Comparative Analysis of Volatile Flavor Compounds in Strongly Flavored Baijiu under Two Different Pit Cap Sealing Processes
(This article belongs to the Section Drinks and Liquid Nutrition)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments and Equipment
2.3. Chemicals
2.4. Methods
2.4.1. Calculations of Yield of Strongly Flavored Baijiu
2.4.2. Identification of Volatile Flavor Compounds Using GC-MS
2.4.3. Statistical Analysis
3. Results and Discussion
3.1. Sample Collection
3.2. Yield of Strongly Flavored Baijiu
3.3. Analysis of Volatile Flavor Components in Strongly Flavored Baijiu Produced under Two Types of Pit Sealing Methods
3.3.1. Qualitative Analysis
3.3.2. Further Analysis of Esters, Acids, and Alcohols in the Volatile Flavor Compounds
3.3.3. Quantitative Analysis
No. | Compounds Specific to Mud-Sealing Pits, Steel-Sealing Pits | Volatile Flavor Compounds | Descriptions [36] | |
---|---|---|---|---|
1 | Acetaldehyde | Pungent, ether-like odor, fruity, coffee, wine and green aromas when diluted | ||
2 | 2-Propanone | Pungent, sweet and slightly aromatic | ||
3 | Ethyl methanoate | Fruity aroma | ||
4 | Ethyl acetate | Pineapple scent | ||
5 | Methanol | Pungent odor | ||
6 | 2-Methylbutyraldehyde | Asphyxiating odor | ||
7 | Isovaleraldehyde | Aroma of apple at high dilution, peach at concentration below 10 ppm | ||
8 | 2-Hydroxy-3-pentanone | |||
9 | Ethyl 2-methylpropanoate | |||
10 | Propane,1,1-diethoxy-2-methyl- | |||
11 | 1,1-Diethoxy-pentan | |||
12 | 2-Butanol | The smell of wine | ||
13 | Ethyl butyrate | Sweet and fruity, with notes of pineapple, banana and apple | ||
14 | 1-Propanol | Strong aromas of meat at low concentrations | ||
15 | Acetaldehyde butyl ethyl acetal | |||
16 | Ethyl isovalerate | Apple, mulberry aroma | ||
17 | Isovaleraldehyde diethyl acetal | |||
18 | Butyl acetate | Fruity aroma, diluted with a pineapple, banana-like aroma | ||
19 | Isobutanol | Alcoholic, irritating odor | ||
20 | Isoamyl acetate | |||
21 | 2-Butanol, 3-methyl | |||
22 | Ethyl valerate | Fruity, sourness | ||
23 | 1-Butanol | Jasmine, spicy flavor | ||
24 | Amyl acetate | Fruity scent | ||
25 | Methyl hexanoate | Volatile, etheric aroma, pineapple-like | ||
26 | 3-Methyl-1-butanol | Mixed alcoholic and spicy notes with mellow, etheric and banana aromas. | ||
27 | Butyl butyrate | Apple scent | ||
28 | 2-Hexanol | |||
29 | Ethyl caproate | Fruity aroma | ||
30 | 1-Pentanol | |||
31 | Isoamyl isobutyrate | |||
32 | 3-Hydroxy-2-butanone | Sweet, dairy aroma with a fatty, oily note | ||
33 | Imidazole-4-acetic acid | |||
34 | 1,1,3-Triethoxypropane | |||
35 | Pentanoic acid, butyl ester | Sweet fruity, green aromas | ||
36 | Caproic acid propyl ester | Elegant aromas of pineapple and blackberry undertones | ||
37 | (S)-(+)-2-Heptanol | |||
38 | Ethyl heptanoate | Fruity, green, waxy, Cornish | ||
39 | Ethyl L(-)-lactate | Sweet, tart and fruity aroma | ||
40 | 1-Hexanol | |||
41 | Methyl 2-hydroxyisobutyrate | |||
42 | Hexanoic acid butyl ester | Elegant aromas of pineapple and apple | ||
43 | Hexyl butyrate | Green, waxy, and fruity, with a characteristic aroma of almond fruit | ||
44 | 3-Methyl-2-butanol | |||
45 | Ethyl caprylate | Waxy aroma, musty aroma, fruity apricot-like aroma, creamy aroma, milk aroma, sweet wine aroma | ||
46 | Hexyl acetate | Green, sweet and fruity aromas with hints of appleand banana peel | ||
47 | Ethylidene diacetate | |||
48 | 1-Hydroxy | Fresh, light, oily aroma with wine notes and a spicy flavor | ||
49 | Acetic acid glacial | Irritating odor | ||
50 | Furfural | Special scent | ||
51 | DL leucine ethyl ester | |||
52 | Butyl lactate | Slightly smelly | ||
53 | Ethyl nonanoate | Fruity, waxy, estery and green aromas | ||
54 | Isoamyl lactate | |||
55 | Isobutyric acid | Pungent odor | ||
56 | (S)-(+)-1,2-Propanediol | |||
57 | Hexyl hexanoate | Green, waxy, herbal and tropical fruit and berry aromas. | ||
58 | Octanoic acid, butylester | |||
59 | Propionic acid | Irritating odor | ||
60 | Butyric acid | Putrid sour smell | ||
61 | Ethyl caprate | Aromas of grapes, Cornish wine | ||
62 | Phenylacetaldehyde | Hyacinth aroma | ||
63 | Furfuryl alcohol | Special smell and bitter spicy taste | ||
64 | Isovaleric acid | Pungent sour odor, with the aroma of cheese, dairy products and fruits after dilution | ||
65 | Heptyl formate | Floral and fruity aromas | ||
66 | (2,2-Diethoxyethyl)-Benzene | |||
67 | 2-Ethylbutyric acid | Sour, musty odor | ||
