Salinity Treatments Promote the Accumulations of Momilactones and Phenolic Compounds in Germinated Brown Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Isolation of Tricin, ρ-Coumaric Acid, and Momilactones A (MA) and B (MB)
2.3. Confirmation of Isolated Tricin, ρ-Coumaric Acid, and Momilactones A (MA) and B (MB) by 1H- and 13C-Nuclear Magnetic Resonance (NMR) and Electrospray Ionization-Mass Spectrometry (ESI-MS)
2.4. Preparation for Germination
2.5. Extracted Phytochemicals from GBR
2.6. Total Phenolic Content (TPC) and Total Flavonoid Content (TFC) in GBR Extracts
2.7. Antioxidant Activities of GBR
2.8. Identification and Quantification of Momilactones A (MA) and B (MB) in GBR by Ultra-Performance Liquid Chromatography–Electrospray Ionization-Mass Spectrometry (UPLC–ESI-MS)
2.9. Identification and Quantification of Tricin, ρ-Coumaric Acid, Ferulic Acid, Cinnamic Acid, and Salicylic Acid by High-Performance Liquid Chromatography (HPLC)
2.10. Statistical Analysis
3. Results and Discussion
3.1. Confirmation of Isolated Tricin, ρ-Coumaric Acid, and Momilactones A (MA) and B (MB)
3.2. Phenolic and Momilactone Contents in GBR
3.2.1. Total Phenolic (TPC) and Flavonoid (TFC) Contents
3.2.2. Contents of Tricin, ρ-Coumaric, Ferulic, Cinnamic, and Salicylic Acids in GBR
3.2.3. Contents of Momilactones A (MA) and B (MB) in GBR
3.3. Antioxidant Activity of GBR by the DPPH and ABTS Radical Scavenging Assays
3.4. Correlation between Antioxidant Activities and Phytochemicals of GBR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cho, D.H.; Lim, S.T. Germinated brown rice and its bio-functional compounds. Food Chem. 2016, 196, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, Y.; Dang, P.; Zhao, S.; Lai, D.; Zhou, L. Rice secondary metabolites: Structures, roles, biosynthesis, and metabolic regulation. Molecules 2018, 23, 3098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravichanthiran, K.; Ma, Z.F.; Zhang, H.; Cao, Y.; Wang, C.W.; Muhammad, S.; Aglago, E.K.; Zhang, Y.; Jin, Y.; Pan, B. Phytochemical profile of brown rice and its nutrigenomic implications. Antioxidants 2018, 7, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, J.; Yang, T.; Feng, H.; Dong, M.; Slavin, M.; Xiong, S.; Zhao, S. Enhancing contents of γ-aminobutyric acid (GABA) and other micronutrients in dehulled rice during germination under normoxic and hypoxic conditions. J. Agric. Food Chem. 2016, 64, 1094–1102. [Google Scholar] [CrossRef]
- Ng, L.T.; Huang, S.H.; Chen, Y.T.; Su, C.H. Changes of tocopherols, tocotrienols, γ-oryzanol, and γ-aminobutyric acid levels in the germinated brown rice of pigmented and nonpigmented cultivars. J. Agric. Food Chem. 2013, 61, 12604–12611. [Google Scholar] [CrossRef]
- Nascimento, L.Á.D.; Avila, B.P.; Colussi, R.; Elias, M.C. Effect of abiotic stress on bioactive compound production in germinated brown rice. Cereal Chem. 2020, 97, 868–876. [Google Scholar] [CrossRef]
- Trachoo, N.; Boudreaux, C.; Moongngarm, A.; Samappito, S.; Gaensakoo, R. Effect of germinated rough rice media on growth of selected probiotic bacteria. Pak. J. Biol. Sci. 2006, 9, 2657–2661. [Google Scholar] [CrossRef] [Green Version]
