Texture Feature Extraction from 1H NMR Spectra for the Geographical Origin Traceability of Chinese Yam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant and Chemical Materials
2.2. Sample Preparation for 1H NMR Analysis
2.3. Acquisition and Processing Parameter
2.4. Data Preprocessing
2.5. Texture Feature Capture Method
2.6. Classifiers
2.6.1. K-Nearest Neighbor
2.6.2. Decision Tree
2.6.3. Support Vector Machine
2.7. Evaluation Indicators
2.8. K-Meansalgorithm
3. Results and Discussion
3.1. Comparative Analysis of 1H NMR Spectra
3.2. The Best Method for the Geographical Origin Traceability of Geo-Authentic Chinese Yam
3.3. Visualization and Cluster Analysis
3.4. Comparison of Different Methods for the Geographical Origin Traceability of Geo-Authentic Chinese Yam
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Asiedu, R.; Sartie, A. Crops that feed the World 1. Yams-Yams for income and food security. Food Secur. 2010, 2, 305–315. [Google Scholar] [CrossRef]
- Falade, K.O.; Olurin, T.O.; Ike, E.A.; Aworh, O.C. Effect of pretreatment and temperature on air-drying of Dioscorea alata and Dioscorea rotundata slices. J. Food Eng. 2007, 80, 1002–1010. [Google Scholar] [CrossRef]
- Asiyanbi-Hammed, T.T.; Simsek, S. Comparison of physical and chemical properties of wheat flour, fermented yam flour, and unfermented yam flour. J. Food Process. Preserv. 2018, 42, e13844. [Google Scholar] [CrossRef]
- Tchabi, A.; Burger, S.; Coyne, D.; Hountondji, F.; Lawouin, L.; Wiemken, A.; Oehl, F. Promiscuous arbuscular mycorrhizal symbiosis of yam (Dioscorea spp.), a key staple crop in West Africa. Mycorrhiza 2009, 19, 375–392. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.J.; Yu, J.L.; Liu, H.Y.; Chen, W.P. Characterisation and preliminary lipid-lowering evaluation of starch from Chinese yam. Food Chem. 2008, 108, 176–181. [Google Scholar] [CrossRef]
- Ma, F.; Zhang, Y.; Liu, N.; Zhang, J.; Tan, G.; Kannan, B.; Liu, X.; Bell, A.E. Rheological properties of polysaccharides from Dioscorea opposita Thunb. Food Chem. 2017, 227, 64–72. [Google Scholar] [CrossRef]
- Ding, Z.; Gilber, M.G. Dioscoreaceae. Flora China 2000, 14, 276–296. Available online: http://www.iplant.cn/foc/pdf/Dioscoreaceae.pdf (accessed on 23 March 2023).
- Kim, S.K.; Lee, S.C.; Lee, B.H.; Choi, H.J.; Kim, K.U.; Lee, I.J. Bulbil formation and yield responses of Chinese yam to application of gibberellic acid, mepiquat chloride and trinexapac-ethyl. J. Agron. Crop Sci. 2003, 189, 255–260. [Google Scholar] [CrossRef]
- Thinh, N.C.; Kumagai, E.; Shimono, H.; Kawasaki, M. Effects of elevated CO2 concentration on bulbil germination and early seedling growth in Chinese yam under different air temperatures. Plant Prod. Sci. 2017, 20, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Brinckmann, J.A. Emerging importance of geographical indications and designations of origin—Authenticating geo-authentic botanicals and implications for phytotherapy. Phytother. Res. 2013, 27, 1581–1587. [Google Scholar] [CrossRef]
- Feng, X.F.; Huang, L.Q.; Ge, X.G.; Yang, L.J.; Yang, J.Y. Textual research on origin and development of genuine medicinal herbs of Shanyao. China J. Chin. Mater. Med. 2008, 33, 859–862. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, D.; Peng, H. Evolution and change of the species quality and authentic producing areas of Dioscorea opposita Thunb. Chin. J. Med. Hist. 2014, 44, 81–84. [Google Scholar]
- Wang, Q.; Wang, X.; Wu, X.; Wang, Y.; Zhang, Y.; Jiang, Y.; Zhang, C.; Huang, X.; An, L.; Ma, H.; et al. 1H NMR-based metabolic profiling approach to identify the geo-authentic Chinese yam (Dioscorea polystachya Turczaninow cv. Tiegun). J. Food Compos. Anal. 2021, 98, 103805. [Google Scholar] [CrossRef]
- Pouya, N.; Hgaza, V.K.; Kiba, D.I.; Bomisso, L.; Aighewi, B.; Aké, S.; Frossard, E. Water yam (Dioscorea alata L.) growth and tuber yield as affected by rotation and fertilization regimes across an environmental gradient in West Africa. Agronomy 2022, 12, 792. [Google Scholar] [CrossRef]
