Growth and Non-Thermal Inactivation of Staphylococcus aureus in Sliced Dry-Cured Ham in Relation to Water Activity, Packaging Type and Storage Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dry-Cured Ham (DCH) Samples
2.2. Challenge Test
2.2.1. Inoculum Preparation
2.2.2. DCH Inoculation
2.2.3. DCH Storage and Sampling
2.3. Microbiological and Physicochemical Determinations
2.4. Predictive Microbiology Approaches
2.4.1. Growth/No Growth Prediction
2.4.2. Primary Model Fitting
2.4.3. Secondary and Global Model Fitting
2.4.4. Model Validation
3. Results
3.1. Characteristics of Commercial DCH and the Associated Probability of S. aureus Growth (Study 1)
3.2. Behavior of S. aureus on Sliced DCH Stored under Different Conditions (Challenge Test Experiment, Study 2)
3.3. Physicochemical Determinations and Lactic Acid Bacteria Counts
3.4. Secondary and Global Modeling
3.5. Predictive Performance of the Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ng, W.F.; Langlois, B.E.; Moody, W.G. Fate of Selected Pathogens in Vacuum-Packaged Dry-Cured (Country-Style) Ham Slices Stored at 2 and 25 °C. J. Food Prot. 1997, 60, 1541–1547. [Google Scholar] [CrossRef] [PubMed]
- Menéndez, R.A.; Rendueles, E.; Sanz, J.J.; Santos, J.A.; García-Fernández, M.C. Physicochemical and Microbiological Characteristics of Diverse Spanish Cured Meat Products. CYTA J. Food 2018, 16, 199–204. [Google Scholar] [CrossRef]
- Leistner, L. Basic Aspects of Food Preservation by Hurdle Technology. Int. J. Food Microbiol. 2000, 55, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Chitrakar, B.; Zhang, M.; Adhikari, B. Dehydrated Foods: Are They Microbiologically Safe? Crit. Rev. Food Sci. Nutr. 2019, 59, 2734–2745. [Google Scholar] [CrossRef]
- Hereu, A. High Pressures and Biopreservation as Control Strategies for Listeria monocytogenes in Ready-to-Eat Meat Products. Inoculation Tests and Mathematical Modeling. Ph.D. Thesis, University of Girona, Girona, Spain, 2014. [Google Scholar]
- Serra-Castelló, C.; Jofré, A.; Garriga, M.; Bover-Cid, S. Modeling and Designing a Listeria monocytogenes Control Strategy for Dry- Cured Ham Taking Advantage of Water Activity and Storage Temperature. Meat Sci. 2020, 165, 108131. [Google Scholar] [CrossRef] [PubMed]
- Bover-Cid, S.; Jofré, A.; Garriga, M. Inactivation Kinetics of Salmonella and L. monocytogenes in Dry-Cured Ham Stored at Different Temperatures. In Proceedings of the 25th International ICFMH Conference—FoodMicro 2016. One Health Meets Food Microbiology, Dublin, Ireland, 19–22 July 2016; p. 472. [Google Scholar]
- FDA Bad Bug Book, Foodborne Pathogenic Microorganisms and Natural Toxins, 2nd ed.; 2012; pp. 87–91. Available online: https://www.fda.gov/files/food/published/Bad-Bug-Book-2nd-Edition-(PDF).pdf (accessed on 26 April 2023).
- Troller, J. Staphylococcal Growth and Enterotoxin Production. Factors and Control. J. Milk Food Technol. 1976, 39, 499–502. [Google Scholar] [CrossRef]
- ANSES. Staphylococcus aureus and Staphylococcal Enterotoxins. Available online: https://www.anses.fr/en/system/files/MIC2011sa0117FiEN_0.pdf (accessed on 26 April 2023).