- Choi, I.D.; Kim, D.S.; Son, J.R.; Yang, C.I.; Chun, J.Y.; Kim, K.J. Physico-chemical properties of giant embryo brown rice (Keunnunbyeo). J. Appl. Biol. Chem. 2006, 49, 95–100. [Google Scholar]
- Owolabi, I.O.; Chakree, K.; Takahashi, Y.C. Bioactive components, antioxidative and anti-inflammatory properties (on RAW 264.7 macrophage cells) of soaked and germinated purple rice extracts. Int. J. Food Sci. Technol. 2019, 54, 2374–2386. [Google Scholar] [CrossRef]
- Munarko, H.; Sitanggang, A.B.; Kusnandar, F.; Budijanto, S. Effect of different soaking and germination methods on bioactive compounds of germinated brown rice. Int. J. Food Sci. Technol. 2021, 56, 4540–4548. [Google Scholar] [CrossRef]
- Islam, M.Z.; Shim, M.J.; Jeong, S.Y.; Lee, Y.T. Effects of soaking and sprouting on bioactive compounds of black and red pigmented rice cultivars. Int. J. Food Sci. Technol. 2022, 57, 201–209. [Google Scholar] [CrossRef]
- Choe, H.; Sung, J.; Lee, J.; Kim, Y. Effects of calcium chloride treatment on bioactive compound accumulation and antioxidant capacity in germinated brown rice. J. Cereal Sci. 2021, 101, 103294. [Google Scholar] [CrossRef]
- Quan, N.V.; Thien, D.D.; Khanh, T.D.; Tran, H.D.; Xuan, T.D. Momilactones A, B, and tricin in rice grain and by-products are potential skin aging inhibitors. Foods 2019, 8, 602. [Google Scholar] [CrossRef] [Green Version]
- Shalini, V.; Bhaskar, S.; Kumar, K.S.; Mohanlal, S.; Jayalekshmy, A.; Helen, A. Molecular mechanisms of anti-inflammatory action of the flavonoid, tricin from Njavara rice (Oryza sativa L.) in human peripheral blood mononuclear cells: Possible role in the inflammatory signaling. Int. Immunopharmacol. 2012, 14, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Shalini, V.; Pushpan, C.K.; Sindhu, G.; Jayalekshmy, A.; Helen, A. Tricin, flavonoid from Njavara reduces inflammatory responses in hPBMCs by modulating the p38MAPK and PI3K/Akt pathways and prevents inflammation associated endothelial dysfunction in HUVECs. Immunobiology 2016, 221, 137–144. [Google Scholar] [CrossRef]
- Cai, H.; Hudson, E.A.; Mann, P.; Verschoyle, R.D.; Greaves, P.; Manson, M.M.; Steward, W.P.; Gescher, A.J. Growth-inhibitory and cell cycle-arresting properties of the rice bran constituent tricin in human-derived breast cancer cells in vitro and in nude mice in vivo. Br. J. Cancer 2004, 91, 1364–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wongsa, P. Phenolic compounds and potential health benefits of pigmented rice. In Recent Advances in Rice Research; Ansari, M.U.R., Ed.; IntechOpen: London, UK, 2021. [Google Scholar]
- Ghasemzadeh, A.; Karbalaii, M.T.; Jaafar, H.Z.; Rahmat, A. Phytochemical constituents, antioxidant activity, and antiproliferative properties of black, red, and brown rice bran. Chem. Cent. J. 2018, 12, 17. [Google Scholar] [CrossRef] [Green Version]
- Gong, E.S.; Luo, S.; Li, T.; Liu, C.; Zhang, G.; Chen, J.; Zeng, Z.; Liu, R.H. Phytochemical profiles and antioxidant activity of processed brown rice products. Food Chem. 2017, 232, 67–78. [Google Scholar] [CrossRef]