68 | Ethyl phenylacetate | Floral, fruity, powdery, woody, animal, cocoa | ||
69 | Hexyl caprylate | Fruity, green, waxy, ester | ||
70 | Phenethyl acetate | Rose aroma with dense sweet undertones | ||
71 | Ethyl dodecanoate | Gentle fragrance | ||
72 | Hexanoic acid | Sweat, cheese, sourness | ||
73 | Heptanoic acid | Fermented, waxy and fruity aromas | ||
74 | Octanoic acid | Sweat odor | ||
75 | Valeric acid | Sweat, cheese, sourness | ||
76 | Cyclopentadecanolide | |||
77 | 9-Ethyl oxynicotinate | |||
78 | Pentadecanoic acid,ethyl ester | |||
79 | 2-Pentadecanone,6,10,14-trimethyl | |||
80 | 9-Hexadecenoic acid,ethyl ester | |||
81 | 9,9-Diethoxynonanoic acid ethyl ester | |||
82 | Hexadecanoic acid ethyl ester | |||
83 | Ethyl 3-phenylpropionate | |||
84 | Ethyl 12-oxododecanoate | |||
85 | 2-Phenylethanol | Rose fragrance | ||
86 | 9-Hexadecenoic acid | |||
87 | 2-[[(9Z,12Z)-9,12-Octadecadienyl]oxy]ethanol | |||
88 | Heptadecanoic acid,ethyl ester | |||
89 | Methyl (7Z)-7-hexadecenoate | |||
90 | Ethyl myristate | |||
91 | Octadecanoic acid,ethyl ester | |||
92 | Ethyl oleate | Floral, fruity and oily aromas | ||
93 | Ethyl linoleate | |||
94 | 5,8,11,14-Eicosatetraenoicacid | |||
95 | Ethyl alpha-linolenate | |||
96 | Methyl linolenate | |||
97 | Hexadecanoic acid | |||
98 | 2-Butanol | |||
99 | 2-Heptanol | |||
100 | Heptyl heptanoate | |||
101 | Methyl L-pyroglutamate | |||
102 | 3-Isobutyl-2,3,6,7,8,8a-hexahydrOpyrrolopyrazine-1,4-dione | |||
103 | Diethyl succinate | |||
104 | Isobutyl hexanoate | Sweet fruity, green and waxy aromas | ||
105 | Heptanol | Fresh, lightly oily aroma with hints of wine and a spicy flavor | ||
106 | 2-Hexadecanol | |||
107 | 2-Thiapropane | |||
108 | Hexadecanoic acid, butyl ester | |||
109 | Cyclo(Phe-Pro) | |||
110 | 5-Methyl-2-heptanone | |||
111 | Methyl trans linoleic acid ester | |||
112 | L(+)-Lactic acid |
Flavor Substances | Flavor Substance Concentration/(mg·L−1) | |||||
---|---|---|---|---|---|---|
Upper Fermented Layers of Grain | Middle Fermented Layers of Grain | Lower Fermented Layers of Grain | ||||
MSP-U | SSP-U | MSP-M | SSP-M | MSP-L | SSP-L | |
Ethyl methanoate | 235.08 ± 94.66 b | 459.76 ± 160.27 a | 210.18 ± 114.29 a | 402.28 ± 157.81 a | 207.08 ± 122.88 a | 224.87 ± 108.87 a |
Ethyl acetate | 1812.1 ± 223.84 b | 2460.59 ± 223.35 a | 2682.33 ± 1107.97b | 2840.74 ± 295.97 a | 2774.64 ± 1005.81 a | 2795.56 ± 585.39 a |
Ethyl butyrate | 487.92 ± 262.35 a | 593.7 ± 154.07 a | 530.99 ± 440.44 a | 614.29 ± 228.29 a | 620.86 ± 531.88 a | 685.86 ± 251.58 a |
1-Propanol | 487.67 ± 255.75 a | 695.46 ± 330.64 a | 467.59 ± 284.17 a | 1232.77 ± 559.95 a | 612.69 ± 300.90 a | 1482.69 ± 720.01 a |
Isobutanol | 184.2 ± 123.96 a | 175.86 ± 94.34 a | 166.15 ± 121.18 a | 206.52 ± 94.86 a | 179.86 ± 111.97 a | 185.29 ± 72.20 a |
Isoamyl acetate | 15.9 ± 13.64 a | 16.73 ± 15.12 a | 19.91 ± 14.79 a | 23.79 ± 14.68 a | 20.51 ± 13.93 a | 19.25 ± 17.82 a |
Ethyl valerate | 179.43 ± 89.42 a | 235.58 ± 80.32 a | 215.82 ± 136.95 a | 297.52 ± 114.66 a | 333.7 ± 280.75 b | 408.28 ± 143.84 a |
1-Butanol | 496.08 ± 365.32 a | 387.54 ± 250.84 a | 443.94 ± 252.79 a | 647.92 ± 193.42 a | 528.92 ± 194.01 a | 970.99 ± 429.79 a |
3-Methyl-1-butanol | 457.33 ± 230.13 a | 301.37 ± 20.68 a | 418.17 ± 179.38 a | 457.01 ± 109.57 a | 459.55 ± 178.81 a | 451.23 ± 236.07 b |
Ethyl caproate | 2806.73 ± 790.85 a | 2091.37 ± 678.98 a | 2311.41 ± 826.22 a | 2230.49 ± 537.40 a | 2250.15 ± 1245.53 a | 3350.5 ± 706.54 a |
1-Pentanol | 26.92 ± 22.77 a | 14.7 ± 11.53 a | 24.78 ± 15.11 b | 28.79 ± 10.15 a | 30.3 ± 12.57 a | 57.9 ± 23.43 a |
Caproic acid propyl ester | 4.49 ± 3.25 a | 2.72 ± 2.07 a | 4.37 ± 3.27 a | 6.45 ± 3.64 a | 6.88 ± 5.68 a | 11.66 ± 4.72 a |
Ethyl heptanoate | 133.01 ± 70.94 a | 104.32 ± 37.16 a | 106.9 ± 35.15 a | 129.11 ± 49.92 a | 166.33 ± 127.38 a | 250.86 ± 63.04 a |
Ethyl L(-)-lactate | 698.37 ± 166.02 b | 889.84 ± 262.05 a | 821.9 ± 270.35 a | 1041.07 ± 240.47 a | 800.14 ± 262.51 a | 1159.62 ± 572.36 a |
1-Hexanol | 115.9 ± 92.00 a | 48.07 ± 27.13 a | 102.79 ± 66.56 a | 109.19 ± 27.98 a | 117.42 ± 57.81 a | 222.91 ± 32.37 a |
Hexanoic acid butyl ester | 46.65 ± 43.72 a | 13.05 ± 7.96 a | 33.22 ± 19.95 a | 34.55 ± 18.97 a | 55.29 ± 60.12 a | 72.08 ± 27.32 a |
Hexyl butyrate | 20.86 ± 51.43 a | 2.26 ± 2.13 a | 13 ± 30.19 a | 6.12 ± 4.24 a | 10.52 ± 27.23 a | 9.38 ± 4.15 a |
Ethyl caprylate | 70.19 ± 50.17 a | 46.78 ± 24.12 a | 49.82 ± 16.21 b | 65.58 ± 26.25 a | 56.82 ± 19.46 a | 101.9 ± 30.50 a |
