Sugarcane Pulp Take-Out Containers Produce More Microparticles in Acidic Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Collection of SCP Take-Out Containers
2.3. Overall Migration
2.4. Collection of the Evaporation Residue Particles (ERPs)
2.5. Cluster Analysis
2.6. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.7. Inductively Coupled Plasma-Mass Spectrometry Analysis (ICP-MS)
2.8. Collection of Microparticles
2.9. Measurement of the Particle Diameters
2.10. Quantitative Analysis and Morphological Observation of the Microparticles
2.11. Data Analysis
3. Results and Discussion
3.1. Characterization of the Take-Out Containers
3.2. Metal Content of SCP Take-Out Containers
3.3. Overall Migration of SCP Take-Out Containers
3.4. Cluster Analysis
3.5. Impacts of Immersing Conditions on the Production of Microparticles
3.5.1. 90D
3.5.2. Particle Size Distributions of Microparticles in Contact with Different Food Simulants
- (1)
- DI water
- (2)
- 4% HAc
- (3)
- 95% EtOH
3.6. Quantitative Analysis of Microparticles
3.7. Estimation of Microparticle from SCP Take-Out Container by Humans
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maimaiti, M.; Zhao, X.; Jia, M.; Ru, Y.; Zhu, S. How we eat determines what we become: Opportunities and challenges brought by food delivery industry in a changing world in China. Eur. J. Clin. Nutr. 2018, 72, 1282–1286. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Chen, H.; Huang, B.; Lu, J. Analysis on advances and characteristics of microplastic pollution in China’s lake ecosystems. Ecotoxicol. Environ. Saf. 2022, 232, 113254. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhou, M.; Chen, X.; Hu, L.; Xu, Y.; Fu, W.; Li, C. A comparative review of microplastics in lake systems from different countries and regions. Chemosphere 2022, 286, 131806. [Google Scholar] [CrossRef]
- Liu, C.; Luan, P.; Li, Q.; Cheng, Z.; Sun, X.; Cao, D.; Zhu, H. Biodegradable, hygienic, and compostable tableware from hybrid sugarcane and bamboo fibers as plastic alternative. Matter 2020, 3, 2066–2079. [Google Scholar] [CrossRef]
- Hadidi, M.; Jafarzadeh, S.; Forough, M.; Garavand, F.; Alizadeh, S.; Salehabadi, A.; Khaneghah, A.M.; Jafari, S.M. Plant protein-based food packaging films; recent advances in fabrication, characterization, and applications. Trends Food Sci. Technol. 2022, 120, 154–173. [Google Scholar] [CrossRef]
- Shogren, R.; Wood, D.; Orts, W.; Glenn, G. Plant-based materials and transitioning to a circular economy. Sustain. Prod. Consum. 2019, 19, 194–215. [Google Scholar] [CrossRef]
- Szczerbowski, D.; Pitarelo, A.P.; Zandona, A.; Ramos, L.P. Sugarcane biomass for biorefineries: Comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr. Polym. 2014, 114, 95–101. [Google Scholar] [CrossRef]
- Mustafa, G.; Arshad, M.; Bano, I.; Abbas, M. Biotechnological applications of sugarcane bagasse and sugar beet molasses. Biomass Convers. Biorefin. 2020, 13, 1489–1501. [Google Scholar] [CrossRef]
- FAOSTAT. Crops and Livestock Products. 2020. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 25 October 2022).
