [CrossRef]
- Mărghitaș, L.A.; Dezmirean, D.S.; Pocol, C.B.; Ilea, M.; Bobis, O.; Gergen, I. The development of a biochemical profile of acacia honey by identifying biochemical determinants of its quality. Not. Bot. Hort. Agrobot. Cluj-Napoca 2010, 38, 84–90. [Google Scholar]
- Chirsanova, A.; Capcanari, T.; Boistean, A. Quality assessment of honey in three different geographical areas from Republic of Moldova. Food Nutr. Sci. 2021, 12, 962–977. [Google Scholar] [CrossRef]
- Nešović, M.; Gašić, U.; Tosti, T.; Trifković, J.; Baošić, R.; Blagojević, S.; Ignjatović, L.; Tešić, Ž. Physicochemical analysis and phenolic profile of polyfloral and honeydew honey from Montenegro. RSC Adv. 2020, 10, 2462–2471. [Google Scholar] [CrossRef]
- Jacquemart, A.L.; Moquet, L.; Ouvrard, P.; Quetin-Leclercq, J.; Hérent, M.F.; Quinet, M. Tilia trees: Toxic or valuable resources for pollinators? Apidologie 2018, 49, 538–550. [Google Scholar] [CrossRef]
- Juan-Borrás, M.; Domenech, E.; Hellebrandova, M.; Escriche, I. Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys. Food Res. Int. 2014, 60, 86–94. [Google Scholar] [CrossRef]
- Boutoub, O.; El-Guendouz, S.; Manhita, A.; Dias, C.B.; Estevinho, L.M.; Paula, V.B.; Carlier, J.; Costa, M.C.; Rodrigues, B.; Raposo, S.; et al. Comparative study of the antioxidant and enzyme inhibitory activities of two types of Moroccan Euphorbia entire honey and their phenolic extracts. Foods 2021, 10, 1909. [Google Scholar] [CrossRef]
- Pauliuc, D.; Ciursă, P.; Ropciuc, S.; Dranca, F.; Oroian, M. Physicochemical parameters prediction and authentication of different monofloral honeys based on FTIR spectra. J. Food Compos. Anal. 2021, 102, 104021. [Google Scholar] [CrossRef]
- Crăciun, M.E.; Pârvulescu, O.C.; Donise, A.C.; Dobre, T.; Stanciu, D.R. Characterization and classification of Romanian acacia honey based on its physicochemical parameters and chemometrics. Sci. Rep. 2020, 10, 20690. [Google Scholar] [CrossRef]
- Matović, K.; Ćirić, J.; Kaljević, V.; Nedić, N.; Jevtić, G.; Vasković, N.; Baltić, M.Ž. Physicochemical parameters and microbiological status of honey produced in an urban environment in Serbia. Environ. Sci. Pollut. Res. 2018, 25, 14148–14157. [Google Scholar] [CrossRef]
- Kivima, E.; Tanilas, K.; Martverk, K.; Rosenvald, S.; Timberg, L.; Laos, K. The composition, physicochemical properties, antioxidant activity, and sensory properties of Estonian honeys. Foods 2021, 10, 511. [Google Scholar] [CrossRef]
- Guerzou, M.; Aouissi, H.A.; Guerzou, A.; Burlakovs, J.; Doumandji, S.; Krauklis, A.E. From the beehives: Identification and comparison of physicochemical properties of Algerian honey. Resources 2021, 10, 94. [Google Scholar] [CrossRef]
