Are the Blueberries We Buy Good Quality? Comparative Study of Berries Purchased from Different Outlets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Quality Assessments
2.3. Mechanical Properties
2.4. Fungi Identification
2.5. Total Phenolic and Total Anthocyanins Content
2.6. Antioxidant Activity (ABTS and FRAP)
2.7. Identification and Quantification of Phenolic Compounds Using HPLC-QTOF
2.8. Statistical Analysis
3. Results and Discussion
3.1. Quality Assessment of Blueberries
3.2. Mechanical Parameters
3.3. Fungi Identification
3.4. Total Phenolic and Total Anthocyanins Content
3.5. Antioxidant Activity
3.6. Identification and Quantification of Phenolic Compounds Using HPLC-QTOF
3.7. Categorical Principal Components Analysis (CATPCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT Food and Agriculture Organization of the United Nations. Production: Crops. 2019. Available online: http://faostat.fao.org (accessed on 8 September 2021).
- Rodríguez-Daza, M.C.; Roquim, M.; Dudonné, S.; Pilon, G.; Levy, E.; Marette, A.; Roy, D.; Desjardins, Y. Berry Polyphenols and Fibers Modulate Distinct Microbial Metabolic Functions and Gut Microbiota Enterotype-Like Clustering in Obese Mice. Front. Microbiol. 2020, 11, 2032. [Google Scholar] [CrossRef]
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. 2020, 11, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Horvitz, S. Postharvest Handling of Berries. In Postharvest Handling; Kahramanoglu, I., Ed.; IntechOpen, Ltd.: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- De Pascual-Teresa, S.; Sanchez-Ballesta, M.T. Anthocyanins: From Plant to Health. Phytochem. Rev. 2008, 7, 281–299. [Google Scholar] [CrossRef]
- Castrejón, A.D.R.; Eichholz, I.; Rohn, S.; Kroh, L.W.; Huyskens-Keil, S. Phenolic Profile and Antioxidant Activity of Highbush Blueberry (Vaccinium corymbosum L.) during Fruit Maturation and Ripening. Food Chem. 2008, 109, 564–572. [Google Scholar] [CrossRef]
- Dai, H.; Ji, S.; Zhou, X.; Wei, B.; Cheng, S.; Zhang, F.; Wang, S.; Zhou, Q. Postharvest Effects of Sodium Nitroprusside Treatment on Membrane Fatty Acids of Blueberry (Vaccinium corymbosum, Cv. Bluecrop) Fruit. Sci. Hortic. 2021, 288, 110307. [Google Scholar] [CrossRef]
- Retamales, J.B.; Hancock, J.F. (Eds.) Blueberries, 2nd ed.; Google Livros; CABI: Wallingford, UK, 2018; pp. 18–60. [Google Scholar]
- Huynh, N.K.; Wilson, M.D.; Eyles, A.; Stanley, R.A. Recent Advances in Postharvest Technologies to Extend the Shelf Life of Blueberries (Vaccinium sp.), Raspberries (Rubus idaeus L.) and Blackberries (Rubus sp.). J. Berry Res. 2019, 9, 709–724. [Google Scholar] [CrossRef]
- Kader, A.A. Fruit Maturity, Ripening, and Quality Relationships. Acta Hortic. 1999, 485, 203–208. [Google Scholar] [CrossRef]
- Hancock, J.; Callow, P.; Serçe, S.; Hanson, E.; Beaudry, R. Effect of Cultivar, Controlled Atmosphere Storage, and Fruit Ripeness on the Long-Term Storage of Highbush Blueberries. Horttechnology 2008, 18, 199–205. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.D.; Lee, S.; Taylor, J.W. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar] [CrossRef]
- Singleton, V.; Rossi, J. Colorimetry of Total Phenolics with Phosphomolybdic-phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Wrolstad, R.E. Color and Pigment Analyses in Fruit Products; Station Bulletin; Oregon State University: Corvallis, OR, USA, 1993; Available online: https://ir.library.oregonstate.edu/concern/administrative_report_or_publications/9s1616449 (accessed on 4 May 2021).