- Becerra, P.; Acevedo, P.; Gonzalez, L.E.A. Sustainability evaluation of sugarcane bagasse valorization alternatives in Valle del Cauca-Colombia. Chem. Eng. Trans. 2018, 65, 817–822. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, X.; Hu, C.; Yu, W. HS-GC-IMS identification of volatile aromatic compounds of freshly-cooked rice packaged with different disposable lunchboxes. J. Hazard Mater. 2022, 438, 129516. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Rengel, Z.; Qaswar, M.; Amir, M.; Zafar-ul-Hye, M. Arsenic and Heavy Metal (Cadmium, Lead, Mercury and Nickel) Contamination in Plant-Based Foods. In Plant and Human Health, Volume 2: Phytochemistry and Molecular Aspects; Ozturk, M., Hakeem, K.R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 447–490. [Google Scholar]
- Wang, X.F.; Deng, C.B.; Yin, J.; Tang, X. Toxic heavy metal contamination assessment and speciation in sugarcane soil. In Proceedings of the 2017 3rd International Conference on Environmental Science and Material Application (Esma2017), Chongqing, China, 25–26 November 2017; IOP Publishing: Bristol, UK, 2018; Volume 108, p. 42059. [Google Scholar] [CrossRef]
- Khoramzadeh, E.; Nasernejad, B.; Halladj, R. Mercury biosorption from aqueous solutions by Sugarcane Bagasse. J. Taiwan Inst. Chem. Eng. 2013, 44, 266–269. [Google Scholar] [CrossRef]
- Halysh, V.; Sevastyanova, O.; Pikus, S.; Dobele, G.; Pasalskiy, B.; Gun’ko, V.M.; Kartel, M. Sugarcane bagasse and straw as low-cost lignocellulosic sorbents for the removal of dyes and metal ions from water. Cellulose 2020, 27, 8181–8197. [Google Scholar] [CrossRef]
- Ranjan, V.P.; Joseph, A.; Goel, S. Microplastics and other harmful substances released from disposable paper cups into hot water. J. Hazard Mater. 2021, 404, 124118. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wang, J.; Wang, M.; Ying, R.; Li, X.; Hu, Z.; Zhang, Y. Disposable plastic materials release microplastics and harmful substances in hot water. Sci. Total Environ. 2022, 818, 151685. [Google Scholar] [CrossRef]
- Fadare, O.O.; Wan, B.; Guo, L.H.; Zhao, L. Microplastics from consumer plastic food containers: Are we consuming it? Chemosphere 2020, 253, 126787. [Google Scholar] [CrossRef]
- Jin, H.B.; Ma, T.; Sha, X.X.; Liu, Z.Y.; Zhou, Y.; Meng, X.N.; Chen, Y.B.; Han, X.D.; Ding, J. Polystyrene microplastics induced male reproductive toxicity in mice. J Hazard Mater 2021, 401, 123430. [Google Scholar] [CrossRef]
- Li, B.Q.; Ding, Y.F.; Cheng, X.; Sheng, D.D.; Xu, Z.; Rong, Q.Y.; Wu, Y.L.; Zhao, H.L.; Ji, X.F.; Zhang, Y. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere 2020, 244, 125492. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Choi, D.; Han, S.; Choi, J.; Hong, J. An assessment of the toxicity of polypropylene microplastics in human derived cells. Sci. Total Environ. 2019, 684, 657–669. [Google Scholar] [CrossRef]
- Du, F.N.; Cai, H.W.; Zhang, Q.; Chen, Q.Q.; Shi, H.H. Microplastics in take-out food containers. J. Hazard Mater. 2020, 399, 122969. [Google Scholar] [CrossRef]
- GB 31604.1-2015; National Food Safety Standard General Rules for Migration Test of Food Contact Materials and Articles. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2015.
