Determination and Risk Assessment of Flavor Components in Flavored Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Equipment
2.2. Sample Pretreatment
2.3. GC/MS Conditions
2.4. Exposure Risk Assessment Methods in Flavored Milk
2.5. Data Analysis
3. Results and Discussion
3.1. Distribution of Sample Characteristics
3.2. Composition and Content of Flavor Samples
3.3. Composition Analysis of Seven Flavor Samples
3.4. The Screening of Flavor Concerned Component
3.5. Quantitative Analysis of Flavor Concerned Components in Flavored Milk
3.6. Risk Exposure Assessment of Flavored Milk
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Johnson, R.K.; Frary, C.; Wang, M.Q. The nutritional consequences of flavored-mild consumption by school-aged children and adolescents in the United States. J. Am. Diet Assoc. 2002, 102, 853. [Google Scholar] [CrossRef] [PubMed]
- Natalia, M.; George, A.Z. Determination of Volatile Compounds in Nut-Based Milk Alternative Beverages by HS-SPME Prior to GC-MS Analysis. Molecules 2019, 24, 3091. [Google Scholar]
- Anwar-Mohamed, A.; El-Kadi, A.O.S. Induction of cytochrome P450 1a1 by the food flavoring agent, maltol. Toxicol. Vitro 2007, 21, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Guido, R.; Gabriele, A.; Giovanna, A.; Vasileios, B.; Maria, L.B.; Georges, B. Safety and efficacy of maltol belonging to chemical group 12 when used as flavouring for all animal species. EFSA J. 2016, 14, e04619. [Google Scholar]
- Xing, Q.; Ma, Y.; Fu, X.; Cao, Q.; Zhang, Y.; You, C. Effects of heat treatment, homogenization pressure, and over processing on the content of furfural compounds in liquid milk. J. Sci. Food Agric. 2020, 100, 5276–5282. [Google Scholar] [CrossRef]
- Fitch, S.E.; Payne, L.E.; Ligt, J.L.G.; Doepker, C.; Handu, D.; Cohen, S.M. Use of acceptable daily intake (ADI) as a health-based benchmark in nutrition research studies that consider the safety of low-calorie sweeteners (LCS): A systematic map. BMC Public Health 2021, 21, 956. [Google Scholar] [CrossRef]
- Alger, H.M.; Maffini, M.V.; Kulkarni, N.R.; Bongard, E.D.; Neltner, T. Perspectives on how FDA Assesses Exposure to Food Additives When Evaluating Their Safety: Workshop proceedings. Compr. Rev. Food Sci. Food Saf. 2013, 12, 90–119. [Google Scholar] [CrossRef]
- More, S.J.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.I.; Hernández-Jerez, A.F.; Hougaard Bennekou, S.; Koutsoumanis, K.P.; Machera, K.; Naegeli, H.; et al. Guidance on the use of the Threshold of Toxicological Concern approach in food safety assessment. EFSA J. 2019, 17, e05708. [Google Scholar]
- Food, E.; Authority, S. Overview of the procedures currently used at EFSA for the assessment of dietary exposure to different chemical substances. EFSA J. 2011, 9, 2490. [Google Scholar]
