Influence of Calcium-Sequestering Salts on Heat-Induced Changes in Blends of Skimmed Buffalo and Bovine Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Thermal Treatment
2.4. Analytical Measurements
2.4.1. Particle Size and Zeta Potential Measurements
2.4.2. Measurement of pH, Calcium Activity, and Viscosity
2.5. Protein Distribution
2.6. Data and Statistical Analysis
3. Results
3.1. Physicochemical Changes of Heat-Treated Milk with the Pre-Heat Addition of CSSs
3.1.1. Particle Size and ζ-Potential Changes
3.1.2. Changes in pH and Ca2+ Activity
3.1.3. Viscosity Changes
3.2. Influence of CSSs on Heat-Induced Changes in Protein Distribution
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khedkar, C.D.; Kalyankar, S.D.; Deosarkar, S.S. Buffalo Milk. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 522–528. [Google Scholar]
- Ahmad, S.; Gaucher, I.; Rousseau, F.; Beaucher, E.; Piot, M.; Grongnet, J.F.; Gaucheron, F. Effects of Acidification on Physico-Chemical Characteristics of Buffalo Milk: A Comparison with Cow’s Milk. Food Chem. 2008, 106, 11–17. [Google Scholar] [CrossRef]
- Holt, C. Some Principles Determining Salt Composition and Partitioning of Ions in Milk. J. Dairy Sci. 1981, 64, 1958–1964. [Google Scholar] [CrossRef]
- Ramasubramanian, L.; D’Arcy, B.; Deeth, H.C. Heat-induced Coagulation of Whole Milk by High Levels of Calcium Chloride. Int. J. Dairy Technol. 2012, 65, 183–190. [Google Scholar] [CrossRef]
- Garcia, A.; Alting, A.; Huppertz, T. Effect of Sodium Hexametaphosphate on Heat-induced Changes in Micellar Casein Isolate Solutions. Int. Dairy J. 2023, 140, 105583. [Google Scholar] [CrossRef]
- Fox, P.F.; Uniacke-Lowe, T.; Mcsweeney, P.L.H.; O’mahony, J.A. Dairy Chemistry and Biochemistry, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 345–375. [Google Scholar]
- Lewis, M.J. The Measurement and Significance of Ionic Calcium in Milk—A Review. Int. J. Dairy Technol. 2011, 64, 1–13. [Google Scholar]
- Gaucheron, F. The Minerals of Milk. Reprod. Nutr. Dev. 2005, 45, 473–483. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, N.A.; Power, O.; Wijayanti, H.B.; Kelly, P.M.; Mao, L.; Fenelon, M.A. Effects of Calcium Chelating Agents on the Solubility of Milk Protein Concentrate. Int. J. Dairy Technol. 2017, 70, 415–423. [Google Scholar]
- Kaliappan, S.; Lucey, J.A. Influence of Mixtures of Calcium-Chelating Salts on the Physicochemical Properties of Casein Micelles. J. Dairy Sci. 2011, 94, 4255–4263. [Google Scholar] [CrossRef] [Green Version]