- Nicewicz, A.W.; Nicewicz, Ł.; Pawłowska, P. Antioxidant capacity of honey from the urban apiary: A comparison with honey from the rural apiary. Sci. Rep. 2021, 11, 9695. [Google Scholar] [CrossRef]
- Al-Mamary, M.; Al-Meeri, A.; Al-Habori, M. Antioxidant activities and total phenolics of different types of honey. Nutr. Res. 2002, 22, 1041–1047. [Google Scholar] [CrossRef]
- Chua, L.S.; Rahaman, N.L.A.; Adnan, N.A.; Eddie Tan, T.T. Antioxidant activity of three honey samples in relation with their biochemical components. J. Anal. Methods Chem. 2013, 2013, 313798. [Google Scholar] [CrossRef] [PubMed]
- Al-Farsi, M.; Al-Amri, A.; Al-Hadhrami, A.; Al-Belushi, S. Color, flavonoids, phenolics and antioxidants of Omani honey. Heliyon 2018, 4, e00874. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, A.A.; Ismail, H.M.; Ael-M, A.A.; Gomaa, N.F. Determination of flavonoid and phenolic acid contents of clover, cotton and citrus floral honeys. J. Egypt Public Health Assoc. 2009, 84, 245–259. [Google Scholar]
- Tomás-Barberán, F.A.; Ferreres, F.; García-Vignera, C.; Tomás-Lorente, F. Flavonoids in honey of different geographical origin. Z. Leb. Unters 1993, 196, 38–44. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Maruška, A.; Kornyšova, O.; Charczun, N.; Ligor, M.; Buszewski, B. Quantitative and qualitative determination of phenolic compounds in honey. Cheminė Technol. 2009, 52, 74–80. [Google Scholar]
- Sabatier, S.; Amiot, M.J.; Tacchini, M.; Aubert, S. Identification of flavanoids in sunflower honey. J. Food Sci. 1992, 57, 773–774. [Google Scholar] [CrossRef]
- Lazarević, K.B.; Jovetić, M.S.; Tešić, Ž.L. Physicochemical parameters as a tool for the assessment of origin of honey. J. AOAC Int. 2017, 100, 840–851. [Google Scholar] [CrossRef]
- Yayinie, M.; Atlabachew, M.; Tesfaye, A.; Hilluf, W.; Reta, C. Quality authentication and geographical origin classification of honey of Amhara region, Ethiopia based on physicochemical parameters. Arab. J. Chem. 2021, 14, 102987. [Google Scholar] [CrossRef]
- Mădaş, M.N.; Mărghitaş, L.A.; Dezmirean, D.S.; Bobiş, O.; Abbas, O.; Danthine, S.; Francis, F.; Haubruge, E.; Nguyen, B.K. Labeling regulations and quality control of honey origin: A review. Food Rev. Int. 2020, 36, 215–240 . [Google Scholar] [CrossRef]
- Khalil, I.; Moniruzzaman, M.; Boukraâ, L.; Benhanifia, M.; Islam, A.; Islam, N.; Sulaiman, S.A.; Gan, S.H. Physicochemical and antioxidant properties of Algerian honey. Molecules 2012, 17, 11199–11215. [Google Scholar] [CrossRef]