- Panagiotakos, D.B.; Pitsavos, C.H.; Zampelas, A.D.; Chrysohoou, C.A.; Stefanadis, C.I. Dairy products consumption is associated with decreased levels of inflammatory markers related to cardiovascular disease in apparently healthy adults: The ATTICA study. J. Am. Coll. Nutr. 2010, 29, 357–364. [Google Scholar] [CrossRef]
- Leiu, K.H.; Chin, Y.S.; Shariff, Z.M.; Arumugam, M.; Chan, Y.M. High body fat percentage and low consumption of dairy products were associated with Vitamin D inadequacy among older women in Malaysia. PLoS ONE 2020, 15, e0228803. [Google Scholar] [CrossRef] [PubMed]
- Dreno, B.; Shourick, J.; Kerob, D.; Bouloc, A.; Taïeb, C. The role of exposome in acne: Results from an international patient survey. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Fuller, F.; Beghin, J.; Rozelle, S. Consumption of dairy products in urban China: Results from Beijing, Shangai and Guangzhou. Aust. J. Agric. Resour. Econ. 2007, 51, 459–474. [Google Scholar] [CrossRef]
- Cecilia Alberini, I. Primary Characterization of the Volatile Profile of Port Salut Argentino Light Cheese with the Addition of Milk Protein Concentrate by HS-SPME/GC-MS. Pol. J. Food Nutr. Sci. 2016, 4, 120. [Google Scholar] [CrossRef]
- Ai, N.S.; Liu, H.L.; Wang, J.; Zhang, X.M.; Zhang, H.J.; Chen, H.T.; Huang, M.Q.; Liu, Y.G.; Zheng, F.P.; Sun, B.G. Triple-channel comparative analysis of volatile flavour composition in raw whole and skim milk via electronic nose, GC-MS and GC-O. Anal. Methods 2015, 7, 4278–4284. [Google Scholar] [CrossRef]
- Jansson, T.; Jensen, S.; Eggers, N.; Clausen, M.R.; Larsen, L.B.; Ray, C.; Sundgren, A.; Andersen, H.J.; Bertram, H.C. Volatile component profiles of conventional and lactose-hydrolyzed UHT milk - A dynamic headspace gas chromatography-mass spectrometry study. Dairy Sci. Technol. 2014, 94, 311–325. [Google Scholar] [CrossRef]
- Ren, R.; Jin, Q.; He, H.-L.; Bian, T.-B.; Wang, S.-T.; Fan, J.-C. Determination of 17 Phthalate Esters in Infant Milk Powder and Dairy Products by GC–MS with 16 Internal Standards. Chromatographia 2016, 79, 903–910. [Google Scholar] [CrossRef]
- Chi, X.; Shao, Y.; Pan, M.; Yang, Q.; Yang, Y.; Zhang, X.; Ai, N.; Sun, B. Distinction of volatile flavor profiles in various skim milk products via HS-SPME–GC–MS and E-nose. Eur. Food Res. Technol. 2021, 247, 1539–1551. [Google Scholar] [CrossRef]
- Delgado, F.J.; González-Crespo, J.; Cava, R.; Ramírez, R. Formation of the aroma of a raw goat milk cheese during maturation analysed by SPME-GC-MS. Food Chem. 2011, 129, 1156–1163. [Google Scholar] [CrossRef]
- Trikusuma, M.; Paravisini, L.; Peterson, D.G. Identification of aroma compounds in pea protein UHT beverages. Food Chem. 2020, 312, 126082. [Google Scholar] [CrossRef]
- Li, N.; Zheng, F.P.; Chen, H.T.; Liu, S.Y.; Gu, C.; Song, Z.Y.; Sun, B.G. Identification of volatile components in Chinese Sinkiang fermented camel milk using SAFE, SDE, and HS-SPME-GC/MS. Food Chem. 2011, 129, 1242–1252. [Google Scholar]