- Park, C.; Jeong, N.Y.; Kim, G.Y.; Han, M.H.; Chung, I.M.; Kim, W.J.; Yoo, Y.H.; Choi, Y.H. Momilactone B induces apoptosis and G1 arrest of the cell cycle in human monocytic leukemia U937 cells through downregulation of pRB phosphorylation and induction of the cyclin-dependent kinase inhibitor p21Waf1/Cip1. Oncol. Rep. 2014, 31, 1653–1660. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.C.; Chung, I.M.; Jin, Y.J.; Song, Y.S.; Seo, S.Y.; Park, B.S.; Cho, K.H.; Yoo, K.S.; Kim, T.H.; Yee, S.B.; et al. Momilactone B, an allelochemical of rice hulls, induces apoptosis on human lymphoma cells (Jurkat) in a micromolar concentration. Nutr. Cancer 2008, 60, 542–551. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, H.R.; Park, E.; Lee, S.C. Cytotoxic and antitumor activity of momilactone B from rice hulls. J. Agric. Food Chem. 2007, 55, 1702–1706. [Google Scholar] [CrossRef]
- Quan, N.V.; Tran, H.D.; Xuan, T.D.; Ahmad, A.; Dat, T.D.; Khanh, T.D.; Teschke, R. Momilactones A and B are α-amylase and α-glucosidase inhibitors. Molecules 2019, 24, 482. [Google Scholar] [CrossRef] [Green Version]
- Quan, N.V.; Xuan, T.D.; Tran, H.D.; Ahmad, A.; Khanh, T.D.; Dat, T.D. Contribution of momilactones A and B to diabetes inhibitory potential of rice bran: Evidence from in vitro assays. Saudi Pharm. J. 2019, 27, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Goufo, P.; Trindade, H. Rice antioxidants: Phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Sci. Nutr. 2014, 2, 75–104. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Olszowy, M.; Dawidowicz, A.L. Is it possible to use the DPPH and ABTS methods for reliable estimation of antioxidant power of colored compounds? Chem. Pap. 2018, 72, 393–400. [Google Scholar] [CrossRef]
- Kobayashi, A.; Hori, K.; Yamamoto, T.; Yano, M. Koshihikari: A premium short-grain rice cultivar–its expansion and breeding in Japan. Rice 2018, 11, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cáceres, P.J.; Peñas, E.; Martinez-Villaluenga, C.; Amigo, L.; Frias, J. Enhancement of biologically active compounds in germinated brown rice and the effect of sun-drying. J. Cereal Sci. 2017, 73, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mohammadabadi, S.S.; Goli, M.; Tabasi, S.N. Optimization of bioactive compound extraction from eggplant peel by response surface methodology: Ultrasound-assisted solvent qualitative and quantitative effect. Foods 2022, 11, 3263. [Google Scholar] [CrossRef]
- Bueno-Costa, F.M.; Zambiazi, R.C.; Bohmer, B.W.; Chaves, F.C.; Silva, W.P.D.; Zanusso, J.T.; Dutra, I. Antibacterial and antioxidant activity of honeys from the state of Rio Grande do Sul, Brazil. LWT-Food Sci. Technol. 2016, 65, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Anh, L.H.; Quan, N.V.; Lam, V.Q.; Iuchi, Y.; Takami, A.; Teschke, R.; Xuan, T.D. Antioxidant, anti-tyrosinase, anti-α-amylase, and cytotoxic potentials of the invasive weed Andropogon virginicus. Plants 2020, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Anh, L.H.; Quan, N.V.; Lam, V.Q.; Takami, A.; Khanh, T.D.; Xuan, T.D. Rice momilactones and phenolics: Expression of relevant biosynthetic genes in response to UV and chilling stresses. Agronomy 2022, 12, 1731. [Google Scholar]