- GB 5009.156-2016; National Food Safety Standard Food Contact Materials and Articles General Rules for Pre-Experimental Processing Methods. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- GB 31604.8-2016; National Food Safety Standard Food Contact Materials and Articles Overall Migration Determination. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- Xie, C.H.; Chen, Y.F.; Liu, Y.Y.; Yin, N.; Zhong, H.N.; Li, D. Determination of 42 kinds of inorganic elements in food contact paper articles by microwave digestion-inductively coupled plasma mass spectrometry. J. Food Saf. Qual. 2021, 12, 4602–4607. [Google Scholar] [CrossRef]
- Gond, R.K.; Gupta, M.K. A novel approach for isolation of nanofibers from sugarcane bagasse and its characterization for packaging applications. Polym. Compos. 2020, 41, 5216–5226. [Google Scholar] [CrossRef]
- Afrazeh, M.; Tadayoni, M.; Abbasi, H.; Sheikhi, A. Extraction of dietary fibers from bagasse and date seed, and evaluation of their technological properties and antioxidant and prebiotic activity. J. Food Meas. Charact. 2021, 15, 1949–1959. [Google Scholar] [CrossRef]
- Aziz, T.; Ullah, A.; Fan, H.; Jamil, M.I.; Khan, F.U.; Ullah, R.; Iqbal, M.; Ali, A.; Ullah, B. Recent Progress in Silane Coupling Agent with Its Emerging Applications. J. Polym. Environ. 2021, 29, 3427–3443. [Google Scholar] [CrossRef]
- Winkler, H.C.; Notter, T.; Meyer, U.; Naegeli, H. Critical review of the safety assessment of titanium dioxide additives in food. J. Nanobiotechnol. 2018, 16, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.F.; Deng, C.B.; Sunahara, G.; Yin, J.; Xu, G.P.; Zhu, K.X. Risk Assessments of Heavy Metals to Children Following Non-dietary Exposures and Sugarcane Consumption in a Rural Area in Southern China. Expo. Health 2020, 12, 1–8. [Google Scholar] [CrossRef]
- Xu, G.P.; Deng, C.B.; Wang, J.; Zhu, H.X.; Sun, Z.; Wang, X.F.; Zhu, K.X.; Yin, J.; Tang, Z.F. Lead bioaccumulation, subcellular distribution and chemical form in sugarcane and its potential for phytoremediation of lead-contaminated soil. Hum. Ecol. Risk Assess. 2020, 26, 1175–1187. [Google Scholar] [CrossRef]
- Da Silva, F.B.V.; Do Nascimento, C.W.A.; Araujo, P.R.M.; da Silva, L.H.V.; da Silva, R.F. Assessing heavy metal sources in sugarcane Brazilian soils: An approach using multivariate analysis. Environ. Monit. Assess. 2016, 188, 457. [Google Scholar] [CrossRef]
- Dupont, A.L.; Tetreault, J. Cellulose Degradation in an Acetic Acid Environment. Stud. Conserv. 2000, 45, 201–210. [Google Scholar] [CrossRef]
- Li, D.; Shi, Y.; Yang, L.; Xiao, L.; Kehoe, D.K.; Gun’ko, Y.K.; Boland, J.J.; Wang, J.J. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nature Food 2020, 1, 746–754. [Google Scholar] [CrossRef]
- Xing, D.; Hu, Y.; Sun, B.; Song, F.; Pan, Y.; Liu, S.; Zheng, P. Behavior, Characteristics and Sources of Microplastics in Tea. Horticulturae 2023, 9, 174. [Google Scholar] [CrossRef]
No. | Sample ID | Volume (mL) | Resources | Thickness (mm) | Water/ Oil Proof | Microwave/ Freezing |
---|---|---|---|---|---|---|
1 | S-1 | 700 | Guangzhou, China | 0.73 ± 0.02 | Yes | Yes |
2 | S-2 | 700 | Suzhou, China | 0.72 ± 0.03 | ||
3 | S-3 | 500 | Shandong, China | 0.69 ± 0.00 | ||
4 | S-4 | 450 | Sichuan, China | 0.60 ± 0.03 | ||
5 | S-5 | 550 | Zhejiang, China | 0.74 ± 0.02 | ||
6 | S-6 | 450 | Zhejiang, China | 0.63 ± 0.05 | ||
7 | S-7 | 500 | Shanghai, China | 0.63 ± 0.02 | ||
8 | S-8 | 500 | Anhui, China | 0.66 ± 0.02 | ||
9 | S-9 | 600 | Shanghai, China | 0.65 ± 0.02 | ||
10 | S-10 | 450 | Shanghai, China | 0.50 ± 0.01 | ||
11 | S-11 | 650 | Shanghai, China | 0.61 ± 0.03 | ||
12 | S-12 | 500 | Jiangsu, China | 0.62 ± 0.03 | ||