Acetic acid glacial | 613.8 ± 253.58 a | 393.59 ± 133.25 a | 569.14 ± 260.46 a | 514.43 ± 140.11 a | 574.06 ± 209.52 a | 723.9 ± 333.80 a |
Propionic acid | 3.61 ± 6.46 a | 2.01 ± 5.01 a | 4.57 ± 5.43 a | 7.83 ± 11.86 a | 6.79 ± 6.36 a | 11.28 ± 16.79 a |
Butyric acid | 197.26 ± 137.90 a | 94.28 ± 48.82 a | 238.03 ± 229.72 a | 166.7 ± 144.17 a | 227.31 ± 180.59 a | 538.13 ± 315.81 a |
Ethyl phenylacetate | 2.66 ± 7.69 a | 0.25 ± 0.32 a | 5.09 ± 16.06 a | 0.22 ± 0.59 a | 1.63 ± 3.07 a | 1.1 ± 1.11 a |
Hexanoic acid | 121.47 ± 76.72 a | 69.2 ± 54.61 a | 115.84 ± 86.22 a | 116.15 ± 115.78 a | 118.64 ± 76.84 a | 508.84 ± 298.93 a |
Heptanoic acid | 3.77 ± 7.54 a | 1.43 ± 2.70 a | 1.79 ± 2.30 a | 2.63 ± 4.66 a | 2.09 ± 2.20 a | 10.35 ± 11.70 a |
Ethyl myristate | 62.89 ± 127.36 a | 8.72 ± 7.65 a | 114.87 ± 301.70 a | 12.06 ± 9.52 a | 64.62 ± 130.19 a | 7.32 ± 6.27 a |
Octanoic acid | 14.36 ± 24.04 a | 6.73 ± 11.15 a | 4.9 ± 6.65 b | 10.62 ± 15.82 a | 5.89 ± 5.70 a | 14.63 ± 15.21 a |
Ethyl hexadecanoate | 94.04 ± 135.03 a | 100.18 ± 103.25 a | 72.32 ± 117.70 a | 291.71 ± 324.12 a | 74.6 ± 109.84 a | 122.58 ± 178.81 a |
Ethyl linoleate | 282.67 ± 219.41 a | 322.93 ± 238.47 a | 255.41 ± 222.77 a | 637.44 ± 467.96 a | 359.73 ± 324.58 a | 312.84 ± 238.30 a |
Flavor Substances | Flavor Substance Concentration (mg·L−1) | |||||
---|---|---|---|---|---|---|
Upper Fermented Layers of Grain | Middle Fermented Layers of Grain | Lower Fermented Layers of Grain | ||||
MSP-U | SSP-U | MSP-M | SSP-M | MSP-L | SSP-L | |
Ethyl methanoate | 71.03 ± 36.90 a | 153.65 ± 78.64 a | 70.44 ± 33.68 a | 114.28 ± 26.39 a | 71.23 ± 29.80 a | 123.05 ± 35.46 a |
Ethyl acetate | 999.44 ± 375.79 b | 2330.36 ± 399.78 a | 1410.46 ± 268.49 a | 1711.45 ± 163.05 a | 1625.14 ± 391.32 a | 2082.55 ± 287.88 a |
Ethyl butyrate | 153.53 ± 108.87 a | 241.96 ± 105.75 a | 151.85 ± 68.44 a | 243 ± 87.13 a | 196.89 ± 93.52 a | 402.86 ± 112.21 a |
1-Propanol | 341.22 ± 193.66 a | 659.21 ± 369.21 a | 340.63 ± 191.69 b | 1016.33 ± 481.07 a | 469.38 ± 177.48 a | 1202.15 ± 432.57 a |
Isobutanol | 96.5 ± 75.83 a | 97.4 ± 51.01 a | 80.28 ± 55.70 a | 111.07 ± 51.01 a | 99.41 ± 61.61 a | 127.57 ± 50.69 a |
Isoamyl acetate | 8.21 ± 6.81 a | 10.46 ± 7.14 a | 7.79 ± 6.11 a | 6.71 ± 4.37 a | 11.69 ± 12.40 a | 7.62 ± 5.19 a |
Ethyl valerate | 74.92 ± 57.86 b | 139.75 ± 60.19 a | 88.31 ± 47.28 a | 144.5 ± 63.79 a | 134.61 ± 64.47 a | 286.59 ± 92.00 a |
1-Butanol | 400.72 ± 320.88 a | 382.45 ± 206.92 a | 387.6 ± 286.48 a | 579.2 ± 155.23 a | 483.57 ± 247.42 a | 855.96 ± 238.19 a |
3-Methyl-1-butanol | 362.9 ± 205.83 a | 312.22 ± 157.90 a | 340.95 ± 192.15 a | 376.7 ± 93.57 a | 368.99 ± 181.08 a | 413.29 ± 136.30 a |
Ethyl caproate | 1666.63 ± 551.24 a | 1345.67 ± 662.87 a | 1875.86 ± 681.75 a | 1269.1 ± 319.82 a | 2231.09 ± 1083.01 a | 2651.09 ± 649.99 a |
1-Pentanol | 21.35 ± 16.66 a | 14.92 ± 10.17 a | 21.18 ± 14.72 a | 29.27 ± 10.18 a | 28.99 ± 13.60 a | 51.33 ± 9.22 a |
Caproic acid propyl ester | 1.51 ± 1.73 a | 1.39 ± 1.12 a | 1.61 ± 1.35 a | 3.73 ± 3.22 a | 3.44 ± 2.56 a | 7.71 ± 2.37 a |
Ethyl heptanoate | 57.95 ± 47.71 a | 56.22 ± 24.48 a | 51.82 ± 21.13 a | 65.99 ± 31.50 a | 92.61 ± 64.03 a | 183.83 ± 72.35 a |
Ethyl L(-)-lactate | 1359.5 ± 452.66b | 1462.16 ± 490.25 a | 1495.8 ± 410.03 a | 1844.52 ± 338.16 a | 1504.32 ± 489.43 b | 2008.2 ± 256.74 a |
1-Hexanol | 117.51 ± 103.84 a | 73.23 ± 43.14 a | 117.26 ± 93.38 a | 144.95 ± 52.89 a | 139.59 ± 94.40 a | 244.64 ± 39.02 a |
Hexanoic acid butyl ester | 15.19 ± 14.05 a | 6.4 ± 3.21 a | 14.02 ± 8.89 a | 16.62 ± 11.87 a | 30.89 ± 31.05 a | 57.74 ± 21.92 a |
Hexyl butyrate | 7.79 ± 15.21 a | 0.57 ± 0.35 a | 5.93 ± 2.31 a | 2.95 ± 2.61 a | 4.76 ± 10.67 a | 3.4 ± 3.29 a |
Ethyl caprylate | 27.34 ± 14.92 a | 24.26 ± 10.92 a | 27.16 ± 16.75 a | 31.31 ± 18.78 a | 43.78 ± 30.29 a | 74.38 ± 28.54 a |
Acetic acid glacial | 554.36 ± 165.33 a | 459.66 ± 149.95 a | 572.94 ± 153.13 b | 650.8 ± 132.11 a | 573.73 ± 114.71 a | 789.84 ± 206.79 a |
Propionic acid | 15.04 ± 16.58 a | 4.65 ± 3.11 a | 19.63 ± 18.06 a | 12.57 ± 15.23 a | 22.35 ± 18.44 a | 10.16 ± 10.78 a |
Butyric acid | 171.91 ± 127.64 a | 70.78 ± 35.55 a | 210.31 ± 166.83 a | 246.54 ± 214.47 a | 335.86 ± 252.56 a | 606.57 ± 211.58 a |
Ethyl phenylacetate | 0.86 ± 1.34 a | 1.06 ± 2.01 a | 1.09 ± 1.65 a | 0.67 ± 1.19 a | 1.3 ± 1.70 a | 0.88 ± 1.30 a |
Hexanoic acid | 131.32 ± 137.83 a | 27.86 ± 36.37 a | 118.3 ± 86.30 a | 166.11 ± 142.20 a | 225.5 ± 213.02 a | 546.31 ± 160.21 a |