- Solayman, M.; Islam, M.A.; Paul, S.; Ali, Y.; Khalil, M.I.; Alam, N.; Gan, S.H. Physicochemical properties, minerals, trace elements, and heavy metals in honey of different origins: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2015, 15, 219–233. [Google Scholar] [CrossRef]
- McDowell, L.R.; Wilkinson, N.; Madison, R.; Felix, T. Vitamins and minerals functioning as antioxidants with supplementation considerations. In Florida Ruminant Nutrition Symposium; Best Western Gateway Grand: Gainesville, FL, USA, 2007. [Google Scholar]
- Anjos, O.; Campos, M.G.; Ruiz, P.C.; Antunes, P. Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chem. 2015, 169, 218–223. [Google Scholar] [CrossRef]
- Nickless, E.M.; Holroyd, S.E.; Hamilton, G.; Gordon, K.C.; Wargent, J.J. Analytical method development using FTIR-ATR and FT-Raman spectroscopy to assay fructose, sucrose, glucose and dihydroxyacetone, in Leptospermum scoparium nectar. Vib. Spectrosc. 2016, 84, 38–43. [Google Scholar] [CrossRef]
- Svečnjak, L.; Prđun, S.; Rogina, J.; Bubalo, D.; Jerković, I. Characterization of Satsuma mandarin (Citrus unshiu Marc.) nectar-to-honey transformation pathway using FTIR-ATR spectroscopy. Food Chem. 2017, 232, 286–294. [Google Scholar] [CrossRef]
- Gok, S.; Severcan, M.; Goormaghtigh, E.; Kandemir, I.; Severcan, F. Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chem. 2015, 170, 232–240. [Google Scholar] [CrossRef]
Moisture (%) | Ash (%) | EC (µS cm−1) | pH | FA (mEq kg−1) | TSC (g Glu 100 g−1) | ||
---|---|---|---|---|---|---|---|
BO | S | 15.53 ± 0.28 a | 0.21 ± 0.01 a | 483.92 ± 14.80 a | 3.95 ± 0.05 c | 16.67 ± 0.50 a | 60.82 ± 1.84 bc |
L | 14.62 ± 0.28 b | 0.20 ± 0.01 a | 437.00 ± 14.80 b | 4.75 ± 0.05 a | 7.13 ± 0.50 c | 58.05 ± 4.18 c | |
R | 14.41 ± 0.23 b | 0.09 ± 0.01 c | 210.44± 12.09 d | 4.64 ± 0.04 a | 5.25 ± 0.40 d | 62.00 ± 5.46 bc | |
M | 13.15 ± 0.28 c | 0.14 ± 0.01 b | 374.25± 14.80 c | 4.34 ± 0.05 b | 9.04 ± 0.50 b | 69.64 ± 11.30 a | |
A | 14.36 ± 0.23 b | 0.14 ± 0.01 b | 243.22± 12.09 d | 4.41 ± 0.04 b | 7.50 ± 0.40 c | 63.79 ± 4.27 b | |
p | ˂0.001 | ˂0.001 | ˂0.001 | ˂0.001 | ˂0.001 | ˂0.001 | |
Year | 2021 | 13.65 ± 0.98 b | 0.15 ± 0.07 a | 343.11 ± 122.60 a | 4.38 ± 0.35 b | 9.82 ± 5.75 a | 61.24± 6.13 b |
2022 | 15.16 ± 1.53 a | 0.15 ± 0.06 a | 315.44 ± 121.44 a | 4.49 ± 0.29 a | 7.50 ± 2.68 b | 64.49± 7.28 a | |
p | ˂0.001 | 0.752 | 0.075 | 0.015 | ˂0.001 | 0.014 | |
BO × Year | p | ˂0.001 | 0.051 | 0.007 | 0.012 | ˂0.001 | 0.332 |
BO-Year (2021) BO-Year (2022) | S | 13.85 ± 0.39 a | 0.20 ± 0.10 a | 523.00 ± 94.71 a | 3.88 ± 0.02 d | 21.00 ± 3.41 a | 60.15 ± 0.63 bc |
L | 13.25 ± 0.72 a | 0.23 ± 0.04 a | 418.83 ± 85.29 b | 4.84 ± 0.15 a | 6.17 ± 1.51 c | 54.62 ± 3.15 c | |