- Deshwal, G.K.; Gómez-Mascaraque, L.G.; Fenelon, M.; Huppertz, T. A Review on the Effect of Calcium Sequestering Salts on Casein Micelles: From Model Milk Protein Systems to Processed Cheese. Molecules 2023, 28, 2085. [Google Scholar] [PubMed]
- Panouillé, M.; Nicolai, T.; Durand, D. Heat Induced Aggregation and Gelation of Casein Submicelles. Int. Dairy J. 2004, 14, 297–303. [Google Scholar]
- Holt, C. The Milk Salts: Their Secretion, Concentrations and Physical Chemistry. In Developments in Dairy Chemistry—Lactose and Minor Constituents; Fox, P.F., Ed.; Elsevier Applied Science Publishers Ltd.: Dordrecht, Netherlands, 1985; Volume 3, pp. 143–182. [Google Scholar]
- Solanki, P.; Gupta, V.K. Effect of Stabilizing Salts on Heat Stability of Buffalo Skim Milk Ultrafiltered-Diafiltered Retentate. J. Food Sci. Technol. 2009, 46, 466–469. [Google Scholar]
- Sindhu, J.S. Influence of Sodium Phosphate on the Heat Stability of Buffalo Milk and its Concentrate. J. Food Process. Preserv. 1985, 9, 57–64. [Google Scholar] [CrossRef]
- Khatkar, S.K.; Gupta, V.K.; Khatkar, A.B. Studies on Preparation of Medium Fat Liquid Dairy Whitener from Buffalo Milk Employing Ultrafiltration Process. J. Food Sci. Technol. 2014, 51, 1956–1964. [Google Scholar] [CrossRef] [Green Version]
- Mejares, C.T.; Huppertz, T.; Chandrapala, J. Heat-induced Changes in Blends of Skimmed Buffalo and Bovine Milk. Int. Dairy J. 2023, 141, 105627. [Google Scholar] [CrossRef]
- de Kort, E.; Minor, M.; Snoeren, T.; van Hooijdonk, T.; van der Linden, E. Effect of Calcium Chelators on Heat Coagulation and Heat-Induced Changes of Concentrated Micellar Casein Solutions: The Role of Calcium-Ion Activity and Micellar Integrity. Int. Dairy J. 2012, 26, 112–119. [Google Scholar] [CrossRef]
- Gaur, V.; Schalk, J.; Anema, S.G. Sedimentation in UHT Milk. Int. Dairy J. 2018, 78, 92–102. [Google Scholar] [CrossRef]
- Tsioulpas, A.; Koliandris, A.; Grandison, A.S.; Lewis, M.J. Effects of Stabiliser Addition and In-Container Sterilisation on Selected Properties of Milk Related to Casein Micelles Stability. Food Chem. 2010, 122, 1027–1034. [Google Scholar] [CrossRef]
- Deeth, H.C.; Lewis, M.J. High Temperature Processing of Milk and Milk Products. John Wiley & Sons Ltd.: Oxford, UK, 2017; pp. 177–260. [Google Scholar]
- Vujicic, I.; deMan, J.M.; Woodrow, I.L. Interaction of Polyphosphates and Citrate with Skimmilk Proteins. Can. Inst. Food Technol. J. 1968, 1, 17–21. [Google Scholar] [CrossRef]