- Mahdieh, I.; Hamid, E.; Behrouz, A.; Karimi, T. SPME/GC-MS characterization of volatile compounds of Iranian traditional dried Kashk. Int. J. Food Prop. 2018, 21, 1067–1079. [Google Scholar]
- Capozzi, V.; Lonzarich, V.; Khomenko, I.; Cappellin, L.; Navarini, L.; Biasioli, F. Unveiling the Molecular Basis of Mascarpone Cheese Aroma: VOCs analysis by SPME-GC/MS and PTR-ToF-MS. Molecules 2020, 25, 1242. [Google Scholar] [CrossRef] [PubMed]
- Shimoda, M.; Yoshimura, Y.; Noda, K.; Osajima, Y. Volatile flavor compounds of sweetened condensed milk. J. Food. Sci. 2001, 66, 804–807. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Liao, P.; Chen, L.; Sun, J.; Sun, B.; Zhao, D.; Wang, B.; Li, H. HS-SPME Combined with GC-MS/O to Analyze the Flavor of Strong Aroma Baijiu Daqu. Foods 2022, 11, 116. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Florença, S.G.; Carpes, S.; Anjos, O. Study of the Influence of Sociodemographic and Lifestyle Factors on Consumption of Dairy Products: Preliminary Study in Portugal and Brazil. Foods 2020, 9, 1775. [Google Scholar] [CrossRef]
- Kardas, M.; Grochowska-Niedworok, E.; Całyniuk, B.; Kolasa, I.; Grajek, M.; Bielaszka, A. Consumption of milk and milk products in the population of the Upper Silesian agglomeration inhabitants. Food Nutr. Res. 2016, 60, 10. [Google Scholar] [CrossRef]
- Murphy, M.M.; Barraj, L.M.; Toth, L.D.; Harkness, L.S.; Bolster, D.R. Daily intake of dairy products in Brazil and contributions to nutrient intakes: A cross-sectional study. Public Health Nutr. 2016, 19, 393–400. [Google Scholar] [CrossRef]
- Yon, B.A.; Johnson, R.K. New school meal regulations and consumption of flavored milk in ten US Elementary Schools, 2010 and 2013. Prev. Chronic Dis. 2015, 12, E166. [Google Scholar] [CrossRef]
- De Pelsmaeker, S.; Schouteten, J.; Gellynck, X. The consumption of flavored milk among a children population. The influence of beliefs and the association of brands with emotions. Appetite 2013, 71, 279–286. [Google Scholar] [CrossRef]
- Thompson, H.R.; Ritchie, L.; Park, E.; Madsen, K.A.; Gosliner, W. Effect of removing chocolate milk on milk and nutrient intake among urban secondary school students. Prev. Chronic Dis. 2020, 17, E95. [Google Scholar] [CrossRef] [PubMed]
- El Hadi, M.A.M.; Zhang, F.J.; Wu, F.F.; Zhou, C.H.; Tao, J. Advances in fruit aroma volatile research. Molecules 2013, 18, 8200–8229. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, K.; Tyagi, B.; Shukla, R.S.; Bajaj, H.C. Solvent free synthesis of methyl palmitate over sulfated zirconia solid acid catalyst. Fuel 2016, 165, 298–305. [Google Scholar] [CrossRef]
- Jetti, R.R.; Yang, E.; Kurnianta, A.; Finn, C.; Qian, M.C. Quantification of selected aroma-active compounds in strawberries by headspace solid-phase microextraction gas chromatography and correlation with sensory descriptive analysis. J. Food Sci. 2007, 72, S487–S496. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; He, Z.; Zeng, M.; Li, B.; Qin, F.; Wang, L.; Wu, S.; Chen, J. Effect of xanthan gum on the release of strawberry flavor in formulated soy beverage. Food Chem. 2017, 228, 595–601. [Google Scholar] [CrossRef]