- Alamgir, A.N.M. Herbal drugs: Their collection, preservation, and preparation; evaluation, quality control, and standardization of herbal drugs. In Therapeutic Use of Medicinal Plants and Their Extracts: Volume 1: Progress in Drug Research; Springer: Cham, Switzerland, 2017; Volume 73, pp. 453–495. [Google Scholar] [CrossRef]
- Kaushik, R.; Jain, J.; Majumder, A. Pharmacognostic, physicochemical, and phytochemical analysis of Sarasvata Churna—An antiepileptic Ayurvedic formulation. Int. J. Green Pharm. 2017, 11, S756–S764. [Google Scholar] [CrossRef]
- Galvin-King, P.; Haughey, S.A.; Elliott, C.T. Herb and spice fraud; the drivers, challenges and detection. Food Control 2018, 88, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Sasikumar, B.; Swetha, V.P.; Parvathy, V.A.; Sheeja, T.E. 22-Advances in adulteration and authenticity testing of herbs and spices. In Woodhead Publishing Series in Food Science, Technology and Nutrition, Advances in Food Authenticity Testing; Downey, G., Ed.; Woodhead Publishing: Sawston, UK, 2016; pp. 585–624. [Google Scholar] [CrossRef]
- Ashani, U.B.; Harisha, C.R.; Shukla, V.J. Scientific evaluation of Valli Panchmoola–different compositions through pharmacognostical and phytochemical methodology. Int. J. Pharm. Sci. Res. 2019, 10, 1325–1329. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, D.; Huang, L. Metabolome profiling of eight Chinese yam (Dioscorea polystachya Turcz.) varieties reveals metabolite diversity and variety specific uses. Life 2021, 11, 687. [Google Scholar] [CrossRef]
- Belmonte-Sánchez, J.R.; Romero-González, R.; Martínez Vidal, J.L.; Arrebola, F.J.; Garrido Frenich, A. 1H NMR and multi-technique data fusion as metabolomic tool for the classification of golden rums by multivariate statistical analysis. Food Chem. 2020, 317, 126363. [Google Scholar] [CrossRef]
- Kucharska-Ambrożej, K.; Karpinska, J. The application of spectroscopic techniques in combination with chemometrics for detection adulteration of some herbs and spices. Microchem. J. 2020, 153, 104278. [Google Scholar] [CrossRef]
- Farag, M.A.; Elsebai, M.F.; Khattab, A.R. Metabolome based classification of artichoke leaf: A prospect for phyto-equivalency of its different leaf origins and commercial preparations. J. Pharm. Biomed. Anal. 2018, 158, 151–159. [Google Scholar] [CrossRef]
- Longobardi, F.; Innamorato, V.; Di Gioia, A.; Ventrella, A.; Lippolis, V.; Logrieco, A.F.; Catucci, L.; Agostiano, A. Geographical origin discrimination of lentils (Lens culinaris Medik.) using 1H NMR fingerprinting and multivariate statistical analyses. Food Chem. 2017, 237, 743–748. [Google Scholar] [CrossRef]
- da Silva, L.A.; Flumignan, D.L.; Tininis, A.G.; Pezza, H.R.; Pezza, L. Discrimination of Brazilian lager beer by 1H NMR spectroscopy combined with chemometrics. Food Chem. 2019, 272, 488–493. [Google Scholar] [CrossRef]
- Sádecká, J.; Jakubíková, M.; Májek, P. Fluorescence spectroscopy for discrimination of botrytized wines. Food Control 2018, 88, 75–84. [Google Scholar] [CrossRef]
- Abbas, O.; Fernández Pierna, J.A.; Codony, R.; von Holst, C.; Baeten, V. Assessment of the discrimination of animal fat by FT-Raman spectroscopy. J. Mol. Struct. 2009, 924–926, 294–300. [Google Scholar] [CrossRef] [Green Version]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Fang, X.; Cui, J.; Fei, L.; Yan, K.; Chen, Y.; Xu, Y. Robust sparse linear discriminant analysis. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 390–403. [Google Scholar] [CrossRef]
- Priti; Sangwan, T.; Dharna; Mohini. Related LBP operators for texture analysis. Int. J. Electr. Electron. Eng. 2015, 7, 106–113. Available online: http://www.arresearchpublication.com/images/shortpdf/1448811818_298D.pdf (accessed on 23 March 2023).
