Development, Characterization and Resveratrol Delivery of Hollow Gliadin Nanoparticles: Advantages over Solid Gliadin Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Gliadin
2.3. Preparation of Gliadin-Based Nanoparticles
2.3.1. Preparation of Hollow Gliadin Nanoparticles (HGNPs) and Resveratrol-Loaded Hollow Gliadin Nanoparticles (Res-Loaded HGNPs)
2.3.2. Preparation of Solid Gliadin Nanoparticles (SGNPs) and Resveratrol-Loaded Solid Gliadin Nanoparticles (Res-Loaded SGNPs)
2.4. Determination of Particle Size and ζ-Potential
2.5. Fourier Transform Infrared (FTIR) Spectroscopy
2.6. Fluorescence Spectroscopy
2.7. Antioxidant Activity
2.7.1. DPPH• Scavenging Capacity
2.7.2. ABTS•+ Scavenging Capacity
2.8. Encapsulation Efficiency (EE) and Loading Capacity (LC) of Res
2.9. Morphology by Transmission Electron Microscope (TEM)
2.10. Photostability
2.11. TURBISCAN Stability
2.12. In Vitro Release of Resveratrol
2.13. Data Analysis
3. Results and Discussion
3.1. Characterization of Hollow Gliadin Nanoparticles (HGNPs) and Resveratrol-Loaded Hollow Gliadin Nanoparticles (Res-Loaded HGNPs)
3.2. Encapsulation Efficiency (EE) and Loading Capacity (LC)
3.3. Morphological Observation
3.4. FTIR Analysis
3.5. Fluorescence Spectroscopy Analysis
3.6. Antioxidant Activity
3.7. Comparison of Properties between HGNPs and SGNPs
3.7.1. Structural Difference
3.7.2. Stability Difference
3.7.3. Resistance Difference to Ultraviolet Light
3.8. In Vitro Release Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mehanna, M.M.; Mneimneh, A.T. Updated but not outdated “Gliadin”: A plant protein in advanced pharmaceutical nanotechnologies. Int. J. Pharm. 2020, 587, 119672. [Google Scholar]
- Voci, S.; Fresta, M.; Cosco, D. Gliadins as versatile biomaterials for drug delivery applications. J. Control. Release 2021, 329, 385–400. [Google Scholar] [PubMed]
- Rani, M.; Siddiqi, R.A.; Sharma, R.; Gill, B.S.; Sogi, D.S. International journal of biological macromolecules functional and structural properties of gliadin as influenced by pH, extraction protocols, and wheat cultivars. Int. J. Biol. Macromol. 2023, 234, 123484. [Google Scholar]
- Zhang, X.; Wei, Z.; Wang, X.; Wang, Y.; Tang, Q.; Huang, Q.; Xue, C. Fabrication and characterization of core-shell gliadin/Tremella polysaccharide nanoparticles for curcumin delivery: Encapsulation efficiency, physicochemical stability and bioaccessibility. Curr. Res. Food Sci. 2022, 5, 288–297. [Google Scholar] [PubMed]
- Chen, S.; Ma, Y.; Dai, L.; Liao, W.; Zhang, L.; Liu, J.; Gao, Y. Fabrication, characterization, stability and re-dispersibility of curcumin-loaded gliadin-rhamnolipid composite nanoparticles using pH-driven method. Food Hydrocoll. 2021, 118, 106758. [Google Scholar]
- Wang, L.; Wei, Z.; Xue, C. Effect of carboxymethyl konjac glucomannan coating on the stability and colon-targeted delivery performance of fucoxanthin-loaded gliadin nanoparticles. Food Res. Int. 2022, 162, 111979. [Google Scholar]
- Joye, I.J.; Nelis, V.A.; McClements, D.J. Gliadin-based nanoparticles: Fabrication and stability of food-grade colloidal delivery systems. Food Hydrocoll. 2015, 44, 86–93. [Google Scholar]
- Wu, W.; Kong, X.; Zhang, C.; Hua, Y.; Chen, Y.; Li, X. Fabrication and characterization of resveratrol-loaded gliadin nanoparticles stabilized by gum arabic and chitosan hydrochloride. LWT 2020, 129, 109532. [Google Scholar]
- Voci, S.; Gagliardi, A.; Fresta, M.; Cosco, D. Ascorbic acid-loaded gliadin nanoparticles as a novel nutraceutical formulation. Food Res. Int. 2022, 161, 111869. [Google Scholar]