- Silva, E.d.S.; Dos Santos Junior, H.B.; Guedes, T.J.F.L.; Sandes, R.D.D.; Rajan, M.; Leite Neta, M.T.S.; Narain, N. Comparative analysis of fresh and processed mango (Mangifera indica L, cv. “Maria”) pulps: Influence of processing on the volatiles, bioactive compounds and antioxidant activity. Food Sci. Technol. 2022, 42, 1–10. [Google Scholar] [CrossRef]
- Maldonado-Celis, M.E.; Yahia, E.M.; Bedoya, R.; Landázuri, P.; Loango, N.; Aguillón, J.; Restrepo, B.; Guerrero Ospina, J.C. Chemical Composition of Mango (Mangifera indica L.) Fruit: Nutritional and Phytochemical Compounds. Front. Plant Sci. 2019, 10, 1073. [Google Scholar] [CrossRef]
- Braga, S.C.G.N.; Oliveira, L.F.; Hashimoto, J.C.; Gama, M.R.; Efraim, P.; Poppi, R.J.; Augusto, F. Study of volatile profile in cocoa nibs, cocoa liquor and chocolate on production process using GC × GC-QMS. Microchem. J. 2018, 141, 353–361. [Google Scholar] [CrossRef]
- Toker, O.S.; Palabiyik, I.; Pirouzian, H.R.; Aktar, T.; Konar, N. Chocolate aroma: Factors, importance and analysis. Trends. Food Sci. Technol. 2020, 99, 580–592. [Google Scholar] [CrossRef]
- Eduardo, I.; Chietera, G.; Bassi, D.; Rossini, L.; Vecchietti, A. Identification of key odor volatile compounds in the essential oil of nine peach accessions. J. Sci. Food Agric. 2010, 90, 1146–1154. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, J.; Wang, Y.; Wang, X.; Chen, F.; Wang, X. Characterization of aroma-impact compounds in dry jujubes (Ziziphus jujube mill.) by aroma extract dilution analysis (aeda) and gas chromatography-mass spectrometer (gc-ms). Int. J. Food Prop. 2018, 21, 1844–1853. [Google Scholar] [CrossRef]
- Schwab, W.; Davidovich-Rikanati, R.; Lewinsohn, E. Biosynthesis of plant-derived flavor compounds. Plant J. 2008, 54, 712–732. [Google Scholar] [CrossRef] [PubMed]
- Arts, J.H.E.; Muijser, H.; Appel, M.J.; Kuper, C.F.; Bessems, J.G.M.; Woutersen, R.A. Subacute (28-day) toxicity of furfural in Fischer 344 rats: A comparison of the oral and inhalation route. Food Chem. Toxicol. 2004, 42, 1389–1399. [Google Scholar] [CrossRef] [PubMed]
- Gralak, M.A.; Hogstrand, C.; Leng, L.; López-puente, S.; Martelli, G.; Mayo, B.; Renshaw, D.; Rychen, G.; Saarela, M.; Sejrsen, K. Scientific Opinion on the safety and efficacy of straight-chain primary aliphatic alcohols/aldehydes/acids, acetals and esters with esters containing saturated alcohols and acetals containing saturated aldehydes (chemical group 1) when used as flavourings for all animal species. EFSA J. 2013, 11, 3169. [Google Scholar]
- Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; de Lourdes Bastos, M.; Bories, G.; Cocconcelli, P.S.; Flachowsky, G.; Gropp, J.; Kolar, B.; et al. Safety and efficacy of pyrazine derivatives including saturated ones belonging to chemical group 24 when used as flavourings for all animal species. EFSA J. 2017, 15, e04671. [Google Scholar]
- Adams, T.B.; Cohen, S.M.; Doull, J.; Feron, V.J.; Goodman, J.I.; Marnett, L.J.; Munro, I.C.; Portoghese, P.S.; Smith, R.L.; Waddell, W.J.; et al. The FEMA GRAS assessment of benzyl derivatives used as flavor ingredients. Food Chem. Toxicol. 2005, 43, 1207–1240. [Google Scholar] [CrossRef] [PubMed]
Components | Dairy Products | Soft Drinks | Cold Drinks | Candies | Bakery Products | Liquor | Pudding | Gum Confectionary | Meat and Meat Sauces | Syrup | Chewing Gum | Jelly |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2-methylpropanal | - | 0.30 | 0.25~0.50 | 0.67 | 0.5~1.0 | 5 | - | - | - | - | - | - |
ethyl 3-methylbutyrate | - | 4.90 | 7.50 | 29 | 27 | - | 5 | 80~430 | - | - | - | - |
1-hexanol | - | 6.60 | 26 | 21 | 18 | - | 0.22~0.28 | - | - | - | - | - |
allyl hexanoate | - | 7 | 11 | 32 | 25 | - | 22 | - | - | - | - | - |
2,3,5-trimethylpyrazine | 1 | 5.00~10 | - | 5.00~10 | 5.00~10 | - | - | - | 2 | - | - | - |
furfural | - | 4 | 13 | 12 | 17 | 10 | 0.80 | 45 | - | 30 | - | - |
benzaldehyde | - | 36 | 42 | 120 | 110 | 50~60 | 160 | 840 | - | - | - | - |
linalool | - | 2 | 3.60 | 8.40 | 9.60 | - | 2.30 | 0.80~90 | 40 | - | - | - |
5-methylfurfural | - | 0.13 | 0.13 | 0.03~0.13 | 0.03 | - | - | - | - | - | - | - |
benzyl acetate | - | 7.80 | 14 | 34 | 22 | - | 23 | 760 | - | - | - | - |
methyl salicylate | - | 59 | 27 | 840 | 54 | - | - | 8400 | - | 200 | - | - |
benzenemethanol | - | 15 | 160 | 47 | 220 | - | - | - | - | - | 1200 | - |
maltol | - | 4.10 | 8.70 | 31 | 30 | - | 7.50 | - | - | - | 90 | 15 |
methyleugenol | - | 10 | 4.80 | 11 | 13 | - | - | - | - | - | - | 52 |
phenol,2-methoxy-4-(2-propenyl)- | - | 4.60 | 3.80 | 6.80 | 9 | - | 4 | - | - | - | 0.30 | - |
Gender | Age | Average Weight/kg * | Day per Capita Consumption/g * | Coefficient of Variation | Area | Average Weight/kg * | Day per Capita Consumption/g * | Coefficient of Variation |
---|---|---|---|---|---|---|---|---|
Male | <18 | 57.39 ± 10.95 | 77.57 ± 89.34 | 1.15 | Eastern China | 67.11 ± 9.24 | 53.08 ± 96.82 | 1.82 |
18~24 | 65.89 ± 10.29 | 57.66 ± 89.59 | 1.55 | Southern China | 63.43 ± 9.97 | 50.86 ± 68.90 | 1.35 | |
25~30 | 70.09 ± 9.91 | 50.49 ± 135.40 | 2.68 | Central China | 68.99 ± 9.98 | 42.71 ± 52.44 | 1.23 | |
31~40 | 72.69 ± 9.28 | 37.90 ± 62.89 | 1.66 | Northern China | 71.21 ± 10.48 | 55.13 ± 133.73 | 24.19 | |
41~50 | 73.73 ± 9.48 | 59.21 ± 127.55 | 2.15 | Northwestern China | 69.19 ± 10.50 | 50.53 ± 69.15 | 1.37 | |
>51 | 71.61 ± 10.35 | 49.99 ± 64.02 | 1.28 | Southwestern China | 63.23 ± 9.41 | 50.06 ± 54.18 | 1.08 | |
Northeastern China | 70.01 ± 11.80 | 64.33 ± 87.32 | 1.36 | |||||
Female | <18 | 51.62 ± 7.05 | 55.14 ± 52.44 | 0.95 | Eastern China | 54.80 ± 8.50 | 42.54 ± 54.63 | 1.28 |