R | 13.97 ± 1.10 a | 0.09 ± 0.02 c | 231.33 ± 29.42 c | 4.62 ± 0.27 b | 5.44 ± 1.47 c | 59.69 ± 7.08 bc | |
M | 12.93 ± 0.52 a | 0.12 ± 0.03 b | 354.67 ± 53.69 b | 4.22 ± 0.13 c | 10.08 ± 2.48 b | 66.73 ± 3.33 a | |
A | 13.95 ± 1.29 a | 0.15 ± 0.03 b | 276.78 ± 72.53 c | 4.28 ± 0.09 c | 9.00 ± 2.02 b | 64.28 ± 5.60 ab | |
p | 0.176 | ˂0.001 | ˂0.001 | ˂0.001 | ˂0.001 | 0.002 | |
S | 17.22 ± 1.26 a | 0.21 ± 0.06 a | 444.83 ± 17.70 a | 4.02 ± 0.06 b | 12.33 ± 1.03 a | 61.49± 2.44 b | |
L | 15.98 ± 0.90 b | 0.16 ± 0.03 ab | 455.17 ± 5.95 a | 4.66 ± 0.03 a | 8.08 ± 0.58 b | 61.48± 0.56 b | |
R | 14.84 ± 0.71 c | 0.09 ± 0.04 c | 189.56 ± 19.94 c | 4.67 ± 0.23 a | 5.06 ± 0.39 c | 64.31± 1.09 b | |
M | 13.37 ± 0.67 d | 0.17 ± 0.03 ab | 393.83 ± 29.42 b | 4.46 ± 0.34 a | 8.00 ± 2.21 b | 72.56 ± 15.79 a | |
A | 14.76 ± 1.29 c | 0.13 ± 0.06 bc | 209.67 ± 33.79 c | 4.54 ± 0.03 a | 6.00 ± 0.00 c | 63.30± 2.63 b | |
p | ˂0.001 | 0.001 | ˂0.001 | ˂0.001 | ˂0.001 | 0.035 |
HMF (mg kg−1) | TPC (mg GAE 100 g−1) | TTC (mg GAE 100 g−1) | TFC (mg CE 100 g−1) | DPPH I% | ||
---|---|---|---|---|---|---|
BO | S | 19.37 ± 0.49 c | 167.59 ± 8.05 a | 69.05± 4.43 a | 19.00 ± 0.54 a | 28.16 ± 1.71 a |
L | 33.94 ± 0.49 a | 102.39 ± 8.05 c | 28.72± 4.43 c | 12.93 ± 0.54 cd | 28.14 ± 1.71 a | |
R | 18.28 ± 0.40 c | 102.53 ± 6.57 c | 39.00± 3.62 bc | 13.74 ± 0.44 c | 26.12 ± 1.40 a | |
M | 25.44 ± 0.49 b | 125.33 ± 8.05 b | 45.15± 4.43 b | 17.39 ± 0.54 b | 24.95 ± 1.71 a | |
A | 16.07 ± 0.40 d | 90.18 ± 6.57 c | 62.73± 3.62 a | 11.83 ± 0.44 d | 19.57 ± 1.40 b | |
p | ˂0.001 | ˂0.001 | ˂0.001 | ˂0.001 | 0.001 | |
Year | 2021 | 23.36 ± 7.13 a | 129.48 ± 53.24 a | 65.43 ± 28.43 a | 15.02 ± 3.88 a | 24.10 ± 6.98 a |
2022 | 20.07 ± 6.10 b | 98.65 ± 19.46 b | 33.08 ± 13.34 b | 14.20 ± 3.04 a | 25.82 ± 6.62 a | |
p | ˂0.001 | ˂0.001 | ˂0.001 | 0.067 | 0.178 | |
BO × Year | p | ˂0.001 | 0.003 | 0.001 | ˂0.001 | 0.112 |
BO-Year (2021) BO-Year (2022) | S | 19.80 ± 0.33 c | 211.10 ± 70.28 a | 99.35 ± 31.53 a | 21.90 ± 4.22 a | 24.47 ± 2.93 ab |
L | 35.53 ± 1.49 a | 110.84 ± 12.86 b | 40.02 ± 3.52 d | 12.97 ± 0.17 c | 30.43 ± 6.28 a | |
R | 19.91 ± 3.27 c | 103.24 ± 4.46 b | 45.25 ± 5.02 cd | 13.99 ± 0.98 bc | 26.03 ± 10.00 ab | |
M | 29.38 ± 2.22 b | 139.30 ± 32.47 b | 66.57 ± 8.50 bc | 15.85 ± 2.49 b | 22.12 ± 1.29 b | |
A | 17.04 ± 1.05 d | 107.20 ± 43.23 b | 79.18 ± 28.59 ab | 12.28 ± 1.03 c | 19.03 ± 3.99 b | |
p | ˂0.001 | ˂0.001 | ˂0.001 | ˂0.001 | 0.018 | |
S | 18.93 ± 0.95 c | 124.09 ± 2.63 a | 38.75 ± 1.47 ab | 16.09 ± 1.39 b | 31.85 ± 1.93 a | |
L | 32.35 ± 0.77 a | 93.94 ± 3.34 c | 17.42 ± 6.69 d | 12.89 ± 0.51 cd | 25.85 ± 0.58 ab | |