- Romero, I.; Domínguez, I.; Doménech-Carbó, A.; Gavara, R.; Escribano, M.I.; Merodio, C.; Sanchez-Ballesta, M.T. Effect of High Levels of CO2 on the Electrochemical Behavior and the Enzymatic and Non-enzymatic Antioxidant Systems in Black and White Table Grapes Stored at 0 °C. J. Sci. Food Agric. 2019, 99, 6859–6867. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Romero, I.; Domínguez, I.; Morales-Diaz, N.; Escribano, M.I.; Merodio, C.; Sanchez-Ballesta, M.T. Regulation of Flavonoid Biosynthesis Pathway by a Single or Dual Short-Term CO2 Treatment in Black Table Grapes Stored at Low Temperature. Plant Physiol. Biochem. 2020, 156, 30–38. [Google Scholar] [CrossRef]
- Scalzo, J.; Stevenson, D.; Hedderley, D. Polyphenol Compounds and Other Quality Traits in Blueberry Cultivars. J. Berry Res. 2015, 5, 117–130. [Google Scholar] [CrossRef]
- Beaudry, R. Blueberry Quality Characteristics and How They Can Be Optimized. In Annual Report of the Michigan State Horticultural Society, 122nd ed.; 1992; pp. 140–145. Available online: https://www.researchgate.net/publication/285702840 (accessed on 28 April 2021).
- Rivera, S.; Giongo, L.; Cappai, F.; Kerckhoffs, H.; Sofkova-Bobcheva, S.; Hutchins, D.; East, A. Blueberry Firmness—A Review of the Textural and Mechanical Properties Used in Quality Evaluations. Postharvest. Biol. Technol. 2022, 192, 112016. [Google Scholar] [CrossRef]
- Maury, C.; Madieta, E.; Le Moigne, M.; Mehinagic, E.; Siret, R.; Jourjon, F. Development of a Mechanical Texture Test to Evaluate the Ripening Process of Cabernet Franc Grapes. J. Texture Stud. 2009, 40, 511–535. [Google Scholar] [CrossRef]
- Tănase, E.E.; Popa, V.I.; Popa, M.E.; Geicu-Cristea, M.; Popescu, P.; Drăghici, M.; Miteluț, A.C. Identification of the Most Relevant Quality Parameters for Berries—A Review. Sci. Bull. Ser. F Biotechnol. 2016, 20, 222–233. [Google Scholar]
- Ochmian, I.; Błaszak, M.; Lachowicz, S.; Piwowarczyk, R. The Impact of Cultivation Systems on the Nutritional and Phytochemical Content, and Microbiological Contamination of Highbush Blueberry. Sci. Rep. 2020, 10, 16696. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, E.; Poerner, N.; Rockenbach, I.I.; Gonzaga, L.V.; Mendes, C.R.; Fett, R. Phenolic Compounds and Antioxidant Activity of Blueberry Cultivars Grown in Brazil. Food Sci. Technol. 2011, 31, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Cvetković, M.; Kočić, M.; Dabić Zagorac, D.; Ćirić, I.; Natić, M.; Hajder, Đ.; Životić, A.; Fotirić Akšić, M. When Is the Right Moment to Pick Blueberries? Variation in Agronomic and Chemical Properties of Blueberry (Vaccinium corymbosum) Cultivars at Different Harvest Times. Metabolites 2022, 12, 798. [Google Scholar] [CrossRef] [PubMed]
- Kozos, K.; Ochmian, I.; Chełpiński, P. The Effects of Rapid Chilling and Storage Conditions on the Quality of Brigitta Blue Cultivar Highbush Blueberries (Vaccinium corymbosum L.). Folia Hortic. 2014, 26, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Guo, Y.; Liu, M.; Chen, X.; Xiao, X.; Wang, S.; Gong, P.; Ma, Y.; Chen, F. Structure and Function of Blueberry Anthocyanins: A Review of Recent Advances. J. Funct. Foods 2022, 88, 104864. [Google Scholar] [CrossRef]