18~24 | 53.33 ± 8.33 | 50.57 ± 56.66 | 1.12 | Southern China | 51.58 ± 7.94 | 45.21 ± 50.21 | 1.11 | |
25~30 | 54.87 ± 7.79 | 35.13 ± 46.75 | 1.33 | Central China | 54.53 ± 8.33 | 55.82 ± 57.14 | 1.02 | |
31~40 | 57.41 ± 9.81 | 20.03 ± 31.94 | 1.59 | Northern China | 55.89 ± 9.01 | 38.00 ± 52.23 | 1.38 | |
41~50 | 58.86 ± 7.67 | 35.32 ± 51.76 | 1.47 | Northwestern China | 55.17 ± 7.29 | 46.50 ± 55.75 | 1.20 | |
>51 | 60.10 ± 8.54 | 37.70 ± 55.60 | 1.47 | Southwestern China | 51.41 ± 7.27 | 42.14 ± 46.22 | 1.10 | |
p | *** | *** | Northeastern China | 56.84 ± 9.41 | 36.12 ± 48.83 | 1.35 | ||
p | *** | 0.03 ** |
Number | RT/min | CAS Number | Name | Molecular Formula | Calculated RI | Library RI | LD50/mg/k | ADI * (μg kg−1, bw d−1) | TTC (μg kg−1, bw d−1) |
---|---|---|---|---|---|---|---|---|---|
1 | 6.559 | 78-84-2 | 2-methylpropanal | C4H8O | 812 | 820 | 960 | 500 | 1800 |
2 | 14.629 | 108-64-5 | ethyl 3-methylbutyrate | C7H14O2 | 1067 | 1082 | 1200 | 1500 | 1800 |
3 | 27.896 | 111-27-3 | 1-hexanol | C6H14O | 1350 | 1355 | 720 | 1200 | 1800 |
4 | 28.936 | 123-68-2 | allyl hexanoate | C9H16O2 | 1373 | 1360 | 218 | 130 | 540 |
5 | 30.277 | 14667-55-1 | 2,3,5-trimethylpyrazine | C7H10N2 | 1402 | 1402 | 806 | 500 | 540 |
6 | 33.159 | 98-01-1 | furfural | C5H4O2 | 1468 | 1477 | 65 | 960 | 540 |
7 | 35.756 | 100-52-7 | benzaldehyde | C7H6O | 1530 | 1541 | 1300 | 5000 | 1800 |
8 | 36.379 | 78-70-6 | linalool | C10H18O | 1545 | 1549 | 2790 | 500 | 1800 |
9 | 37.753 | 620-02-0 | 5-methylfurfural | C6H6O2 | 1578 | 1588 | 2200 | 5000 | 540 |
10 | 43.739 | 140-11-4 | benzyl acetate | C9H10O2 | 1736 | 1720 | 2490 | 5000 | 1800 |
11 | 45.34 | 119-36-8 | methyl salicylate | C8H8O3 | 1786 | 1796 | 887 | 500 | 1800 |
12 | 47.966 | 100-51-6 | benzenemethanol | C7H8O | 1881 | 1890 | 1230 | 5000 | 1800 |
13 | 50.117 | 118-71-8 | maltol | C6H6O3 | 1973 | 1984 | 1410 | 1000 | 540 |
14 | 51.074 | 93-15-2 | methyleugenol | C11H14O2 | 2017 | 2013 | 810 | 5000 | 1800 |
15 | 54.152 | 97-53-0 | phenol,2-methoxy-4-(2-propenyl)- | C10H12O2 | 2179 | 2185 | 1930 | 2500 | 1800 |
Number | Compounds | Minimum | Median | Maximum | Mean ± SD | Detections | Detection Rate |
---|---|---|---|---|---|---|---|
(μg kg−1) | |||||||
1 | 2-methylpropanal | 7.64 | 32.15 | 679.44 | 135.07 ± 209.71 | 20 | 71.40 |
2 | ethyl 3-methylbutyrate | 1.11 | 1.20 | 21.74 | 3.55 ± 6.43 | 9 | 32.10 |
3 | 1-hexanol | 4.60 | 6.12 | 179.83 | 17.23 ± 34.86 | 26 | 92.90 |
4 | allyl hexanoate | 13.98 | 16.24 | 270.84 | 52.21 ± 88.41 | 14 | 50.00 |
5 | 2,3,5-trimethylpyrazine | 13.72 | 14.74 | 2387.18 | 162.19 ± 488.82 | 28 | 100.00 |
6 | furfural | 12.69 | 16.61 | 3840.42 | 158.71 ± 708.66 | 28 | 100.00 |
7 | benzaldehyde | 15.05 | 26.10 | 931.77 | 98.07 ± 208.00 | 28 | 100.00 |
8 | linalool | 11.11 | 11.43 | 4958.30 | 218.77 ± 968.39 | 25 | 89.30 |