R | 16.66 ± 1.92 d | 101.83 ± 12.12 c | 32.76 ± 4.99 bc | 13.48 ± 0.80 c | 26.21 ± 8.15 ab | |
M | 21.50 ± 1.17 b | 111.37 ± 0.79 b | 23.72 ± 2.24 cd | 18.93 ± 3.35 a | 27.78 ± 2.09 a | |
A | 15.09 ± 0.88 e | 73.16 ± 11.49 d | 46.28 ± 15.85 a | 11.38 ± 1.10 d | 20.10 ± 7.27 b | |
p | ˂0.001 | ˂0.001 | ˂0.001 | ˂0.001 | 0.008 |
Ash | EC | pH | FA | TSC | HMF | TPC | TTC | TFC | DPPH I% | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Moisture | Pearson correlation | 0.120 *** | 0.040 | −0.064 | 0.021 | −0.052 | −0.212 | −0.226 | −0.352 ** | −0.133 | 0.273 * |
Sig. (2-tailed) | 0.315 | 0.740 | 0.593 | 0.864 | 0.667 | 0.074 | 0.056 | 0.002 | 0.266 | 0.020 | |
Ash | Pearson correlation | 1 | 0.689 ** | −0.242 * | 0.470 ** | −0.033 | 0.285 * | 0.464 ** | 0.265 * | 0.405 ** | 0.280 * |
Sig. (2-tailed) | ˂0.001 | 0.041 | ˂0.001 | 0.782 | 0.015 | ˂0.001 | 0.025 | ˂0.001 | 0.017 | ||
EC | Pearson correlation | 1 | −0.406 ** | 0.731 ** | −0.115 | 0.466 ** | 0.690 ** | 0.282 * | 0.621 ** | 0.167 | |
Sig. (2-tailed) | ˂0.001 | ˂0.001 | 0.335 | ˂0.001 | ˂0.001 | 0.017 | ˂0.001 | 0.161 | |||
pH | Pearson correlation | 1 | −0.798 ** | −0.307 ** | 0.212 | −0.536 ** | −0.511 ** | −0.593 ** | 0.004 | ||
Sig. (2-tailed) | ˂0.001 | 0.009 | 0.073 | ˂0.001 | ˂0.001 | ˂0.001 | 0.973 | ||||
FA | Pearson correlation | 1 | 0.049 | −0.023 | 0.846 ** | 0.658 ** | 0.776 ** | 0.041 | |||
Sig. (2-tailed) | 0.685 | 0.849 | ˂0.001 | ˂0.001 | ˂0.001 | 0.734 | |||||
TSC | Pearson correlation | 1 | −0.125 | −0.005 | −0.008 | 0.289 * | −0.128 | ||||
Sig. (2-tailed) | 0.295 | 0.970 | 0.950 | 0.014 | 0.283 | ||||||
HMF | Pearson correlation | 1 | 0.063 | −0.217 | 0.012 | 0.237 * | |||||
Sig. (2-tailed) | 0.601 | 0.066 | 0.922 | 0.045 | |||||||
TPC | Pearson correlation | 1 | 0.738 ** | 0.806 ** | 0.013 | ||||||
Sig. (2-tailed) | ˂0.001 | ˂0.001 | 0.917 | ||||||||
TTC | Pearson correlation | 1 | 0.419 ** | −0.286 * | |||||||
Sig. (2-tailed) | ˂0.001 | 0.015 | |||||||||
TFC | Pearson correlation | 1 | 0.292 * | ||||||||
Sig. (2-tailed) | 0.013 |
Honey | Sunflower (S) | Rapeseed (R) | Acacia (A) | Linden (L) | Multifloral (M) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 |
Harvest zone | AG-C | AG-G | TR-B | AG-C | AG-G | AG-C | AG-MO | AG-V | GR-B | TL-T | TL-C | AG-MZ | ||||||||||||
ν(O-H) in H2O | 3246 | 3235 | 3246 | 3248 | 3246 | 3246 | 3244 | 3247 | 3248 | 3245 | 3246 | 3260 | 3246 | 3243 | 3244 | 3269 | 3245 | 3251 | 3260 | 3268 | 3245 | 3244 | 3245 | 3245 |
ν(C-H) tretching of carboxylic acids + ν(NH3) of free aminoacids | 2936 | 2935 | 2935 | 2933 | 2933 | 2935 | 2935 | 2935 | 2933 | 2935 | 2935 | 2930 | 2935 | 2933 | 2931 | 2935 | 2929 | 2927 | 2927 | 2927 | 2935 | 2930 | 2935 | 2933 |