- Turasan, H.; Bonilla, J.; Bozkurt, F.; Maldonado, L.; Li, X.; Yilmaz, T.; Sadeghi, R.; Kokini, J. Comparison of the fabrication methods, formation dynamics, structure, and delivery performance of solid nanoparticles and hollow layer-by-layer edible/biodegradable nanodelivery systems. J. Food Process Eng. 2020, 43, e13413. [Google Scholar]
- Cheng, K.; Sun, S. Recent advances in syntheses and therapeutic applications of multifunctional porous hollow nanoparticles. Nano Today 2010, 5, 183–196. [Google Scholar] [CrossRef]
- Wu, Y.; Han, S. Hollow fluorescent carbon nanoparticles catalyzed chemiluminescence and its application. J. Lumin. 2016, 179, 595–601. [Google Scholar] [CrossRef]
- Behboudi, A.; Mohammadi, T.; Ulbricht, M. High performance antibiofouling hollow fiber polyethersulfone nanocomposite membranes incorporated with novel surface-modified silver banoparticles suitable for membrane bioreactor application. J. Ind. Eng. Chem. 2023, 119, 298–314. [Google Scholar] [CrossRef]
- Gong, Y.; An, J.; Dai, H.; Chen, R.; Yu, C.; Chen, Q.; Zhou, J.; Sun, G.; Huang, W. Hierarchically tubular architectures composed of vertical carbon nanosheets embedded with oxygen-vacancy enriched hollow Co3O4 nanoparticles for improved energy storage. Electrochim. Acta 2020, 356, 136843. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Truong-Thi, N.H.; Nguyen, D.T.D.; Ching, Y.C.; Huynh, N.T.; Nguyen, D.H. Non-ionic surfactants as co-templates to control the mesopore diameter of hollow mesoporous silica nanoparticles for drug delivery applications. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 655, 130218. [Google Scholar] [CrossRef]
- Gupta, N.; Sharma, R.K.; Maitra, A.; Shrivastava, A. In-vitro and in-vivo efficacy of hollow gold nanoparticles encapsulating horseradish peroxidase: Oxidative stress-mediated tumor cell killing. J. Drug Deliv. Sci. Technol. 2023, 79, 103979. [Google Scholar] [CrossRef]
- Fuji, M.; Shin, T.; Watanabe, H.; Takei, T. Shape-controlled hollow silica nanoparticles synthesized by an inorganic particle template method. Adv. Powder Technol. 2012, 23, 562–565. [Google Scholar] [CrossRef]
- Pu, C.; Tang, W.; Liu, M.; Zhu, Y.; Sun, Q. Resveratrol-loaded hollow kafirin nanoparticles via gallic acid crosslinking: An evaluation compared with their solid and non-crosslinked counterparts. Food Res. Int. 2020, 135, 109308. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Jin, W.; Li, J.; Xiong, W.; Pei, Y.; Wang, Y.; Li, Y.; Li, B. Adsorption and distribution of edible gliadin nanoparticles at the air/water interface. J. Agric. Food Chem. 2017, 65, 2454–2460. [Google Scholar] [CrossRef]
- Li, X.; Maldonado, L.; Malmr, M.; Rouf, T.B.; Hua, Y.; Kokini, J. Development of hollow kafirin-based nanoparticles fabricated through layer-by-layer assembly as delivery vehicles for curcumin. Food Hydrocoll. 2019, 96, 93–101. [Google Scholar] [CrossRef]
- Khan, M.A.; Chen, L.; Liang, L. Improvement in storage stability and resveratrol retention by fabrication of hollow zein-chitosan composite particles. Food Hydrocoll. 2021, 113, 106477. [Google Scholar] [CrossRef]
- Huang, X.; Dai, Y.; Cai, J.; Zhong, N.; Xiao, H.; McClements, D.J.; Hu, K. Resveratrol encapsulation in core-shell biopolymer nanoparticles: Impact on antioxidant and anticancer activities. Food Hydrocoll. 2017, 64, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Yi, J.; He, Q.; Peng, G.; Fan, Y. Improved water solubility, chemical stability, antioxidant and anticancer activity of resveratrol via nanoencapsulation with pea protein nanofibrils. Food Chem. 2022, 377, 131942. [Google Scholar] [CrossRef]
- Wei, Z.; Huang, Q. Developing organogel-based Pickering emulsions with improved freeze-thaw stability and hesperidin bioaccessibility. Food Hydrocoll. 2019, 93, 68–77. [Google Scholar] [CrossRef]