- Busta, F.F.; Bernard, D.T.; Gravani, R.B.; Hall, P.; Pierson, M.D.; Prince, G.; Schaffner, D.W.; Swanson, K.M.J. Factors That Influence Microbial Growth. Compr. Rev. Food Sci. Food Saf. 2003, 2, 21–32. [Google Scholar] [CrossRef]
- Gunvig, A.; Andresen, M.S.; Jacobsen, T.; Borggaard, C. Staphtox Predictor—A Dynamic Mathematical Model to Predict Formation of Staphylococcus Enterotoxin during Heating and Fermentation of Meat Products. Int. J. Food Microbiol. 2018, 285, 81–91. [Google Scholar] [CrossRef]
- Jamshidi, A.; Kazerani, H.R.; Seifi, H.A.; Moghaddas, E. Growth Limits of Staphylococcus aureus as a Function of Temperature, Acetic Acid, NaCl Concentration, and Inoculum Level. Iran. J. Vet. Res. 2008, 9, 353–359. [Google Scholar] [CrossRef]
- Polese, P.; Del Torre, M.; Spaziani, M.; Stecchini, M.L. A Simplified Approach for Modelling the Bacterial Growth/No Growth Boundary. Food Microbiol. 2011, 28, 384–391. [Google Scholar] [CrossRef]
- Medveďová, A.; Havlíková, A.; Valík, Ľ. Growth of Staphylococcus aureus 2064 Described by Predictive Microbiology: From Primary to Secondary Models. Acta Chim. Slovaca 2019, 12, 175–181. [Google Scholar] [CrossRef]
- Christieans, S.; Denis, C.; Hanin, A.; Picgirard, L. Incidence of Storage Temperature and Water Activity in the Growth of Staphylococcus aureus in Sliced Dry Cured Ham Packed under Modified Atmosphere. Viandes Prod. Carnés 2018, 1–9. Available online: https://www.viandesetproduitscarnes.fr/index.php/en/hygiene2/porc-charcuterie-salaison?download=749:risque-lie-a-staphylococcus-aureus-dans-le-jambon-sec-tranche (accessed on 26 April 2023).
- Márta, D.; Wallin-Carlquist, N.; Schelin, J.; Borch, E.; Rådström, P. Extended Staphylococcal Enterotoxin D Expression in Ham Products. Food Microbiol. 2011, 28, 617–620. [Google Scholar] [CrossRef] [PubMed]
- Untermann, F.; Müller, C. Influence of aw Value and Storage Temperature on the Multiplication and Enterotoxin Formation of Staphylococci in Dry-Cured Raw Hams. Int. J. Food Microbiol. 1992, 16, 109–115. [Google Scholar] [CrossRef]
- CAC—Guidelines for the Validation of Food Safety Control Measures. CAC/GL 69. Available online: http://www.fao.org/input/download/standards/11022/CXG_069e.pdf (accessed on 26 April 2023).
- Stewart, C.M.; Cole, M.B.; Legan, J.D.; Slade, L.; Vandeven, M.H.; Schaffner, D.W. Modeling the Growth Boundary of Staphylococcus aureus for Risk Assessment Purposes. J. Food Prot. 2001, 64, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Bover-Cid, S.; Garriga, M. Microbiología Predictiva: Herramienta de Soporte Para La Gestión de la Seguridad y la Calidad Alimentaria; Eurocarne: Suzhou, China, 2008; Volume 166, pp. 1–8. [Google Scholar]
- Bonilauri, P.; Grisenti, M.S.; Daminelli, P.; Merialdi, G.; Ramini, M.; Bardasi, L.; Taddei, R.; Cosciani-Cunico, E.; Dalzini, E.; Frustoli, M.A.; et al. Reduction of Salmonella spp. Populations in Italian Salami during Production Process and High Pressure Processing Treatment: Validation of Processes to Export to the U.S. Meat Sci. 2019, 157, 107869. [Google Scholar] [CrossRef]
- Bover-Cid, S.; Serra-Castelló, C.; Dalgaard, P.; Garriga, M.; Jofré, A. New Insights on Listeria monocytogenes Growth in Pressurised Cooked Ham: A Piezo-Stimulation Effect Enhanced by Organic Acids during Storage. Int. J. Food Microbiol. 2019, 290, 150–158. [Google Scholar] [CrossRef]
- ISO 19020; Microbiology of the Food Chain—Horizontal Method for the Immunoenzymatic Detection of Staphylococcal Enterotoxins in Foodstuffs. International Organization for Standardization: Geneva, Switzerland, 2017; 22p.