9 | 5-methylfurfural | 12.47 | 13.37 | 1050.97 | 66.38 ± 200.66 | 27 | 96.40 |
10 | benzyl acetate | 9.87 | 17.35 | 643.09 | 117.37 ± 203.89 | 16 | 57.10 |
11 | methyl salicylate | 11.51 | 20.62 | 27.30 | 20.01 ± 5.95 | 4 | 14.30 |
12 | benzenemethanol | 20.61 | 28.96 | 14,995.44 | 773.61 ± 2890.17 | 28 | 100.00 |
13 | maltol | 0.83 | 60.14 | 1682.11 | 353.91 ± 531.51 | 27 | 96.40 |
14 | methyleugenol | 24.12 | 24.55 | 24.82 | 24.51 ± 0.27 | 4 | 14.30 |
15 | phenol,2-methoxy-4-(2-propenyl)- | 23.69 | 24.30 | 1418.60 | 129.61 ± 331.14 | 17 | 60.70 |
Compounds | Maximum EDI (μg kg−1, bw d−1) | ADI (μg kg−1, bw d−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Male/Years | Female/Years | ||||||||||||
<18 | 18–24 | 25–30 | 31–40 | 41–50 | >50 | <18 | 18–24 | 25–30 | 31–40 | 41–50 | >50 | ||
2-methylpropanal | 0.92 | 0.60 | 0.49 | 0.35 | 0.55 | 0.47 | 0.73 | 0.64 | 0.44 | 0.24 | 0.41 | 0.43 | 500 |
ethyl 3-methylbutyrate | 0.03 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 1500 |
1-hexanol | 0.24 | 0.16 | 0.13 | 0.09 | 0.14 | 0.13 | 0.19 | 0.17 | 0.12 | 0.06 | 0.11 | 0.11 | 1200 |
allyl hexanoate | 0.37 | 0.24 | 0.20 | 0.14 | 0.22 | 0.19 | 0.29 | 0.26 | 0.17 | 0.09 | 0.16 | 0.17 | 130 |
2,3,5-trimethylpyrazine | 3.23 | 2.09 | 1.72 | 1.25 | 1.92 | 1.67 | 2.55 | 2.26 | 1.53 | 0.83 | 1.43 | 1.50 | 500 |
furfural | 5.19 | 3.36 | 2.77 | 2.00 | 3.08 | 2.68 | 4.10 | 3.64 | 2.46 | 1.34 | 2.30 | 2.41 | 960 |
benzaldehyde | 1.26 | 0.82 | 0.67 | 0.49 | 0.75 | 0.65 | 1.00 | 0.88 | 0.60 | 0.33 | 0.56 | 0.58 | 5000 |
linalool | 6.70 | 4.34 | 3.57 | 2.59 | 3.98 | 3.46 | 5.30 | 4.70 | 3.18 | 1.73 | 2.98 | 3.11 | 500 |
5-methylfurfural | 1.42 | 0.92 | 0.76 | 0.55 | 0.84 | 0.73 | 1.12 | 1.00 | 0.67 | 0.37 | 0.63 | 0.66 | 5000 |
benzyl acetate | 0.87 | 0.56 | 0.46 | 0.34 | 0.52 | 0.45 | 0.69 | 0.61 | 0.41 | 0.22 | 0.39 | 0.40 | 5000 |
methyl salicylate | 0.04 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | 0.03 | 0.03 | 0.02 | 0.01 | 0.02 | 0.02 | 500 |
benzenemethanol | 20.27 | 13.12 | 10.80 | 7.82 | 12.04 | 10.47 | 16.02 | 14.22 | 9.60 | 5.23 | 9.00 | 9.41 | 5000 |
maltol | 2.27 | 1.47 | 1.21 | 0.88 | 1.35 | 1.17 | 1.80 | 1.60 | 1.08 | 0.59 | 1.01 | 1.06 | 1000 |
methyleugenol | 0.03 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | 5000 |
phenol,2-methoxy-4-(2-propenyl)- | 1.92 | 1.24 | 1.02 | 0.74 | 1.14 | 0.99 | 1.52 | 1.35 | 0.91 | 0.50 | 0.85 | 0.89 | 2500 |
Compounds | Maximum PCI (μg p−1 d−1) | TTC (μg kg−1, bw d−1) | PCI/TTC > 1 | Max per Capita Daily Intake/g | Max Box/ 250 g | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Male/Years | Female/Years | |||||||||||||||
<18 | 18–24 | 25–30 | 31–40 | 41–50 | >50 | <18 | 18–24 | 25–30 | 31–40 | 41–50 | >50 | |||||
2-methylpropanal | 52.71 | 39.18 | 34.31 | 25.75 | 40.23 | 33.97 | 37.47 | 34.36 | 23.87 | 13.61 | 24.00 | 25.61 | 1800 | NO | 2649.24 | 10.60 |