- Wang, Y.; Shen, J.Z.; Chan, Y.W.; Ho, W.S. Identification and growth inhibitory activity of the chemical constituents from Imperata cylindrica aerial part ethyl acetate extract. Molecules 2018, 23, 1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, D.H.; Zhao, B.T.; Le, D.D.; Kim, K.Y.; Kim, Y.H.; Yoon, Y.H.; Ko, J.Y.; Woo, K.S.; Woo, M.H. Phenolic constituents and their anti-inflammatory activity from Echinochloa utilis grains. Nat. Prod. Sci. 2016, 22, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Anh, N.T.H.; Anh, L.H.; Mai, N.P.; Quan, N.V.; Xuan, T.D. Identification and isolation techniques for plant growth inhibitors in rice. Separations 2023, 10, 105. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Xuan, T.D.; Huong, C.T.; Quan, N.V.; Anh, L.H.; Khanh, T.D.; Rayee, R. Improvement of salinity tolerance in rice seedlings by exogenous magnesium sulfate application. Soil Syst. 2022, 6, 69. [Google Scholar] [CrossRef]
- Huong, C.T.; Anh, T.T.T.; Dat, T.D.; Khanh, T.D.; Xuan, T.D. Uniparental inheritance of salinity tolerance and beneficial phytochemicals in rice. Agronomy 2020, 10, 1032. [Google Scholar] [CrossRef]
- Minh, L.T.; Khang, D.T.; Ha, P.T.T.; Tuyen, P.T.; Minh, T.N.; Quan, N.V.; Xuan, T.D. Effects of salinity stress on growth and phenolics of rice (Oryza sativa L.). Int. Lett. Nat. Sci. 2016, 57, 1–10. [Google Scholar] [CrossRef]
- Sharma, A.; Thakur, S.; Kumar, V.; Kanwar, M.K.; Kesavan, A.K.; Thukral, A.K.; Bhardwaj, R.; Alam, P.; Ahmad, P. Pre-sowing seed treatment with 24-epibrassinolide ameliorates pesticide stress in Brassica juncea L. Through the modulation of stress markers. Front. Plant Sci. 2016, 7, 1569. [Google Scholar] [CrossRef] [Green Version]
- Anh, L.H.; Quan, N.V.; Nghia, L.T.; Xuan, T.D. Phenolic allelochemicals: Achievements, limitations, and prospective approaches in weed management. Weed Biol. Manag. 2021, 21, 37–67. [Google Scholar]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Kato, T.; Kabuto, C.; Sasaki, N.; Tsunagawa, M.; Aizawa, H.; Fujita, K.; Kato, Y.; Kitahara, Y.; Takahashi, N. Momilactones, growth inhibitors from rice, Oryza sativa L. Tetrahedron Lett. 1973, 14, 3861–3864. [Google Scholar] [CrossRef]
- Quan, N.V.; Xuan, T.D.; Tran, H.D.; Thuy, N.T.D. Inhibitory activities of momilactones A, B, E, and 7-ketostigmasterol isolated from rice husk on paddy and invasive weeds. Plants 2019, 8, 159. [Google Scholar] [CrossRef] [Green Version]
- Chung, I.M.; Hahn, S.J.; Ahmad, A. Confirmation of potential herbicidal agents in hulls of rice, Oryza sativa. J. Chem. Ecol. 2005, 31, 1339–1352. [Google Scholar] [CrossRef]
- Ahmad, A.; Xuan, T.D.; Minh, T.N.; Siddiqui, N.A.; Quan, N.V. Comparative extraction and simple isolation improvement techniques of active constituents’ momilactone A and B from rice husks of Oryza sativa by HPLC analysis and column chromatography. Saudi Pharm. J. 2019, 27, 17–24. [Google Scholar] [CrossRef]
- Germain, J.; Deslongchamps, P. Total synthesis of (±)-momilactone A. J. Med. Chem. 2002, 67, 5269–5278. [Google Scholar] [CrossRef]
- Minh, T.N.; Xuan, T.D.; Ahmad, A.; Elzaawely, A.A.; Teschke, R.; Van, T. Momilactones A and B: Optimization of yields from isolation and purification. Separations 2018, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Anh, L.H.; Lam, V.Q.; Takami, A.; Khanh, T.D.; Quan, N.V.; Xuan, T.D. Cytotoxic mechanism of momilactones A and B against acute promyelocytic leukemia and multiple myeloma cell lines. Cancers 2022, 14, 4848. [Google Scholar] [CrossRef]