- Peng, D.; Jin, W.; Tang, C.; Lu, Y.; Wang, W.; Li, J.; Li, B. Foaming and surface properties of gliadin nanoparticles: Influence of pH and heating temperature. Food Hydrocoll. 2018, 77, 107–116. [Google Scholar] [CrossRef]
- Li, T.; Wang, L.; Chen, Z.; Zhang, X.; Zhu, Z. Functional properties and ptructural changes of rice proteins with anthocyanins complexation. Food Chem. 2020, 331, 127336. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.S.; Bajaj, R.K.; Mann, B.; Arora, S.; Tomar, S.K. Encapsulation of antioxidant peptide enriched casein hydrolysate using maltodextrin–gum arabic blend. J. Food Sci. Technol. 2016, 53, 3834–3843. [Google Scholar] [CrossRef] [Green Version]
- Kumar, L.R.G.; Chatterjee, N.S.; Tejpal, C.S.; Vishnu, K.V.; Anas, K.K.; Asha, K.K.; Anandan, R.; Mathew, S. Evaluation of chitosan as a wall material for microencapsulation of squalene by spray drying: Characterization and oxidative stability studies. Int. J. Biol. Macromol. 2017, 104, 1986–1995. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Fang, Z.; Wusigale; Bakry, A.M.; Chen, Y.; Liang, L. Complexation of trans- and cis-resveratrol with bovine serum albumin, β-lactoglobulin or α-lactalbumin. Food Hydrocoll. 2018, 81, 242–252. [Google Scholar] [CrossRef]
- Wang, X.; Peng, F.; Liu, F.; Xiao, Y.; Li, F.; Lei, H.; Wang, J.; Li, M.; Xu, H. Zein-pectin composite nanoparticles as an efficient hyperoside delivery system: Fabrication, characterization, and in vitro release property. LWT 2020, 133, 109869. [Google Scholar] [CrossRef]
- Mohammadian, M.; Salami, M.; Momen, S.; Alavi, F.; Emam-Djomeh, Z.; Moosavi-Movahedi, A.A. Enhancing the aqueous solubility of curcumin at acidic condition through the complexation with whey protein nanofibrils. Food Hydrocoll. 2019, 87, 902–914. [Google Scholar] [CrossRef]
- Xu, H.; Jiang, Q.; Reddy, N.; Yang, Y. Hollow nanoparticles from zein for potential medical applications. J. Mater. Chem. 2011, 21, 18227–18235. [Google Scholar] [CrossRef]
- Li, D.; Wei, Z.; Sun, J.; Xue, C. Tremella polysaccharides-coated zein nanoparticles for enhancing stability and bioaccessibility of curcumin. Curr. Res. Food Sci. 2022, 5, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Rani, P.; Ranjan, S.; Srinivasa, P. Effect of ultraviolet irradiation on wheat (Triticum aestivum) flour: Study on protein modification and changes in quality attributes. J. Cereal Sci. 2020, 96, 103094. [Google Scholar] [CrossRef]
Res: Gli (w/w) | EE (%) | LC (%) | ||
---|---|---|---|---|
HGNPs | SGNPs | HGNPs | SGNPs | |
1:2 | 49.69 ± 0.80 a | 14.73 ± 0.24 a | 16.56 ± 0.63 d | 4.91 ± 0.08 b |
1:5 | 93.42 ± 0.23 b | 82.25 ± 0.07 b | 15.97 ± 0.27 c | 13.71 ± 0.11 d |
1:10 | 95.14 ± 0.25 c | 94.11 ± 0.40 c | 8.65 ± 0.34 b | 8.56 ± 0.04 c |
1:20 | 95.38 ± 0.17 c | 94.40 ± 0.52 c | 4.54 ± 0.24 a | 4.50 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Wei, Z.; Li, X. Development, Characterization and Resveratrol Delivery of Hollow Gliadin Nanoparticles: Advantages over Solid Gliadin Nanoparticles. Foods 2023, 12, 2436. https://doi.org/10.3390/foods12132436
Li D, Wei Z, Li X. Development, Characterization and Resveratrol Delivery of Hollow Gliadin Nanoparticles: Advantages over Solid Gliadin Nanoparticles. Foods. 2023; 12(13):2436. https://doi.org/10.3390/foods12132436
Chicago/Turabian StyleLi, Duoduo, Zihao Wei, and Xiaolong Li. 2023. "Development, Characterization and Resveratrol Delivery of Hollow Gliadin Nanoparticles: Advantages over Solid Gliadin Nanoparticles" Foods 12, no. 13: 2436. https://doi.org/10.3390/foods12132436
APA StyleLi, D., Wei, Z., & Li, X. (2023). Development, Characterization and Resveratrol Delivery of Hollow Gliadin Nanoparticles: Advantages over Solid Gliadin Nanoparticles. Foods, 12(13), 2436. https://doi.org/10.3390/foods12132436