Heptanoic acid | 1.94 ± 3.19 a | 0.15 ± 0.52 a | 1.4 ± 1.21 a | 1.91 ± 3.20 a | 4.11 ± 2.65 a | 8.91 ± 7.78 a |
Ethyl myristate | 5.14 ± 3.21 a | 1.8 ± 1.18 a | 6.12 ± 11.60 a | 1.38 ± 1.02 a | 5.03 ± 3.25 a | 1.05 ± 1.16 a |
Octanoic acid | 4.4 ± 63.22 a | 0.74 ± 1.28 a | 2.92 ± 3.27 a | 2.79 ± 3.36 a | 5.04 ± 2.22 a | 10.39 ± 9.08 a |
Ethyl hexadecanoate | 15.65 ± 22.58 a | 25.64 ± 25.66 a | 14.19 ± 18.79 a | 23.22 ± 22.10 a | 16.18 ± 22.82 b | 17.29 ± 18.80 a |
Ethyl linoleate | 37.32 ± 24.67 a | 41.37 ± 23.08 a | 31.42 ± 21.40 a | 45.15 ± 16.51 a | 35.46 ± 23.85 a | 40.24 ± 16.88 a |
Flavor Substances | Flavor Substance Concentration (mg·L−1) | |||||
---|---|---|---|---|---|---|
Upper Fermented Layers of Grain | Middle Fermented Layers of Grain | Lower Fermented Layers of Grain | ||||
MSP-U | SSP-U | MSP-M | SSP-M | MSP-L | SSP-L | |
Ethyl methanoate | 16.09 ± 16.37 a | 15.73 ± 12.02 a | 16.75 ± 12.32 a | 21.62 ± 19.52 a | 19.31 ± 16.24 a | 23.79 ± 21.03 a |
Ethyl acetate | 226.64 ± 99.49 b | 421.03 ± 139.23 a | 522 ± 193.52 a | 481.92 ± 96.07 a | 645.09 ± 202.73 a | 672.14 ± 131.17 a |
Ethyl butyrate | 48.52 ± 28.48 a | 42.49 ± 27.37 a | 55 ± 26.82 a | 77.64 ± 41.53 a | 75.72 ± 37.57 a | 156.69 ± 64.26 a |
1-Propanol | 213.58 ± 113.31 a | 404.09 ± 193.22 a | 193.76 ± 115.14 a | 635.73 ± 320.90 a | 285.78 ± 117.20 a | 877.9 ± 404.97 a |
Isobutanol | 39.38 ± 35.98 a | 35.55 ± 22.26 a | 26.29 ± 9.03 a | 40.5 ± 22.06 a | 43.27 ± 34.75 a | 59.81 ± 30.84 a |
Isoamyl acetate | 2.65 ± 2.81 a | 2.77 ± 3.22 a | 2.62 ± 1.32 b | 3.94 ± 3.00 a | 3.04 ± 2.65 a | 4.38 ± 3.44 a |
Ethyl valerate | 32.36 ± 24.54 a | 38.41 ± 24.32 a | 44.17 ± 26.56 a | 55.62 ± 27.94 a | 60.19 ± 30.55 b | 122.29 ± 47.98 a |
1-Butanol | 249.67 ± 209.21 a | 250.4 ± 130.12 a | 238.58 ± 190.40 a | 356.75 ± 113.81 a | 306.03 ± 188.72 a | 541.3 ± 184.70 a |
3-Methyl-1-butanol | 199.22 ± 125.42 a | 195.4 ± 57.62 a | 190.19 ± 128.97 a | 208.92 ± 63.11 a | 214.53 ± 125.64 a | 247.12 ± 73.97 a |
Ethyl caproate | 905.53 ± 346.18 a | 484.1 ± 149.54 a | 1012.77 ± 281.10 a | 648.4 ± 220.26 a | 1265.07 ± 541.02 a | 1570.82 ± 365.85 a |
1-Pentanol | 13.74 ± 10.48 a | 13.18 ± 5.02 a | 13.79 ± 10.08 b | 19.28 ± 6.20 a | 19.5 ± 10.88 a | 37.15 ± 7.31 a |
Caproic acid propyl ester | 0.73 ± 1.08 a | 0.53 ± 0.24 a | 0.74 ± 0.54 a | 1.49 ± 1.33 a | 1.66 ± 1.33 a | 4.17 ± 1.75 a |
Ethyl heptanoate | 32.51 ± 27.14 a | 26.38 ± 11.54 a | 30.95 ± 13.82 a | 34.45 ± 12.33 a | 59.17 ± 45.12 a | 115.49 ± 47.20 a |
Ethyl L(-)-lactate | 2648.81 ± 1229.76 a | 2940.37 ± 628.09 a | 2842.17 ± 933.37 a | 2920.39 ± 552.66 a | 2521.66 ± 864.35 a | 2616.47 ± 383.57 a |
1-Hexanol | 92.78 ± 81.72 a | 91.24 ± 33.48 b | 93.33 ± 77.25 b | 116.73 ± 31.10 a | 117.48 ± 92.38 a | 192.08 ± 65.62 a |
Hexanoic acid butyl ester | 13.12 ± 13.55 a | 4.32 ± 2.46 a | 11.95 ± 7.32 a | 11.38 ± 5.00 a | 22.94 ± 20.95 a | 41.43 ± 12.75 a |
Hexyl butyrate | 23.36 ± 16.25 a | 0 ± 0.00 a | 19.11 ± 8.65 a | 0.43 ± 1.15 a | 17.32 ± 10.25 a | 1.82 ± 1.58 a |
Ethyl caprylate | 29.04 ± 26.32 a | 17.01 ± 6.20 a | 27.73 ± 21.94 a | 20.69 ± 8.05 a | 56.31 ± 36.21 a | 55.46 ± 20.42 a |
Acetic acid glacial | 734.36 ± 241.57 a | 693.69 ± 142.03 a | 808.87 ± 257.65 a | 899.4 ± 228.82 a | 745.66 ± 218.01 a | 958.74 ± 222.63 a |
Propionic acid | 24.52 ± 12.32 a | 11.03 ± 25.44 a | 24.99 ± 20.21 a | 17.77 ± 35.31 a | 26.54 ± 21.02 a | 24.74 ± 19.67 a |
Butyric acid | 347.55 ± 272.00 a | 172.21 ± 59.24 a | 454.97 ± 437.84 a | 401.59 ± 319.99 a | 625.4 ± 236.27 a | 848.57 ± 237.99 a |
Ethyl phenylacetate | 2.3 ± 2.95 a | 1.51 ± 1.20 a | 2.51 ± 1.35 a | 1.29 ± 1.02 a | 2.31 ± 2.01 a | 1.67 ± 1.06 a |
Hexanoic acid | 235.35 ± 210.98 a | 112.99 ± 41.17 a | 253.99 ± 175.17 a | 259.1 ± 177.62 a | 345.06 ± 269.05 a | 779.06 ± 172.83 a |
Heptanoic acid | 4.85 ± 4.25 a | 1.35 ± 1.20 a | 3.84 ± 3.59 a | 2.89 ± 2.70 a | 7.51 ± 11.84 a | 13.04 ± 9.55 a |
Ethyl myristate | 6.88 ± 2.52 a | 2.32 ± 2.01 a | 8.38 ± 2.68 a | 2.32 ± 1.12 a | 6.95 ± 2.68 a | 1.74 ± 0.89 a |
Octanoic acid | 9.12 ± 5.21 a | 1.63 ± 1.00 a | 7.02 ± 7.28 a | 3.59 ± 2.21 a | 9.91 ± 8.47 a | 15.97 ± 12.25 a |
Ethyl hexadecanoate | 22.01 ± 2.23 b | 30.1 ± 25.61 a | 28.14 ± 33.73 a | 29.49 ± 25.03 a | 25.69 ± 19.66 b | 33.51 ± 30.27 a |
Ethyl linoleate | 37.18 ± 21.02 a | 42.76 ± 6.72 a | 42.7 ± 30.88 a | 44.43 ± 7.46 a | 40.53 ± 28.81 a | 47.06 ± 17.54 a |
3.4. Differentiation of Strongly Flavored Baijiu with Two Different Pit Sealing Methods by HCA
3.5. Analysis of PCA Scores for Two Types of Pit Sealing Methods