- Ojala, T.; Pietikäinen, M.; Mäenpää, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikäinen, M.; Harwood, D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem, Israel, 9–13 October 1994; pp. 582–585. [Google Scholar] [CrossRef]
- Thaher, T.; Zaguia, A.; Al Azwari, S.; Mafarja, M.; Chantar, H.; Abuhamdah, A.; Turabieh, H.; Mirjalili, S.; Sheta, A. An enhanced evolutionary student performance prediction model using whale optimization algorithm boosted with sine-cosine mechanism. Appl. Sci. 2021, 11, 10237. [Google Scholar] [CrossRef]
- Rahman, H.; Faruq, M.O.; Bin Abdul Hai, T.; Rahman, W.; Hossain, M.M.; Hasan, M.; Islam, S.; Moinuddin, M.; Islam, M.T.; Azad, M.M. IoT enabled mushroom farm automation with Machine Learning to classify toxic mushrooms in Bangladesh. J. Agric. Food Res. 2022, 7, 100267. [Google Scholar] [CrossRef]
- Hu, Z.; Luo, Z.; Jin, S.; Li, Z. EEG signals classification in time-frequency images by fusing rotation-invariant local binary pattern and gray level co-occurrence matrix features. In Proceedings of the CAAI International Conference on Artificial Intelligence, Hangzhou, China, 5–6 June 2021; pp. 347–358. [Google Scholar] [CrossRef]
- Peterson, L.E. K-nearest neighbor. Scholarpedia 2009, 4, 1883. [Google Scholar] [CrossRef]
- Safavian, S.R.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 1991, 21, 660–674. [Google Scholar] [CrossRef] [Green Version]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef]
- Sinaga, K.P.; Yang, M.S. Unsupervised K-means clustering algorithm. IEEE Access 2020, 8, 80716–80727. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, C.; Yuan, Y.; Qiao, L.; Chen, S. Application of rapid PCR method in identification of Dioscoreae rhizoma. Chin. J. Exp. Tradit. Med. Formulas 2018, 24, 45–49. [Google Scholar] [CrossRef]
- Sun, S.; Tang, J.; Yuan, Z.; Bai, Y. FTIR and classification study on trueborn tuber dioscoreae samples. Spectrosc. Spectr. Anal. 2003, 23, 258–261. Available online: https://europepmc.org/article/med/12961864 (accessed on 23 March 2023).
- Du, M.; Wu, Z.; Ying, G.; Shi, X.; Hua, G.; Qiao, Y. Rapid Non-destructive analysis of genuine Chinese yam by near infrared diffuse reflectance spectroscopy. World Chin. Med. 2013, 8, 1277–1279. [Google Scholar]
Classifier | Accuracy (%) | Sensitivity (%) | F1-Score | |
---|---|---|---|---|
Experiment 1 | KNN | 97.14 | 98.57 | 0.9719 |
DT | 97.14 | 95.71 | 0.9709 | |
SVM | 97.86 | 98.57 | 0.9788 | |
Experiment 2 | KNN | 99.29 | 100 | 0.9931 |
DT | 97.14 | 95.71 | 0.9709 | |
SVM | 99.29 | 100 | 0.9931 | |
Experiment 3 | KNN | 100 | 100 | 1 |
DT | 100 | 100 | 1 | |
SVM | 100 | 100 | 1 |
Authors | Data Size | Methods | Accuracy (%) |
---|---|---|---|
Yang et al. [40] | 45 | Rapid and specific polymerase chain reaction | / |
Wang et al. [13] | / | 1H NMR-based metabolic profiling approach | / |
Sun et al. [41] | 45 | Fourier transform infrared spectroscopy and pattern recognition | 70 |
Du et al. [42] | 90 | Near-infrared diffuse reflectance spectroscopy and discriminant analysis | 100 |
This work | 140 | 1H NMR spectra, rotation-invariant uniform LBP and SVM | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Luo, Z.; Wang, Y.; Zhou, Q.; Liu, S.; Wang, Q. Texture Feature Extraction from 1H NMR Spectra for the Geographical Origin Traceability of Chinese Yam. Foods 2023, 12, 2476. https://doi.org/10.3390/foods12132476
Hu Z, Luo Z, Wang Y, Zhou Q, Liu S, Wang Q. Texture Feature Extraction from 1H NMR Spectra for the Geographical Origin Traceability of Chinese Yam. Foods. 2023; 12(13):2476. https://doi.org/10.3390/foods12132476
Chicago/Turabian StyleHu, Zhongyi, Zhenzhen Luo, Yanli Wang, Qiuju Zhou, Shuangyan Liu, and Qiang Wang. 2023. "Texture Feature Extraction from 1H NMR Spectra for the Geographical Origin Traceability of Chinese Yam" Foods 12, no. 13: 2476. https://doi.org/10.3390/foods12132476
APA StyleHu, Z., Luo, Z., Wang, Y., Zhou, Q., Liu, S., & Wang, Q. (2023). Texture Feature Extraction from 1H NMR Spectra for the Geographical Origin Traceability of Chinese Yam. Foods, 12(13), 2476. https://doi.org/10.3390/foods12132476