- de Kort, E.; Minor, M.; Snoeren, T.; van Hooijdonk, T.; van der Linden, E. Effect of Calcium Chelators on Physical Changes in Casein Micelles in Concentrated Micellar Casein Solutions. Int. Dairy J. 2011, 21, 907–913. [Google Scholar] [CrossRef]
- Adhikari, A.K.; Mathur, O.N. Heat Induced Changes in the Microstructure of Casein Micelles and Mineral Balance of Cows’ and Buffalos’ Milk During Prolonged Boiling. Japanese J. Dairy Food Sci. 1993, 42, A171–A179. [Google Scholar]
- Nieuwenhuijse, H.; Huppertz, T. Heat-induced Changes in Milk Salts: A review. Int. Dairy J. 2022, 126, 105220. [Google Scholar] [CrossRef]
- Brule, G.; Real del Sol, E.; Fauquant, J.; Fiaud, C. Mineral Salts Stability in Aqueous Phase of Milk: Influence of Heat Treatments. J. Dairy Sci. 1978, 61, 1225–1232. [Google Scholar] [CrossRef]
- Schmitt, M.; Saulnier, F.; Malhautier, L.; Linden, G. Effect of Temperature on the Salt Balance of Milk Studied by Capillary Ion Electrophoresis. J. Chromatogr. A 1993, 640, 419–424. [Google Scholar] [CrossRef]
- Abd El-Salam, M.H.; El-Shibiny, S. A Comprehensive Review on the Composition and Properties of Buffalo Milk. Dairy Sci. Technol. 2011, 91, 663–699. [Google Scholar] [CrossRef]
- Ahmad, S.; Anjum, F.M.; Hima, N.; Sameen, A.; Zahoor, T. Composition and Physico-chemical Characteristics of Buffalo Milk with Particular Emphasis on Lipids, Proteins, Minerals, Enzymes and Vitamins. J. Anim. Plant Sci. 2013, 23, 62–74. [Google Scholar]
- Pastorino, J.; Hansen, C.L.; McMahon, D.J. Effect of Sodium Citrate on Structure-Function Relationships of Cheddar Cheese. J. Dairy Sci. 2003, 86, 3113–3121. [Google Scholar] [CrossRef] [Green Version]
- Power, O.M.; Maidannyk, V.; McSweeney, D.J.; Fenelon, M.A.; O’Mahony, J.A.; McCarthy, N.A. Water Sorption and Hydration Properties of High Protein Milk Powders are Influenced by Enzymatic Crosslinking and Calcium Chelation. Powder Technol. 2020, 364, 680–688. [Google Scholar] [CrossRef]
- Anema, S.G.; Klostermeyer, H. ζ-Potentials of Casein Micelles from Reconstituted Skim Milk Heated at 120 °C. Int. Dairy J. 1996, 6, 673–687. [Google Scholar] [CrossRef]
Milk Blend | CSSs Added | Heat Treatment | Heat Treatment | ||||
---|---|---|---|---|---|---|---|
None | 85 °C | 95 °C | None | 85 °C | 95 °C | ||
Particle Size (nm) | Zeta Potential (mV) | ||||||
0:100 | None | 187.3 ± 3.5 Aa | 186.9 ± 2.9Aa | 189.9 ± 5.0 Aa | −19.4 ± 2.1 Aa | −21.5 ± 1.3 Ba | −21.7 ± 1.6 Ba |
TSC | 194.0 ± 7.4 Ab | 184.3 ± 5.6 Ba | 184.1 ± 5.3 Bb | −17.0 ± 2.6 Ab | −22.7 ± 1.5 Ba | −23.3 ± 1.6 Ba | |
DSHP | 193.9 ± 6.2 Ab | 182.8 ± 4.4 Ba | 184.2 ± 3.6 Bb | −16.6 ± 3.2 Ab | −22.1 ± 1.5 Ba | −22.5 ± 1.4 Ba | |