F1 = 0.299X1 + 0.293X2 + 0.287X3 + 0.282X4 + 0.268X5 + 0.237X6 + 0.234X7 + 0.234X8 + 0.233X9 + 0.226X10 + 0.215X11 + 0.212X12 + 0.202X13 + 0.202X14 + 0.190X15 + 0.086X16 − 0.006X17 + 0.123X18 − 0.052X19 − 0.044X20 + 0.087X21 − 0.022X22 + 0.137X23 + 0.119X24 + 0.161X25 + 0.068X26 − 0.090X27 − 0.060X28 |
F2 = 0.009X1 + 0.092X2 + 0.147X3 − 0.077X4 − 0.194X5 − 0.220X6 + 0.167X7 − 0.022X8 + 0.120X9 + 0.206X10 + 0.049X11 − 0.197X12 + 0.083X13 − 0.195X14 − 0.172X15 + 0.399X16 + 0.314X17 + 0.293X18 + 0.283X19 + 0.096X20 + 0.023X21 + 0.028X22 + 0.261X23 − 0.095X24 − 0.169X25 + 0.227X26 + 0.236X27 + 0.175X28 |
F3 = 0.145X1 + 0.097X2 + 0.051X3 + 0.143X4 + 0.070X5 + 0.096X6 + 0.213X7 + 0.132X8 − 0.238X9 − 0.203X10 − 0.108X11 − 0.050X12 − 0.007X13 + 0.041X14 − 0.261X15 − 0.063X16 + 0.140X17 + 0.051X18 − 0.021X19 + 0.445X20 + 0.430X21 + 0.382X22 − 0.309X23 − 0.142X24 − 0.066X25 − 0.100X26 + 0.038X27 + 0.017X28 |
F4 = −0.138X1 − 0.007X2 − 0.040X3 − 0.174X4 − 0.070X5 + 0.008X6 + 0.037X7 + 0.133X8 + 0.018X9 − 0.029X10 + 0.018X11 − 0.345X12 + 0.096X13 − 0.126X14 − 0.079X15 − 0.059X16 + 0.121X17 − 0.030X18 − 0.227X19 + 0.088X20 + 0.030X21 + 0.202X22 + 0.040X23 + 0.584X24 + 0.431X25 + 0.284X26 − 0.200X27 + 0.073X28 |
F5 = −0.005X1 + 0.030X2 − 0.005X3 − 0.132X4 − 0.074X5 − 0.113X6 + 0.127X7 − 0.169X8 + 0.321X9 + 0.253X10 + 0.060X11 − 0.085X12 + 0.131X13 − 0.090X14 + 0.188X15 − 0.229X16 − 0.001X17 − 0.267X18 − 0.313X19 + 0.154X20 + 0.103X21 + 0.293X22 + 0.252X23 + 0.054X24 − 0.226X25 − 0.42X26 + 0.203X27 + 0.007X28 |
F6 = 0.065X1 + 0.006X2 + 0.002X3 + 0.012X4 + 0.066X5 + 0.019X6 − 0.058X7 − 0.275X8 − 0.060X9 − 0.072X10 + 0.078X11 + 0.001X12 − 0.154X13 + 0.273X14 + 0.087X15 − 0.009X16 − 0.174X17 + 0.186X18 + 0.120X19 + 0.030X20 + 0.077X21 − 0.040X22 − 0.063X23 + 0.280X24 + 0.266X25 − 0.160X26 + 0.514X27 + 0.511X28 |
F7 = 0.001X1 − 0.141X2 − 0.014X3 + 0.157X4 − 0.005X5 + 0.098X6 − 0.229X7 + 0.084X8 + 0.040X9 + 0.067X10 + 0.297X11 + 0.181X12 + 0.168X13 − 0.032X14 − 0.066X15 − 0.066X16 + 0.368X17 − 0.354X18 + 0.376X19 + 0.082X20 − 0.383X21 + 0.312X22 − 0.145X23 − 0.011X24 + 0.154X25 − 0.071X26 + 0.094X27 + 0.095X28 |
3.6. Discriminant Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, P.; Fan, W.; Xu, Y. Determination of Chinese Baijiu from different geographic origins by combination of mass spectrometry and chemometric technique. Food Control. 2014, 35, 153–158. [Google Scholar] [CrossRef]
- McGovern, P.E.; Zhang, J.; Tang, J.; Zhang, Z.; Hall, G.R.; Moreau, R.A.; Nũnez, A.; Butrym, E.D.; Richards, M.P.; Wang, C.; et al. Fermented beverages of pre- and proto-historic China. Proc. Natl. Acad. Sci. USA 2004, 101, 17593–17598. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.W.; Han, B.Z. Baijiu, Chinese liquor: History, classification and manufacture. J. Ethn. Foods 2016, 3, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Qian, M.C. Identification of aroma compounds in Chinese ‘Yanghe Daqu’ Baijiu by normal phase chromatography fractionation followed by gas chromatography olfactometry. Flavor Fragr. J. 2006, 21, 333–342. [Google Scholar] [CrossRef]
- He, G.; Huang, J.; Wu, C.; Jin, Y.; Zhou, R. Bioturbation effect of fortified Daqu on microbial community and flavor metabolite in Chinese strong-flavor liquor brewing microecosystem. Food Res. Int. 2019, 129, 108851. [Google Scholar] [CrossRef]
- Avalos, J.L.; Fink, G.R.; Stephanopoulos, G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat. Biotechnol. 2013, 31, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Hou, C.; Bian, M.; Shen, C.; Zhang, S.; Huo, D.; Ma, Y. Characterization of microbial community profiles associated with quality of Chinese strong-aromatic liquor through metagenomics. J. Appl. Microbiol. 2020, 127, 750–762. [Google Scholar] [CrossRef]
- Belitz, H.D.; Grosch, W.; Schieberle, P. Food Chemistry; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Marilley, L.; Casey, M.G. Flavours of cheese prod-ucts: Metabolic pathways, analytical tools and identification of producing strains. Int. J. Food Microbiol. 2004, 90, 139–159. [Google Scholar] [CrossRef]
- Wu, J.; Liu, P.; Fan, Y.; Bao, H.; Du, G.; Zhou, J.; Chen, J. Multivariate modular metabolic engineering of Escherichia colito produce resveratrol from L-tyrosine. J. Bio-Technol. 2013, 167, 404–411. [Google Scholar]
- Liu, S. Spatial heterogeneity of prokaryotic microorganism communities in Luzhou- flavour liquor pit mud. In Food Science; Xihua University: Chengdu, China, 2013; p. 41. [Google Scholar]