ethyl 3-methylbutyrate | 1.69 | 1.25 | 1.10 | 0.82 | 1.29 | 1.09 | 1.20 | 1.10 | 0.76 | 0.44 | 0.77 | 0.82 | 1800 | NO | 82,796.69 | 331.20 |
1-hexanol | 13.95 | 10.37 | 9.08 | 6.82 | 10.65 | 8.99 | 9.92 | 9.09 | 6.32 | 3.60 | 6.35 | 6.78 | 1800 | NO | 10,009.45 | 40.00 |
allyl hexanoate | 21.01 | 15.62 | 13.68 | 10.27 | 16.04 | 13.54 | 14.94 | 13.70 | 9.52 | 5.42 | 9.57 | 10.21 | 540 | NO | 1993.80 | 8.00 |
2,3,5-trimethylpyrazine | 185.18 | 137.65 | 120.54 | 90.48 | 141.35 | 119.34 | 131.64 | 89.98 | 83.87 | 47.80 | 84.31 | 89.98 | 540 | NO | 226.21 | 0.90 |
furfural | 297.92 | 221.44 | 193.92 | 145.56 | 227.40 | 191.98 | 211.77 | 194.21 | 134.92 | 76.90 | 135.63 | 144.76 | 540 | NO | 140.61 | 0.60 |
benzaldehyde | 72.28 | 53.73 | 47.05 | 35.32 | 55.17 | 46.58 | 51.38 | 47.12 | 32.74 | 18.66 | 32.91 | 35.12 | 1800 | NO | 1931.81 | 7.70 |
linalool | 384.64 | 285.90 | 250.36 | 187.93 | 293.60 | 247.87 | 273.42 | 250.74 | 174.20 | 99.29 | 175.11 | 186.90 | 1800 | NO | 363.03 | 1.50 |
5-methylfurfural | 81.53 | 60.60 | 53.07 | 39.84 | 62.23 | 52.54 | 57.95 | 53.15 | 36.92 | 21.05 | 37.12 | 39.62 | 540 | NO | 513.81 | 2.10 |
benzyl acetate | 49.89 | 37.08 | 32.47 | 24.38 | 38.08 | 32.15 | 35.46 | 32.52 | 22.59 | 12.88 | 22.71 | 24.24 | 1800 | NO | 2798.99 | 11.20 |
methyl salicylate | 2.12 | 1.57 | 1.38 | 1.04 | 1.62 | 1.37 | 1.51 | 1.38 | 0.96 | 0.55 | 0.96 | 1.03 | 1800 | NO | 65,934.07 | 263.70 |
benzenemethanol | 1163.26 | 864.64 | 757.17 | 568.37 | 887.93 | 749.63 | 826.90 | 758.31 | 526.83 | 300.28 | 529.60 | 565.25 | 1800 | NO | 120.04 | 0.50 |
maltol | 130.49 | 96.99 | 84.94 | 63.76 | 99.60 | 84.09 | 92.76 | 85.06 | 59.10 | 33.68 | 59.41 | 63.41 | 540 | NO | 321.03 | 1.30 |
methyleugenol | 1.93 | 1.43 | 1.25 | 0.94 | 1.47 | 1.24 | 1.37 | 1.26 | 0.87 | 0.50 | 0.88 | 0.94 | 1800 | NO | 72,522.16 | 290.10 |
phenol,2-methoxy-4-(2-propenyl)- | 110.05 | 81.80 | 71.63 | 53.77 | 84.00 | 70.92 | 78.23 | 71.74 | 49.84 | 28.41 | 50.10 | 53.47 | 1800 | NO | 1268.86 | 5.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Wang, X.; Zhang, Y.; Zhang, W.; Pang, X.; Zhang, S.; Lu, J.; Lv, J. Determination and Risk Assessment of Flavor Components in Flavored Milk. Foods 2023, 12, 2151. https://doi.org/10.3390/foods12112151
Chen B, Wang X, Zhang Y, Zhang W, Pang X, Zhang S, Lu J, Lv J. Determination and Risk Assessment of Flavor Components in Flavored Milk. Foods. 2023; 12(11):2151. https://doi.org/10.3390/foods12112151
Chicago/Turabian StyleChen, Baorong, Xiaodan Wang, Yumeng Zhang, Wenyuan Zhang, Xiaoyang Pang, Shuwen Zhang, Jing Lu, and Jiaping Lv. 2023. "Determination and Risk Assessment of Flavor Components in Flavored Milk" Foods 12, no. 11: 2151. https://doi.org/10.3390/foods12112151
APA StyleChen, B., Wang, X., Zhang, Y., Zhang, W., Pang, X., Zhang, S., Lu, J., & Lv, J. (2023). Determination and Risk Assessment of Flavor Components in Flavored Milk. Foods, 12(11), 2151. https://doi.org/10.3390/foods12112151