25:75 | None | 193.8 ± 6.4 Aa | 195.2 ± 2.7 Aa | 195.9 ± 5.6 Aa | −20.3 ± 1.9 Aa | −21.7 ± 1.3 Aa | −22.0 ± 1.5 Aa |
TSC | 200.6 ± 7.9 Ab | 192.1 ± 4.4 Ba | 201.5 ± 3.7 Ab | −19.9 ± 2.0 Aab | −22.3 ± 1.6 Ba | −23.1 ± 2.2 Ba | |
DSHP | 201.8 ± 6.5 Ab | 195.1 ± 7.9 Ba | 195.4 ± 7.5 Ba | −18.6 ± 2.5 Ab | −22.1 ± 1.5 Ba | −22.7 ± 1.8 Ba | |
50:50 | None | 199.3 ± 6.3 Aa | 197.7 ± 4.1 Aa | 202.7 ± 3.4 Aa | −20.6 ± 1.5 Aa | −21.8 ± 1.5 Aa | −22.3 ± 1.5 Aa |
TSC | 205.6 ± 9.2 Ab | 199.0 ± 6.8 Ba | 203.8 ± 3.7 ABa | −20.5 ± 2.3 Aab | −23.0 ± 1.6 Ba | −22.2 ± 1.7 Ba | |
DSHP | 202.8 ± 4.9 Aab | 200.2 ± 7.6 Aa | 199.8 ± 5.6 Aa | −18.9 ± 2.9 Ab | −22.7 ± 1.7 Ba | −22.2 ± 2.4 Ba | |
75:25 | None | 201.1 ± 4.8 Aa | 201.7 ± 3.9 Aa | 203.6 ± 4.1 Aa | −21.1 ± 1.3 Aa | −21.9 ± 1.5 Aa | −22.2 ± 1.7 Aa |
TSC | 206.9 ± 9.9 Ab | 207.6 ± 2.8 Ab | 210.6 ± 4.6 Ab | −21.3 ± 2.0 Aa | −22.5 ± 1.9 Aa | −22.5 ± 1.5 Aa | |
DSHP | 209.8 ± 4.7 Ab | 202.6 ± 4.1 Bab | 205.2 ± 5.8 ABa | −19.7 ± 2.5 Aa | −22.9 ± 1.8 Ba | −21.9 ± 1.7 Ba | |
100:0 | None | 202.2 ± 4.2 Aa | 205.1 ± 3.9 Aa | 204.9 ± 4.5 Aa | −21.3 ± 1.4 Aa | −22.0 ± 1.1 Aa | −22.3 ± 1.6 Aa |
TSC | 208.8 ± 8.0 Ab | 209.1 ± 3.1 Aa | 211.7 ± 3.6 Ab | −21.7 ± 1.8 Aa | −22.6 ± 2.4 Aa | −22.4 ± 1.8 Aa | |
DSHP | 218.6 ± 10.0 Ac | 206.8 ± 9.2 Ba | 208.0 ± 5.6 Bab | −21.5 ± 1.6 Aa | −22.5 ± 1.9 Aa | −22.6 ± 1.8 Aa |
Milk Blend | CSSs Added | Heat Treatment | Heat Treatment | Heat Treatment | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Unheated | 85 °C | 95 °C | Unheated | 85 °C | 95 °C | Unheated | 85 °C | 95 °C | ||
pH | Calcium Activity (mM) | Viscosity (mPa∙s) | ||||||||
0:100 | None | 6.83 ± 0.02 Aa | 6.81 ± 0.02 ABa | 6.79 ± 0.02 Ba | 1.02 ± 0.07 Aa | 0.95 ± 0.05 ABa | 0.91 ± 0.06 Ba | 1.48 ± 0.20 Aa | 1.60 ± 0.15 ABa | 1.78 ± 0.09 Ba |
TSC | 7.02 ± 0.04 Ab | 6.97 ± 0.03 Bb | 6.93 ± 0.04 Cb | 0.73 ± 0.02 Ab | 0.69 ± 0.03 ABb | 0.67 ± 0.04 Bb | 2.06 ± 0.09 Ab | 2.46 ± 0.31 Bb | 2.46 ± 0.27 Bb | |
DSHP | 6.95 ± 0.04 Ac | 6.91 ± 0.01 ABc | 6.89 ± 0.02 Bb | 0.73 ± 0.03 Ab | 0.64 ± 0.07 Bb | 0.62 ± 0.07 Bb | 1.93 ± 0.28 Aab | 2.09 ± 0.31 Ab | 2.04 ± 0.17 Aab | |
25:75 | None | 6.86 ± 0.03 Aa | 6.82 ± 0.01 Ba | 6.80 ± 0.01 Ba | 0.96 ± 0.09 Aa | 0.92 ± 0.05 Aa | 0.90 ± 0.06 Aa | 1.61 ± 0.28 Aa | 1.67 ± 0.15 Aa | 1.75 ± 0.15 Aa |
TSC | 7.04 ± 0.04 Ab | 6.99 ± 0.04 Bb | 6.93 ± 0.05 Cb | 0.70 ± 0.04 Ab | 0.66 ± 0.02 ABb | 0.64 ± 0.03 Bb | 2.00 ± 0.10 Aa | 2.45 ± 0.16 Bb | 2.65 ± 0.24 Bb | |