- Shi, S.; Zhang, L.; Wu, Z.Y.; Zhang, W.X.; Deng, Y.; Zhong, F.D.; Li, J.M. Analysis of the fungi community in multiple-and single grains Zaopei from a Luzhou-flavor liquor distillery in western China. World J. Microbiol. Biotechnol. 2011, 27, 1869–1874. [Google Scholar] [CrossRef]
- He, G.; Huang, J.; Zhou, R.; Wu, C.; Jin, Y. Effect of fortified Daqu on the microbial community and flavor in Chinese strong flavor Baijiu brewing process. Front. Microbiol. 2019, 10, 56. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Liu, X.; Tu, F.; Wu, X.; Chen, Y.; Ren, J. A Method of Sealing Cellar with Solid Brewing with Sealing Clay. CN 102757877A, 31 October 2012. (In Chinese). [Google Scholar]
- Wang, W.; Fan, G.; Li, X.; Fu, Z.; Liang, X.; Sun, B. Application of wickerhamomyces anomalus in simulated solid-state fermentation for Baijiu production: Changes of microbial community structure and flavor metabolism. Front. Microbiol. 2020, 11, 598758. [Google Scholar] [CrossRef]
- Wang, H.; Li, G.; Chen, X.; Chu, H. A Multi-Layer Composite Sealing Device for Northern Cellars. CN 210458116U, 5 May 2020. (In Chinese). [Google Scholar]
- Zhang, L. Sealed Fermentation Device and Sealing Method for Cubic Cellar. Luzhou Pinchuang Technology, Co.: Luzhou, China, 2015. (In Chinese) [Google Scholar]
- He, F.; Duan, J.; Zhao, J.; Li, H.; Sun, J.; Huang, M.; Sun, B. Different distillation stages Baijiu classification by temperature-programmed headspace-gas chromatography-ion mobility spectrometry and gas chromatography-olfactometrymass spectrometry combined with chemometric strategies. Food Chem. 2021, 365, 130430. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Fan, Z.; Du, A.; Li, Y.; Zhang, R.; Shi, Q.; Shi, L.; Chu, X. Recent advances in Baijiu analysis by chromatography based technology—A review. Food Chem. 2020, 324, 126899. [Google Scholar] [CrossRef]
- Li, H.; Qin, D.; Wu, Z.; Sun, B.; Sun, X.; Huang, M.; Sun, J.; Zheng, F. Characterization of key aroma compounds in Chinese Guojing sesame-flavor Baijiu by means of molecular sensory science. Food Chem. 2019, 284, 100–107. [Google Scholar] [CrossRef]
- Song, X.; Zhu, L.; Wang, X.; Zheng, F.; Zhao, M.; Liu, Y.; Li, H.; Zhang, F.; Zhang, Y.; Chen, F. Characterization of key aroma-active sulfur-containing compounds in Chinese Laobaigan Baijiu by gas chromatography-olfactometry and comprehensive twodimensional gas chromatography coupled with sulfur chemiluminescence detection. Food Chem. 2019, 297, 124959. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Jing, S.; Zhu, L.; Ma, C.; Song, T.; Wu, J.; Zhao, Q.; Zheng, F.; Zhao, M.; Chen, F. Untargeted and targeted metabolomics strategy for the classification of strong aroma-type baijiu (liquor) according to geographical origin using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Food Chem. 2020, 314, 126098. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wang, G.; Zhu, L.; Zheng, F.; Ji, J.; Sun, J.; Li, H.; Huang, M.; Zhao, Q.; Zhao, M.; et al. Comparison of two cooked vegetable aroma compounds, dimethyl disulfide and methional, in Chinese Baijiu by a sensory-guided approach and chemometrics. LWT 2021, 146, 111427. [Google Scholar] [CrossRef]
- Wu, Z.; Qin, D.; Duan, J.; Li, H.; Sun, J.; Huang, M.; Sun, B. Characterization of benzenemethanethiol in sesame-flavor baijiu by high-performance liquid chromatography-mass spectrometry and sensory science. Food Chem. 2021, 364, 130345. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, X.; Song, X.; Zheng, F.; Li, H.; Chen, F.; Zhang, Y.; Zhang, F. Evolution of the key odorants and aroma profiles in traditional Laowuzeng baijiu during its oneyear ageing. Food Chem. 2020, 310, 125898. [Google Scholar] [CrossRef]
- Fan, Q.; Wang, X.; Zhao, Y.; Zheng, F.; Li, H.; Zhang, F.; Chen, F. Characterization of key aroma compounds in Laobaigan Chinese Baijiu by GC× GC-TOF/MS and means of molecular sensory science. Flavor Fragr. J. 2019, 34, 514–525. [Google Scholar] [CrossRef]
- Liu, H.; Sun, B. Effect of fermentation processing on the flavor of Baijiu. J. Agric. Food Chem. 2018, 66, 5425–5432. [Google Scholar] [CrossRef]
- China Foods Limited Fermentation Industry Research Institute; Luzhou Laojiao Group Co., Ltd. Method of Analysis for Chinese Spirits, 2nd ed.; General Administration of Quality Supervision, Inspection and Quarantine: Beijing, China, 2007; pp. 1–34.
- Chemicalbook. Available online: https://www.chemicalbook.com/ProductIndex.aspx (accessed on 6 May 2023).