- Borneman, D.L.; Ingham, S.C.; Ane, C. Predicting Growth-No Growth of Staphylococcus aureus on Vacuum-Packaged Ready-to-Eat Meats. J. Food Prot. 2009, 72, 539–548. [Google Scholar] [CrossRef]
- Leporq, B.; Membré, J.-M.; Dervin, C.; Buche, P.; Guyonnet, J.P. The “Sym’Previus” Software, a Tool to Support Decisions to the Foodstuff Safety. Int. J. Food Microbiol. 2005, 100, 231–237. [Google Scholar] [CrossRef]
- Rosso, L.; Bajard, S.; Flandrois, J.P.; Lahellec, C.; Fournaud, J.; Veit, P. Differential Growth of Listeria monocytogenes at 4 and 8 °C: Consequences for the Shelf Life of Chilled Products. J. Food Prot. 1996, 59, 944–949. [Google Scholar] [CrossRef]
- Core Team, R. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 26 April 2023).
- Jewell, K. Comparison of 1-Step and 2-Step Methods of Fitting Microbiological Models. Int. J. Food Microbiol. 2012, 160, 145–161. [Google Scholar] [CrossRef]
- Martino, K.; Marks, B. Comparing Uncertaintly Resulting from Two-Step and Global Regression Procedures Applied to Microbial Growth Models. J. Food Prot. 2007, 70, 2811–2818. [Google Scholar] [CrossRef] [PubMed]
- Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; van’t Riet, K. Modeling of the Bacterial Growth Curve. Appl. Environ. Microbiol. 1990, 56, 1871–1875. [Google Scholar] [CrossRef]
- Couvert, O.; Gaillard, S.; Savy, N.; Mafart, P.; Leguérinel, I. Survival Curves of Heated Bacterial Spores: Effect of Environmental Factors on Weibull Parameters. Int. J. Food Microbiol. 2005, 101, 73–81. [Google Scholar] [CrossRef]
- Møller, C.O.A.; Ilg, Y.; Aabo, S.; Christensen, B.B.; Dalgaard, P.; Hansen, T.B. Effect of Natural Microbiota on Growth of Salmonella spp. in Fresh Pork—A Predictive Microbiology Approach. Food Microbiol. 2013, 34, 284–295. [Google Scholar] [CrossRef] [PubMed]
- ICMSF (International Commission of Microbial Specifications of Food). Microorganisms in Foods 6: Microbial Ecology of Food Commodities, 2nd ed.; Roberts, T.A., Cordier, J.-L., Gram, L., Tompkin, R., Pitt, J.I., Gorris, L.G.M., Swanson, K.M.J., Eds.; Springer: New York, NY, USA, 2005; ISBN 978-0-306-48675-3. [Google Scholar]
- Iacumin, L.; Zuccolo, C.; Comi, G. Fate of Staphylococcus aureus in Dry Cured Ham Packaged under Vacuum and Stored at Different Temperatures. Ind. Aliment. 2019, 58, 24–30. [Google Scholar]
- Lindqvist, R.; Sylve, S.; Vagsholm, I. Quantitative Microbial Risk Assessment Exemplified by Staphylococcus aureus in Unripened Cheese Made from Raw Milk. Int. J. Food Microbiol. 2002, 78, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.H.; Song, Y.J.; Kim, Y.J.; Lee, H.Y.; Choi, Y.S.; Lee, N.K.; Paik, H.D. Predictive Model of Growth Kinetics for Staphylococcus aureus in Raw Beef under Various Packaging Systems. Meat Sci. 2020, 165, 108108. [Google Scholar] [CrossRef]
- Medina, M. Caracterización de Staphylococcus aureus Procedentes de Indústrias Cárnicas. In Innovación en Productos Cárnicos Seguros y Saludables; Córdoba, J.J., Medina, M., Carballo, J., Eds.; Agència Catalana de Seguretat Alimentària: Barcelona, Spain, 2021; p. 73. [Google Scholar]