- Fukuta, M.; Xuan, T.D.; Deba, F.; Tawata, S.; Khanh, T.D.; Chung, I.M. Comparative efficacies in vitro of antibacterial, fungicidal, antioxidant, and herbicidal activities of momilactones A and B. J. Plant Interact. 2007, 2, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Chung, I.M.; Jung, T.K.; Kim, S.H. Evaluation of allelopathic potential and quantification of momilactone A, B from rice hull extracts and assessment of inhibitory bioactivity on paddy field weeds. J. Agric. Food Chem. 2006, 54, 2527–2536. [Google Scholar] [CrossRef]
- Ambade, A.; Mandrekar, P. Oxidative stress and inflammation: Essential partners in alcoholic liver disease. Int. J. Hepatol. 2012, 2012, 853175. [Google Scholar] [CrossRef] [PubMed]
- Tucker, P.S.; Scanlan, A.T.; Dalbo, V.J. Chronic kidney disease influences multiple systems: Describing the relationship between oxidative stress, inflammation, kidney damage, and concomitant disease. Oxidative Med. Cell. Longev. 2015, 2015, 806358. [Google Scholar] [CrossRef]
- Lin, Y.T.; Pao, C.C.; Wu, S.T.; Chang, C.Y. Effect of different germination conditions on antioxidative properties and bioactive compounds of germinated brown rice. BioMed. Res. Int. 2015, 2015, 608761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ti, H.; Zhang, R.; Zhang, M.; Li, Q.; Wei, Z.; Zhang, Y.; Tang, X.; Deng, Y.; Liu, L.; Ma, Y. Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages. Food Chem. 2014, 161, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Xuan, T.D.; Khang, D.T. Effects of exogenous application of protocatechuic acid and vanillic acid to chlorophylls, phenolics and antioxidant enzymes of rice (Oryza sativa L.) in submergence. Molecules 2018, 23, 620. [Google Scholar] [CrossRef] [Green Version]
- Falcinelli, B.; Sileoni, V.; Marconi, O.; Perretti, G.; Quinet, M.; Lutts, S.; Benincasa, P. Germination under moderate salinity increases phenolic content and antioxidant activity in rapeseed (Brassica napus var oleifera Del.) sprouts. Molecules 2017, 22, 1377. [Google Scholar] [CrossRef] [Green Version]
- Soong, Y.Y.; Barlow, P.J. Antioxidant activity and phenolic content of selected fruit seeds. Food Chem. 2004, 88, 411–417. [Google Scholar] [CrossRef]
- Biswas, S.K. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxidative Med. Cell. Longev. 2016, 2016, 5698931. [Google Scholar] [CrossRef] [Green Version]
- Quan, N.V.; Xuan, T.D.; Tran, H.D.; Thuy, N.T.D.; Trang, L.T.; Huong, C.T.; Andriana, Y.; Tuyen, P.T. Antioxidant, α-amylase and α-glucosidase inhibitory activities and potential constituents of Canarium tramdenum bark. Molecules 2019, 24, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quan, N.V.; Iuchi, Y.; Anh, L.H.; Hasan, M.; Xuan, T.D. Simple isolation of cordycepin from Cordyceps militaris by dual-normal phase column chromatography and its potential for making kombucha functional products. Separations 2022, 9, 290. [Google Scholar] [CrossRef]
- Un, S.; Quan, N.V.; Anh, L.H.; Lam, V.Q.; Takami, A.; Khanh, T.D.; Xuan, T.D. Effects of in vitro digestion on anti-α-amylase and cytotoxic potentials of Sargassum spp. Molecules 2022, 27, 2307. [Google Scholar] [CrossRef] [PubMed]
Treatments Code | NaCl Concentration (mM) | Germination Time (Day) |
---|---|---|
A1 | 0 | 3 |
A2 | 75 | |
A3 | 150 | |
B1 | 0 | 4 |