DSHP | 6.97 ± 0.05 Ac | 6.94 ± 0.05 Ac | 6.88 ± 0.04 Bc | 0.71 ± 0.04 Ab | 0.60 ± 0.06 Bc | 0.61 ± 0.05 Bb | 2.02 ± 0.16 Aa | 1.89 ± 0.16 Aa | 2.49 ± 0.30 Bb | |
50:50 | None | 6.89 ± 0.03 Aa | 6.84 ± 0.02 Ba | 6.81 ± 0.01 Ba | 0.92 ± 0.06 Aa | 0.90 ± 0.04 Aa | 0.87 ± 0.05 Aa | 1.80 ± 0.15 Aa | 1.88 ± 0.04 Aa | 1.88 ± 0.11 Aa |
TSC | 7.04 ± 0.03 Ab | 7.00 ± 0.02 Ab | 6.95 ± 0.04 Bb | 0.64 ± 0.05 Ab | 0.64 ± 0.04 Ab | 0.64 ± 0.03 Ab | 2.31 ± 0.19 Ab | 2.56 ± 0.12 Ab | 2.54 ± 0.40 Ab | |
DSHP | 6.98 ± 0.05 Ac | 6.95 ± 0.04 Ac | 6.87 ± 0.04 Bc | 0.69 ± 0.02 Ab | 0.62 ± 0.02 Bb | 0.59 ± 0.04 Bb | 2.07 ± 0.09 Aab | 2.51 ± 0.35 Bb | 2.55 ± 0.64 Bb | |
75:25 | None | 6.91 ± 0.04 Aa | 6.88 ± 0.01 ABa | 6.84 ± 0.00 Ba | 0.89 ± 0.06 Aa | 0.86 ± 0.06 Aa | 0.84 ± 0.07 Aa | 1.98 ± 0.04 Aa | 2.11 ± 0.09 ABa | 2.33 ± 0.10 Ba |
TSC | 7.06 ± 0.05 Ab | 7.03 ± 0.03 Ab | 6.97 ± 0.05 Bb | 0.64 ± 0.04 Ab | 0.63 ± 0.03 Ab | 0.63 ± 0.00 Ab | 2.48 ± 0.32 Ab | 2.28 ± 0.26 Aa | 2.56 ± 0.57 Ab | |
DSHP | 6.98 ± 0.05 Ac | 6.94 ± 0.07 Ac | 6.88 ± 0.07 Ba | 0.65 ± 0.03 Ab | 0.57 ± 0.04 Bc | 0.55 ± 0.06 Bc | 2.01 ± 0.17 Aa | 2.42 ± 0.41 Ba | 2.59 ± 0.45 Bb | |
100:0 | None | 6.93 ± 0.03 Aa | 6.90 ± 0.02 Aa | 6.84 ± 0.01 Ba | 0.84 ± 0.06 Aa | 0.85 ± 0.07 Aa | 0.82 ± 0.06 Aa | 2.24 ± 0.09 Aa | 2.52 ± 0.04 ABa | 2.61 ± 0.01 Ba |
TSC | 7.08 ± 0.05 Ab | 7.04 ± 0.04 Ab | 6.99 ± 0.02 Bb | 0.63 ± 0.00 Ab | 0.59 ± 0.02 Ab | 0.57 ± 0.04 Bb | 2.77 ± 0.09 Ab | 2.62 ± 0.70 Aa | 3.00 ± 0.77 Ab | |
DSHP | 7.00 ± 0.05 Ac | 6.96 ± 0.06 Ac | 6.88 ± 0.08 Bc | 0.63 ± 0.05 Ab | 0.58 ± 0.01 ABb | 0.50 ± 0.01 Bc | 2.01 ± 0.16 Aa | 2.34 ± 0.54 ABa | 2.57 ± 0.57 Ba |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejares, C.T.; Chandrapala, J.; Huppertz, T. Influence of Calcium-Sequestering Salts on Heat-Induced Changes in Blends of Skimmed Buffalo and Bovine Milk. Foods 2023, 12, 2260. https://doi.org/10.3390/foods12112260
Mejares CT, Chandrapala J, Huppertz T. Influence of Calcium-Sequestering Salts on Heat-Induced Changes in Blends of Skimmed Buffalo and Bovine Milk. Foods. 2023; 12(11):2260. https://doi.org/10.3390/foods12112260
Chicago/Turabian StyleMejares, Carolyn T., Jayani Chandrapala, and Thom Huppertz. 2023. "Influence of Calcium-Sequestering Salts on Heat-Induced Changes in Blends of Skimmed Buffalo and Bovine Milk" Foods 12, no. 11: 2260. https://doi.org/10.3390/foods12112260
APA StyleMejares, C. T., Chandrapala, J., & Huppertz, T. (2023). Influence of Calcium-Sequestering Salts on Heat-Induced Changes in Blends of Skimmed Buffalo and Bovine Milk. Foods, 12(11), 2260. https://doi.org/10.3390/foods12112260