- Notermans, S.; van Otterdijk, R.L.M. Production of Enterotoxin A by Staphylococcus aureus in Food. Int. J. Food Microbiol. 1985, 2, 145–149. [Google Scholar] [CrossRef]
- Kaban, G.; Kaya, M. Effect of Starter Culture on Growth of Staphylococcus aureus in Sucuk. Food Control 2006, 17, 797–801. [Google Scholar] [CrossRef]
- Charlier, C.; Cretenet, M.; Even, S.; Le Loir, Y. Interactions between Staphylococcus aureus and Lactic Acid Bacteria: An Old Story with New Perspectives. Int. J. Food Microbiol. 2009, 131, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Metaxopoulos, J.; Genigeorgis, C.; Fanelli, M.J.; Franti, C.; Cosma, E. Production of Italian Dry Salami. I. Initiation of Staphylococcal Growth in Salami Under Commercial Manufacturing Conditions. J. Food Prot. 1981, 44, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Serra-Castelló, C.; Bover-Cid, S.; Garriga, M.; Beck Hansen, T.; Gunvig, A.; Jofré, A. Risk Management Tool to Define a Corrective Storage to Enhance Salmonella Inactivation in Dry Fermented Sausages. Int. J. Food Microbiol. 2021, 346, 109160. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.; Lee, J.; Lee, S.; Kim, S.; Choi, Y.; Oh, H.; Kim, Y.; Lee, Y.; Seo, Y.; Yoon, Y. Mathematical Models to Describe the Kinetic Behavior of Staphylococcus Aureus in Jerky. Food Sci. Anim. Resour. 2019, 39, 371–378. [Google Scholar] [CrossRef] [PubMed]
Experimental Conditions | Kinetic Parameters a | Goodness of Fit b | ||||||
---|---|---|---|---|---|---|---|---|
Packaging | aw | Temperature (°C) | Inactivation Weibull Model | Growth Logistic Model | n | RMSE | ||
δ (Days) | p | µmax (ln/h) | MGP (Log10) | |||||
Air | 0.861 | 15 | 2.26 ± 1.43 | 0.34 ± 0.07 | - | - | 15 | 0.446 |
20 | 12.38 ± 3.64 | 0.48 ± 0.09 | - | - | 15 | 0.369 | ||
25 | 19.01 ± 6.15 | 0.68 ± 0.17 | - | - | 15 | 0.553 | ||
0.901 | 15 | 1.53 ± 1.03 | 0.30 ± 0.06 | - | - | 15 | 0.389 | |
20 | 14.21 ± 3.88 | 0.58 ± 0.10 | - | - | 17 | 0.453 | ||
25 | 19.11 ± 4.30 | 0.80 ± 0.13 | - | - | 17 | 0.435 | ||
0.925 | 15 | 4.29 ± 1.56 | 0.44 ± 0.06 | - | - | 18 | 0.465 | |
20 | - | - | 0.12 ± 0.06 | 1.29 ± 0.14 | 25 | 0.584 | ||
25 | - | - | 0.17 ± 0.04 | 2.67 ± 0.19 | 24 | 0.737 | ||
Vacuum | 0.861 | 2 | 271.65 ± 15.04 | 1.11 ± 0.15 | - | - | 18 | 0.135 |
8 | 143.59 ± 14.01 | 1.11 ± 0.15 | - | - | 18 | 0.271 | ||
15 | 66.56 ± 8.23 | 1.07 ± 0.25 | - | - | 16 | 0.325 | ||
20 | 18.79 ± 2.25 | 0.58 ± 0.04 | - | - | 24 | 0.264 | ||
25 | 16.81 ± 2.29 | 0.50 ± 0.04 | - | - | 24 | 0.255 | ||
0.901 | 2 | 210.43 ± 14.81 | 1.27 ± 0.20 | - | - | 18 | 0.219 | |
8 | 97.69 ± 13.21 | 0.82 ± 0.11 | - | - | 18 | 0.305 | ||
15 | 60.01 ± 7.60 | 1.24 ± 0.29 | - | - | 17 | 0.395 | ||
20 | 20.57 ± 2.28 | 0.73 ± 0.05 | - | - | 24 | 0.316 | ||
25 | 14.06 ± 3.10 | 0.64 ± 0.08 | - | - | 23 | 0.551 | ||
0.925 | 2 | 223.31 ± 16.41 | 1.30 ± 0.23 | - | - | 18 | 0.232 | |
8 | 126.57 ± 18.30 | 1.11 ± 0.19 | - | - | 18 | 0.393 | ||