B2 | 75 | |
B3 | 150 | |
C1 | 0 | 5 |
C2 | 75 | |
C3 | 150 |
Treatment Code | MA | MB | Tricin | ρ-Coumaric Acid | Ferulic Acid | Cinnamic Acid | Salicylic Acid |
---|---|---|---|---|---|---|---|
A1 | 7.33 ± 0.39 c | 18.68 ± 0.89 c | 44.43 ± 8.92 cd | 46.43 ± 3.37 de | 64.92 ± 3.34 bc | 28.16 ± 0.64 b | 290.27 ± 68.05 bc |
A2 | 2.92 ± 0.06 ef | 9.30 ± 0.09 e | 41.12 ± 5.57 cde | 39.88 ± 0.63 ef | 53.23 ± 1.88 c | 21.86 ± 1.09 c | 349.04 ± 83.3 b |
A3 | 1.93 ± 0.09 f | 7.27 ± 0.12 f | 29.55 ± 2.04 ef | 36.29 ± 1.66 f | 49.05 ± 2.72 c | 22.58 ± 1.10 c | 194.16 ± 14.77 cd |
B1 | 5.68 ± 1.38 cd | 18.88 ± 0.57 c | 33.93 ± 1.38 def | 61.77 ± 1.96 b | 57.22 ± 7.63 bc | 11.82 ± 0.82 d | 88.49 ± 22.89 de |
B2 | 18.94 ± 0.47 a | 41.00 ± 0.51 a | 107.63 ± 6.75 a | 93.77 ± 4.35 a | 139.03 ± 5.16 a | 46.05 ± 0.88 a | 596.26 ± 1.14 a |
B3 | 4.19 ± 0.03 de | 12.70 ± 0.75 d | 25.51 ± 0.94 f | 44.99 ± 1.44 def | 61.98 ± 2.36 bc | 22.01 ± 0.52 c | 52.86 ± 3.2 e |
C1 | 4.90 ± 0.17 de | 11.97 ± 0.05 d | 49.54 ± 0.34 c | 44.48 ± 2.90 def | 52.55 ± 4.77 c | - | - |
C2 | 10.17 ± 0.49 b | 24.79 ± 0.55 b | 65.13 ± 3.06 b | 59.95 ± 5.51 bc | 76.55 ± 9.07 bc | - | - |
C3 | 1.70 ± 0.01f | 7.20 ± 0.29 f | 31.67 ± 0.59 ef | 51.52 ± 3.19 cd | 60.81 ± 5.97 bc | - | - |
ANOVA | |||||||
Period | *** | *** | *** | *** | *** | *** | *** |
Treatment | *** | *** | *** | *** | *** | *** | *** |
Period × Treatment | *** | *** | *** | *** | *** | *** | *** |
MA | MB | ρ-Cou | Tri | Fer | Sal | Cin | DPPH | ABTS | TFC | |
---|---|---|---|---|---|---|---|---|---|---|
MB | 0.984 *** | |||||||||
ρ-Cou | 0.888 *** | 0.915 *** | ||||||||
Tri | 0.940 *** | 0.898 *** | 0.837 *** | |||||||
Fer | 0.908 *** | 0.901 *** | 0.905 *** | 0.886 *** | ||||||
Sal | 0.610 ** | 0.572 ** | 0.497 * | 0.613 ** | 0.653 ** | |||||
Cin | 0.548 ** | 0.526 ** | 0.419 * | 0.458 * | 0.594 ** | 0.900 *** | ||||
DPPH | 0.510 ** | 0.540 ** | 0.355 * | 0.397 * | 0.431 * | 0.577 ** | 0.722 ** | |||
ABTS | 0.053 | 0.043 | 0.063 | 0.003 | 0.259 | 0.18 | 0.347 * | 0.041 | ||
TFC | 0.860 *** | 0.858 *** | 0.851 *** | 0.864 *** | 0.809 *** | 0.304 * | 0.216 | 0.410 * | −0.07 | |
TPC | 0.743 ** | 0.744 ** | 0.733 ** | 0.727 ** | 0.670 ** | 0.068 | −0.029 | 0.09 | −0.113 | 0.861 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, M.; Quan, N.V.; Anh, L.H.; Khanh, T.D.; Xuan, T.D. Salinity Treatments Promote the Accumulations of Momilactones and Phenolic Compounds in Germinated Brown Rice. Foods 2023, 12, 2501. https://doi.org/10.3390/foods12132501
Hasan M, Quan NV, Anh LH, Khanh TD, Xuan TD. Salinity Treatments Promote the Accumulations of Momilactones and Phenolic Compounds in Germinated Brown Rice. Foods. 2023; 12(13):2501. https://doi.org/10.3390/foods12132501
Chicago/Turabian StyleHasan, Mehedi, Nguyen Van Quan, La Hoang Anh, Tran Dang Khanh, and Tran Dang Xuan. 2023. "Salinity Treatments Promote the Accumulations of Momilactones and Phenolic Compounds in Germinated Brown Rice" Foods 12, no. 13: 2501. https://doi.org/10.3390/foods12132501
APA StyleHasan, M., Quan, N. V., Anh, L. H., Khanh, T. D., & Xuan, T. D. (2023). Salinity Treatments Promote the Accumulations of Momilactones and Phenolic Compounds in Germinated Brown Rice. Foods, 12(13), 2501. https://doi.org/10.3390/foods12132501