CH3 sym stretch | 2899 | 2881 | 2885 | 2887 | 2887 | 2883 | 2881 | 2880 | 2887 | 2885 | 2883 | 2888 | 2880 | 2882 | 2892 | 2892 | 2881 | 2888 | 2883 | 2884 | 2879 | 2883 | 2883 | 2879 |
δ(O-H) from H2O | 1646 | 1646 | 1645 | 1644 | 1646 | 1646 | 1646 | 1646 | 1646 | 1646 | 1646 | 1646 | 1646 | 1646 | 1646 | 1646 | 1646 | 1646 | 1646 | 1646 | 1646 | 1646 | 1646 | 1646 |
δ(O-H) in C-OH group + δ(C-H) in the alkenes | 1419 | 1420 | 1419 | 1415 | 1418 | 1419 | 1418 | 1419 | 1418 | 1419 | 1418 | 1418 | 1418 | 1418 | 1418 | 1418 | 1418 | 1417 | 1417 | 1418 | 1419 | 1418 | 1419 | 1416 |
Stretching C-O, deformation C-H, deformation N-H | 1372 | 1373 | 1372 | 1373 | 1373 | 1373 | 1373 | 1373 | 1366 | 1373 | 1373 | 1357 | 1367 | 1365 | 1362 | 1360 | 1363 | 1364 | 1363 | 1362 | 1373 | 1373 | 1373 | 1362 |
ν(C–H) + ν(C–O) in carbohydrates | 1231 1151 | 1231 1152 | 1247 1150 | 1244 1148 | 1245 1147 | 1247 1150 | 1246 1150 | 1247 1151 | 1246 1149 | 1247 1151 | 1233 1148 | 1243 1145 | 1233 1148 | 1234 1148 | 1243 1147 | 1242 1145 | 1243 1147 | 1232 1146 | 1230 1146 | 1231 1146 | 1247 1151 | 1243 1146 | 1247 1150 | 1232 1146 |
ν(C-O) in C-OH group + ν(C-C) in carbohydrates | 1046 1009 | 1046 1008 | 1046 1024 | 1049 1028 | 1046 1026 | 1047 1010 | 1046 1011 | 1046 1010 | 1046 1025 | 1046 1010 | 1051 1024 | 1051 1024 | 1052 1024 | 1050 1024 | 1048 1024 | 1049 1025 | 1051 1024 | 1049 1024 | 1051 1023 | 1049 1025 | 1046 1009 | 1046 1024 | 1047 1010 | 1048 1024 |
δ(C–H) | 915 | 914 | 915 | 917 | 917 | 915 | 915 | 914 | 916 | 914 | 916 | 917 | 916 | 915 | 917 | 916 | 916 | 917 | 916 | 917 | 915 | 917 | 915 | 916 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vîjan, L.E.; Mazilu, I.C.; Enache, C.; Enache, S.; Topală, C.M. Botanical Origin Influence on Some Honey Physicochemical Characteristics and Antioxidant Properties. Foods 2023, 12, 2134. https://doi.org/10.3390/foods12112134
Vîjan LE, Mazilu IC, Enache C, Enache S, Topală CM. Botanical Origin Influence on Some Honey Physicochemical Characteristics and Antioxidant Properties. Foods. 2023; 12(11):2134. https://doi.org/10.3390/foods12112134
Chicago/Turabian StyleVîjan, Loredana Elena, Ivona Cristina Mazilu, Carmen Enache, Sebastian Enache, and Carmen Mihaela Topală. 2023. "Botanical Origin Influence on Some Honey Physicochemical Characteristics and Antioxidant Properties" Foods 12, no. 11: 2134. https://doi.org/10.3390/foods12112134
APA StyleVîjan, L. E., Mazilu, I. C., Enache, C., Enache, S., & Topală, C. M. (2023). Botanical Origin Influence on Some Honey Physicochemical Characteristics and Antioxidant Properties. Foods, 12(11), 2134. https://doi.org/10.3390/foods12112134