- Xiao, X.; Xu, K.; Gao, Z.-H.; Zhu, Z.-H.; Ye, C.; Zhao, B. Kuiling Ding Biomimetic asymmetric catalysis. Sci. China Chem. 2023, 66, 1553–1633. [Google Scholar] [CrossRef]
- Mo, X.; Xu, Y.; Fan, W. Characterization of aroma compounds in Chinese rice wine Qu by solvent-assisted flavor evaporation and headspace solid-phase microextraction. J. Agric. Food Chem. 2010, 58, 2462–2469. [Google Scholar] [CrossRef]
- Xu, M.L.; Yu, Y.; Ramaswamy, H.S.; Zhu, S.M. Characterization of Chinese liquor aroma components during aging process and liquor age discrimination using gas chromatography combined with multivariable statistics. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cabaroglu, T.; Yilmaztekin, M. Methanol and major volatile compounds of Turkish Raki and effect of distillate source. J. Inst. Brew. 2011, 117, 98–105. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Ancín-Azpilicueta, C. Effect of the addition of different quantities of amino acids to nitrogen-deficient must on the formation of esters, alcohols, and acids during wine alcoholic fermentation. LWT-Food Sci. Technol. 2008, 41, 501–510. [Google Scholar] [CrossRef]
- Zhuang, M. The production mechanism of the fragrance in the Chinese spirit & the operation of the spirit brewing. Liquor. Mak. 2007, 34, 109–113. [Google Scholar]
- Niu, Y.; Wang, P.; Xiao, Z.; Zhu, J.; Sun, X.; Wang, R. Evaluation of the perceptual interaction among ester aroma compounds in cherry wines by GC-MS, GC-O, odor threshold and sensory analysis: An insight at the molecular level. Food Chem. 2019, 275, 143–153. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Hou, C.; Huo, D.; Shen, C.; Luo, X.; Yang, M.; Fa, H. Development of a colorimetric sensor array for the discrimination of Chinese Baijiu based on selected volatile markers determined by GC-MS. J. Agric. Food Chem. 2014, 62, 10422–10430. [Google Scholar] [CrossRef]
- Versari, A.; Laurie, V.F.; Ricci, A.; Laghi, L.; Parpinello, G.P. Progress in authentication, typification and traceability of grapes and wines by chemometric approaches. Food Res. Int. 2014, 60, 2–18. [Google Scholar] [CrossRef]
- Ma, Y.; Huo, D.Q.; Qin, H.; Shen, C.H.; Hou, C.J. Classification of aroma styles and geographic origins of Chinese Baijiu using chemometrics based on fluorescence spectroscopy. J. Appl. Spectrosc. 2017, 84, 361–368. [Google Scholar] [CrossRef]
- Zheng, J.; Liang, R.; Zhang, L.Q. Characterization of microbial communities in strong aromatic liquor fermentation pit muds of different ages assessed by combined DGGE and PLFA analyzes. Food Res. Int. 2013, 54, 660–666. [Google Scholar] [CrossRef]
Fermented Grains Layer | Pit Sealing Method | Ethyl Acetate (mg·L−1) | Ethyl Caproate (mg·L−1) | Ethyl Lactate (mg·L−1) | Ethyl Butyrate (mg·L−1) |
---|---|---|---|---|---|
Upper fermented grains | mud | 1012.73 ± 5.86 b | 1792.96 ± 6.95 a | 1568.89 ± 9.31 a | 229.99 ± 14.32 b |
steel | 1737.33 ± 9.55 a | 1307.05 ± 8.20 a | 1764.12 ± 10.11 a | 292.72 ± 12.01 a | |
Middle fermented grains | mud | 1538.26 ± 10.21 a | 1733.35 ± 19.22 a | 1719.96 ± 15.20 a | 245.95 ± 8.95 a |
steel | 1678.04 ± 15.36 a | 1382.66 ± 14.32 b | 1935.33 ± 13.01 a | 311.64 ± 6.34 a | |
Lower fermented grains | mud | 1681.62 ± 7.21 a | 1915.44 ± 7.21 a | 1608.71 ± 16.62 a | 297.82 ± 7.41 a |
steel | 1850.08 ± 10.22 a | 2524.14 ± 6.74 a | 1928.10 ± 9.89 a | 415.14 ± 8.16 a |
Fermented Grains Layer | Pit Sealing Method | Acetic Acid (mg·L−1) | Butyrate (mg·L−1) | Caproic Acid (mg·L−1) |
---|---|---|---|---|
Upper fermented grains | mud | 634.17 ± 7.25 a | 238.91 ± 3.21 a | 162.71 ± 7.20 a |
steel | 515.65 ± 6.68 a | 112.42 ± 10.35 a | 70.02 ± 9.51 b | |
Middle fermented grains | mud | 650.32 ± 8.69 a | 301.10 ± 12.27 a | 162.71 ± 4.32 a |
steel | 688.21 ± 10.21 a | 271.61 ± 6.63 a | 180.45 ± 5.88 a | |
Lower fermented grains | mud | 631.15 ± 15.64 a | 396.19 ± 7.86 a | 229.73 ± 11.02 a |
steel | 824.16 ± 9.44 a | 664.42 ± 3.28 a | 611.40 ± 12.11 a |
Components | Eigenvalue | Percent Variance | Cumulative Contribution (%) |
---|---|---|---|
PC1 | 8.521 | 30.433 | 30.433 |
PC2 | 4.323 | 15.441 | 45.874 |
PC3 | 3.226 | 11.52 | 57.394 |
PC4 | 1.526 | 5.452 | 62.845 |
PC5 | 1.396 | 4.984 | 67.829 |
PC6 | 1.236 | 4.413 | 72.242 |
PC7 | 1.046 | 3.737 | 75.979 |
Quantitative Compound | F1 | F2 | F3 | F4 | F5 | F6 | F7 |
---|---|---|---|---|---|---|---|
Ethyl valerate (X1) | 0.299 | 0.009 | 0.145 | −0.138 | −0.005 | 0.065 | 0.001 |
Ethyl heptanoate (X2) | 0.293 | 0.092 | 0.097 | −0.007 | 0.03 | 0.006 | −0.141 |
Caproic acid propyl ester (X3) | 0.287 | 0.147 | 0.051 | −0.04 | −0.005 | 0.002 | −0.014 |
Ethyl butyrate (X4) | 0.282 | −0.077 | 0.143 | −0.174 | −0.132 | 0.012 | 0.157 |
Ethyl acetate (X5) | 0.268 | −0.194 | 0.07 | −0.07 | −0.074 | 0.066 | −0.005 |
Ethyl methanoate (X6) | 0.237 | −0.22 | 0.096 | 0.008 | −0.113 | 0.019 | 0.098 |
Hexanoic acid butyl ester (X7) | 0.234 | 0.167 | 0.213 | 0.037 | 0.127 | −0.058 | −0.229 |