13 | S-13 | 600 | Fujian, China | 0.56 ± 0.08 | ||
14 | S-14 | 500 | Tianjin, China | 0.71 ± 0.02 | ||
15 | S-15 | 500 | Zhejiang, China | 0.75 ± 0.07 |
mg/kg | Al | Fe | Pb | Ti | Sr | Mn | Zn | Ba | Cr | Cu |
---|---|---|---|---|---|---|---|---|---|---|
LOQ | 2.00 | 0.10 | 0.05 | 0.05 | 0.09 | 0.03 | 0.10 | 0.05 | 0.04 | 0.02 |
S-1 | 1244.04 | 398.52 | 2.60 | 15.05 | 7.25 | 13.01 | 12.23 | 3.32 | 4.70 | 1.01 |
S-2 | 133.26 | 44.71 | 0.56 | 3.89 | 5.13 | 2.57 | 3.30 | 1.64 | - | - |
S-3 | 35.16 | 50.78 | 0.61 | 3.29 | 6.66 | 1.78 | 1.29 | 0.63 | 2.16 | 0.15 |
S-4 | 91.74 | 135.84 | 1.96 | 9.58 | 5.81 | 2.90 | 8.00 | 1.50 | - | 0.39 |
S-5 | 195.24 | 160.26 | 0.60 | 7.94 | 2.71 | 5.49 | 2.30 | 1.32 | 0.93 | - |
S-6 | 46.00 | 169.84 | 0.27 | 6.44 | 4.60 | 3.00 | - | 0.68 | 0.97 | - |
S-7 | 37.38 | 75.32 | 0.09 | 5.17 | 5.59 | 2.37 | 0.71 | 1.41 | - | - |
S-8 | 152.89 | 96.58 | 0.24 | 7.69 | 2.44 | 5.55 | - | 1.41 | - | - |
S-9 | 105.02 | 177.52 | 0.44 | 3.62 | 5.11 | 3.62 | 0.58 | 2.12 | - | 0.27 |
S-10 | 37.44 | 94.42 | 0.54 | 6.06 | 3.75 | 1.94 | 0.29 | 3.37 | - | 0.29 |
S-11 | 38.11 | 48.62 | 136.43 | 5.13 | 4.30 | 2.03 | 0.31 | 1.80 | - | - |
S-12 | 74.49 | 86.43 | 0.67 | 6.85 | 4.74 | 4.86 | - | 1.01 | 0.80 | - |
S-13 | 48.34 | 127.29 | 1.25 | 10.16 | 2.51 | 2.55 | 3.78 | 1.21 | - | 0.98 |
S-14 | 650.85 | 54.00 | 1.71 | 3.29 | 2.74 | 1.79 | 0.66 | 0.66 | 0.52 | - |
S-15 | 541.97 | 69.54 | 0.20 | 7.93 | 3.03 | 2.71 | 0.99 | 0.95 | 1.57 | 0.71 |
Averaged | 228.80 | 119.31 | 9.88 | 6.81 | 4.42 | 3.74 | 2.30 | 1.54 | 0.78 | 0.25 |
ERP | 21,779.86 | 3320.18 | 57.98 | 189.87 | 478.50 | 363.19 | 508.72 | 129.10 | 54.31 | 23.04 |
Samples | Food Simulants | ||
---|---|---|---|
4% HAc | DI Water | 95% EtOH | |
S-1 | 33.33 ± 1.18a | 18.89 ± 2.19 b | 11.11 ± 1.04 c |
S-2 | 13.61 ± 2.19 a | 14.44 ± 1.71 a | 6.94 ± 0.79 b |
S-3 | 14.72 ± 0.79 a | 14.72 ± 1.42 a | 5.83 ± 0.68 b |
S-4 | 14.72 ± 0.79 a | 11.11 ± 1.42 b | 7.78 ± 0.39 b |
S-5 | 14.17 ± 0.68 a | 14.72 ± 1.42 a | 9.44 ± 1.71 b |
S-6 | 16.67 ± 1.80 a | 13.33 ± 1.80 ab | 10.28 ± 0.39 b |
S-7 | 11.39 ± 0.39 ab | 13.61 ± 1.57 a | 9.27 ± 2.58 b |
S-8 | 16.04 ± 1.42 a | 11.39 ± 0.39 b | 8.33 ± 1.36 b |
S-9 | 18.61 ± 1.04 a | 9.17 ± 2.04 b | 7.22 ± 1.04 b |
S-10 | 14.44 ± 0.79 a | 10.56 ± 0.39 b | 8.33 ± 1.36 c |
S-11 | 25.83 ± 1.36 a | 11.39 ± 0.39 b | 5.28 ± 0.79 c |
S-12 | 14.72 ± 1.42 a | 10.56 ± 0.79 b | 8.33 ± 1.36 b |
S-13 | 10.28 ± 0.39 a | 6.11 ± 0.39 b | 2.78 ± 0.39 c |
S-14 | 23.06 ± 1.57 a | 4.44 ± 0.39 c | 10.38 ± 0.79 b |
S-15 | 15.00 ± 1.18 a | 10.00 ± 1.18 b | 0.56 ± 0.39 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Mo, C.-R.; Wang, Z.-W.; Yu, W.-W.; Hu, C.-Y. Sugarcane Pulp Take-Out Containers Produce More Microparticles in Acidic Foods. Foods 2023, 12, 2496. https://doi.org/10.3390/foods12132496
Hu Y, Mo C-R, Wang Z-W, Yu W-W, Hu C-Y. Sugarcane Pulp Take-Out Containers Produce More Microparticles in Acidic Foods. Foods. 2023; 12(13):2496. https://doi.org/10.3390/foods12132496
Chicago/Turabian StyleHu, Yi, Chun-Ru Mo, Zhi-Wei Wang, Wen-Wen Yu, and Chang-Ying Hu. 2023. "Sugarcane Pulp Take-Out Containers Produce More Microparticles in Acidic Foods" Foods 12, no. 13: 2496. https://doi.org/10.3390/foods12132496
APA StyleHu, Y., Mo, C.-R., Wang, Z.-W., Yu, W.-W., & Hu, C.-Y. (2023). Sugarcane Pulp Take-Out Containers Produce More Microparticles in Acidic Foods. Foods, 12(13), 2496. https://doi.org/10.3390/foods12132496