15 | 64.04 ± 3.77 | 1.74 ± 0.19 | - | - | 17 | 0.209 | ||
20 | 31.25 ± 2.98 | 0.95 ± 0.07 | - | - | 34 | 0.347 | ||
25 | 38.55 ± 6.83 | 1.70 ± 0.45 | - | - | 33 | 0.936 | ||
MAP | 0.861 | 2 | 324.91 ± 68.51 | 2.66 ± 2.12 | - | - | 14 | 0.332 |
8 | 199.73 ± 18.99 | 1.66 ± 0.47 | - | - | 15 | 0.343 | ||
15 | 104.76 ± 80.30 | 0.42 ± 0.28 | - | - | 14 | 0.516 | ||
25 | 27.45 ± 5.12 | 0.67 ± 0.08 | - | - | 17 | 0.386 | ||
0.901 | 2 | 506.40 ± 252.13 | 1.80 ± 1.56 | - | - | 16 | 0.301 | |
8 | 202.56 ± 14.40 | 2.04 ± 0.30 | - | - | 16 | 0.292 | ||
15 | 77.35 ± 2.66 | 2.61 ± 0.22 | - | - | 16 | 0.163 | ||
25 | 29.39 ± 3.32 | 0.77 ± 0.04 | - | - | 18 | 0.310 | ||
0.925 | 2 | 478.37 ± 126.42 | 1.16 ± 0.44 | - | - | 16 | 0.193 | |
8 | 112.95 ± 18.42 | 0.47 ± 0.09 | - | - | 16 | 0.247 | ||
15 | 73.63 ± 14.38 | 0.88 ± 0.32 | - | - | 19 | 0.411 | ||
25 | 36.73 ± 7.60 | 0.90 ± 0.13 | - | - | 20 | 0.622 |
Packaging | Coefficients a | Goodness of Fit b | ||||
---|---|---|---|---|---|---|
a (Intercept) | b (T) | c (T2) | n | RMSE | ||
Air | −5.254 ± 1.191 | 0.549 ± 0.125 | −0.0115 ± 0.0031 | 7 | 0.261 | 0.675 |
Vacuum | 2.493 ± 0.031 | −0.055 ± 0.006 | 0.0002 ± 0.0002 | 15 | 0.141 | 0.895 |
MAP | 2.752 ± 0.028 | −0.068 ± 0.005 | 0.0007 ± 0.0002 | 12 | 0.103 | 0.947 |
Packaging | Coefficients of the Polynomial Models a | Goodness of Fit b | ||||
---|---|---|---|---|---|---|
δ | p | n | RMSE | |||
a (Intercept) | b (T) | c (T2) | ||||
Air | −1.848 ± 0.844 | 0.263 ± 0.087 | −0.006 ± 0.002 | 0.495 ± 0.034 | 112 | 0.498 |
Vacuum | 2.597 ± 0.086 | −0.090 ± 0.013 | 0.002 ± 0.000 | 0.768 ± 0.050 | 311 | 0.441 |
MAP | 3.088 ± 0.135 | −0.133 ± 0.019 | 0.003 ± 0.001 | 0.838 ± 0.048 | 193 | 0.436 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Austrich-Comas, A.; Serra-Castelló, C.; Viella, M.; Gou, P.; Jofré, A.; Bover-Cid, S. Growth and Non-Thermal Inactivation of Staphylococcus aureus in Sliced Dry-Cured Ham in Relation to Water Activity, Packaging Type and Storage Temperature. Foods 2023, 12, 2199. https://doi.org/10.3390/foods12112199
Austrich-Comas A, Serra-Castelló C, Viella M, Gou P, Jofré A, Bover-Cid S. Growth and Non-Thermal Inactivation of Staphylococcus aureus in Sliced Dry-Cured Ham in Relation to Water Activity, Packaging Type and Storage Temperature. Foods. 2023; 12(11):2199. https://doi.org/10.3390/foods12112199
Chicago/Turabian StyleAustrich-Comas, Anna, Cristina Serra-Castelló, Maria Viella, Pere Gou, Anna Jofré, and Sara Bover-Cid. 2023. "Growth and Non-Thermal Inactivation of Staphylococcus aureus in Sliced Dry-Cured Ham in Relation to Water Activity, Packaging Type and Storage Temperature" Foods 12, no. 11: 2199. https://doi.org/10.3390/foods12112199
APA StyleAustrich-Comas, A., Serra-Castelló, C., Viella, M., Gou, P., Jofré, A., & Bover-Cid, S. (2023). Growth and Non-Thermal Inactivation of Staphylococcus aureus in Sliced Dry-Cured Ham in Relation to Water Activity, Packaging Type and Storage Temperature. Foods, 12(11), 2199. https://doi.org/10.3390/foods12112199