Ethyl caproate (X8) | 0.234 | −0.022 | 0.132 | 0.133 | −0.169 | −0.275 | 0.084 |
1-Butanol (X9) | 0.233 | 0.12 | −0.238 | 0.018 | 0.321 | −0.06 | 0.04 |
1-Pentanol (X10) | 0.226 | 0.206 | −0.203 | −0.029 | 0.253 | −0.072 | 0.067 |
1-Propanol (X11) | 0.215 | 0.049 | −0.108 | 0.018 | 0.06 | 0.078 | 0.297 |
Isobutanol (X12) | 0.212 | −0.197 | −0.05 | −0.345 | −0.085 | 0.001 | 0.181 |
Ethyl caprylate (X13) | 0.202 | 0.083 | −0.007 | 0.096 | 0.131 | −0.154 | 0.168 |
Isoamyl acetate (X14) | 0.202 | −0.195 | 0.041 | −0.126 | −0.09 | 0.273 | −0.032 |
3-Methyl-1-butanol (X15) | 0.19 | −0.172 | −0.261 | −0.079 | 0.188 | 0.087 | −0.066 |
Hexanoic acid (X16) | 0.086 | 0.399 | −0.063 | −0.059 | −0.229 | −0.009 | −0.066 |
Butyric acid (X17) | −0.006 | 0.314 | 0.14 | 0.121 | −0.001 | −0.174 | 0.368 |
Heptanoic acid (X18) | 0.123 | 0.293 | 0.051 | −0.03 | −0.267 | 0.186 | −0.354 |
Acetic acid glacial (X19) | −0.052 | 0.283 | −0.021 | −0.227 | −0.313 | 0.12 | 0.376 |
Ethyl phenylacetate (X20) | −0.044 | 0.096 | 0.445 | 0.088 | 0.154 | 0.03 | 0.082 |
Ethyl myristate (X21) | 0.087 | 0.023 | 0.43 | 0.03 | 0.103 | 0.077 | −0.383 |
Hexyl butyrate (X22) | −0.022 | 0.028 | 0.382 | 0.202 | 0.293 | −0.04 | 0.312 |
1-Hexanol (X23) | 0.137 | 0.261 | −0.309 | 0.04 | 0.252 | −0.063 | −0.145 |
Ethyl palmitate (X24) | 0.119 | −0.095 | −0.142 | 0.584 | 0.054 | 0.28 | −0.011 |
Ethyl linoleate (X25) | 0.161 | −0.169 | −0.066 | 0.431 | −0.226 | 0.266 | 0.154 |
Octanoic acid (X26) | 0.068 | 0.227 | −0.1 | 0.284 | −0.424 | −0.16 | −0.071 |
Ethyl L(-)-lactate (X27) | −0.09 | 0.236 | 0.038 | −0.2 | 0.203 | 0.514 | 0.094 |
Propionic acid (X28) | −0.06 | 0.175 | 0.017 | 0.073 | 0.007 | 0.511 | 0.095 |
Samples | Score |
---|---|
Strong flavor Baijiu made from the upper grains of the mud-sealing pit | 0.624 ± 0.117 b |
Strong flavor Baijiu made from the middle grains of the mud-sealing pit | |
Strong flavor Baijiu made from the lower grains of the mud-sealing pit | |
Strong flavor Baijiu made from the upper grains of the steel-sealing pit | 0.632 ± 0.052 a |
Strong flavor Baijiu made from the middle grains of the steel-sealing pit | |
Strong flavor Baijiu made from the lower grains of the steel-sealing pit |
Samples | Results of Prediction | |||||||
---|---|---|---|---|---|---|---|---|
MSP-U1st | SSP-U1st | MSP-U2nd | SSP-U2nd | MSP-U3rd | SSP-U3rd | Total | ||
Original count | MSP-U1st | 21 | 21 | |||||
SSP-U1st | 15 | 15 | ||||||
MSP-U2nd | 21 | 21 | ||||||
SSP-U2nd | 15 | 15 | ||||||
MSP-U3rd | 21 | 21 | ||||||
SSP-U3rd | 15 | 15 | ||||||
Proportion (%) | MSP-U1st | 100 | 100 | |||||
SSP-U1st | 100 | 100 | ||||||
MSP-U2nd | 100 | 100 | ||||||
SSP-U2nd | 100 | 100 | ||||||
MSP-U3rd | 100 | 100 | ||||||
SSP-U3rd | 100 | 100 |
Samples | Results of Prediction | |||||||
---|---|---|---|---|---|---|---|---|
MSP-M1st | SSP-M1st | MSP-M2nd | SSP-M2nd | MSP-M3rd | SSP-M3rd | Total | ||
Original count | MSP-M1st | 18 | 18 | |||||
SSP-M1st | 15 | 15 | ||||||
MSP-M2nd | 24 | 24 | ||||||
SSP-M2nd | 15 | 15 | ||||||
MSP-M3rd | 21 | 21 | ||||||
SSP-M3rd | 15 | 15 | ||||||
Proportion (%) | MSP-M1st | 100 | 100 | |||||
SSP-M1st | 100 | 100 | ||||||
MSP-M2nd | 100 | 100 | ||||||
SSP-M2nd | 100 | 100 | ||||||
MSP-M3rd | 100 | 100 | ||||||
SSP-M3rd | 100 | 100 |
Samples | Results of Prediction | |||||||
---|---|---|---|---|---|---|---|---|
MSP-L1st | SSP-L1st | MSP-L2nd | SSP-L2nd | MSP-L3rd | SSP-L3rd | Total | ||
Original count | MSP-L1st | 21 | 21 | |||||
SSP-L1st | 15 | 15 | ||||||
MSP-L2nd | 21 | 21 | ||||||
SSP-L2nd | 15 | 15 | ||||||
MSP-L3rd | 15 | 12 | ||||||
SSP-L3rd | 21 | 21 | ||||||
Proportion (%) | MSP-L1st | 100 | 100 | |||||
SSP-L1st | 100 | 100 | ||||||
MSP-L2nd | 100 | 100 | ||||||
SSP-L2nd | 100 | 100 | ||||||
MSP-L3rd | 100 | 100 | ||||||
SSP-L3rd | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Fan, M.; Xu, Y.; Zhang, L.; Qian, Y.; Tang, Y.; Li, J.; Zhao, J.; Yuan, S.; Liu, J. Comparative Analysis of Volatile Flavor Compounds in Strongly Flavored Baijiu under Two Different Pit Cap Sealing Processes. Foods 2023, 12, 2579. https://doi.org/10.3390/foods12132579
Li L, Fan M, Xu Y, Zhang L, Qian Y, Tang Y, Li J, Zhao J, Yuan S, Liu J. Comparative Analysis of Volatile Flavor Compounds in Strongly Flavored Baijiu under Two Different Pit Cap Sealing Processes. Foods. 2023; 12(13):2579. https://doi.org/10.3390/foods12132579
Chicago/Turabian StyleLi, Lingshan, Mei Fan, Yan Xu, Liang Zhang, Yu Qian, Yongqing Tang, Jinsong Li, Jinsong Zhao, Siqi Yuan, and Jun Liu. 2023. "Comparative Analysis of Volatile Flavor Compounds in Strongly Flavored Baijiu under Two Different Pit Cap Sealing Processes" Foods 12, no. 13: 2579. https://doi.org/10.3390/foods12132579
APA StyleLi, L., Fan, M., Xu, Y., Zhang, L., Qian, Y., Tang, Y., Li, J., Zhao, J., Yuan, S., & Liu, J. (2023). Comparative Analysis of Volatile Flavor Compounds in Strongly Flavored Baijiu under Two Different Pit Cap Sealing Processes. Foods, 12(13), 2579. https://doi.org/10.3390/foods12132579