- Pertuzatti, P.B.; Barcia, M.T.; Rodrigues, D.; Da Cruz, P.N.; Hermosín-Gutiérrez, I.; Smith, R.; Godoy, H.T. Antioxidant Activity of Hydrophilic and Lipophilic Extracts of Brazilian Blueberries. Food Chem. 2014, 164, 81–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudonné, S.; Vitrac, X.; Coutiére, P.; Woillez, M.; Mérillon, J.M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Bunea, A.; Ruginǎ, D.O.; Pintea, A.M.; Sconţa, Z.; Bunea, C.I.; Socaciu, C. Comparative Polyphenolic Content and Antioxidant Activities of Some Wild and Cultivated Blueberries from Romania. Not. Bot. Horti Agrobot. Cluj Napoca 2011, 39, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Može, Š.; Polak, T.; Gašperlin, L.; Koron, D.; Vanzo, A.; Poklar Ulrih, N.; Abram, V. Phenolics in Slovenian Bilberries (Vaccinium myrtillus L.) and Blueberries (Vaccinium corymbosum L.). J. Agric. Food Chem. 2011, 59, 6998–7004. [Google Scholar] [CrossRef] [PubMed]
- Stein-Chisholm, R.E.; Beaulieu, J.C.; Grimm, C.C.; Lloyd, S.W. LC–MS/MS and UPLC–UV Evaluation of Anthocyanins and Anthocyanidins during Rabbiteye Blueberry Juice Processing. Beverages 2017, 3, 56. [Google Scholar] [CrossRef] [Green Version]
- Lohachoompol, V.; Mulholland, M.; Srzednicki, G.; Craske, J. Determination of Anthocyanins in Various Cultivars of Highbush and Rabbiteye Blueberries. Food Chem. 2008, 111, 249–254. [Google Scholar] [CrossRef]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An Online Comprehensive Database on Polyphenol Contents in Foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef]
- Taruscio, T.G.; Barney, D.L.; Exon, J. Content and Profile of Flavanoid and Phenolic Acid Compounds in Conjunction with the Antioxidant Capacity for a Variety of Northwest Vaccinium Berries. J. Agric. Food Chem. 2004, 52, 3169–3176. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V. Blueberries and Their Anthocyanins: Factors Affecting Biosynthesis and Properties. Compr. Rev. Food Sci. Food Saf. 2011, 10, 303–320. [Google Scholar] [CrossRef]
Sample | TA (% Citric Acid) | SSC (° Brix) | pH | MI (SSC/TA) |
---|---|---|---|---|
1 | 0.69 ± 0.06 a | 11.57 ± 0.23 c | 3.39 ± 0.07 b,c | 16.84 f |
2 | 1.32 ± 0.02 c | 11.27 ± 0.21 c | 3.07 ± 0.03 a | 8.53 a,b |
3 | 1.30 ± 0.06 c | 9.53 ± 0.11 a | 3.35 ± 0.09 b | 7.35 a |
4 | 1.12 ± 0.01 b | 10.10 ± 0.30 b | 3.36 ± 0.09 b | 9.06 a–c |
5 | 0.66 ± 0.02 a | 12.50 ± 0.10 d | 3.54 ± 0.03 c | 19.03 g |
6 | 1.16 ± 0.04 b,c | 9.93 ± 0.06 a,b | 3.20 ± 0.02 a,b | 8.54 a,b |
7 | 0.77 ± 0.08 a | 11.67 ± 0.25 d | 3.55 ± 0.03 f | 15.15 e |
8 | 1.10 ± 0.09 b | 10.33 ± 0.21 b | 3.32 ± 0.07 b,c | 9.42 b,c |
9 | 1.03 ± 0.06 b | 11.03 ± 0.23 c | 3.52 ± 0.05 d–f | 10.71 c,d |
10 | 1.03 ± 0.12 b | 11.77 ± 0.32 d | 3.37 ± 0.07 b–e | 11.46 d |
Samples | Equatorial Diameter (mm) | Maximum Skin Breaking Force (N) | Displacement at Skin Breaking (mm) | Slope at Skin Breaking (N/mm) | Skin Breaking Work (mJ) |
---|---|---|---|---|---|
1 | 16.0 ± 1.8 a–c | 1.70 ± 0.37 c,d | 2.74 ± 0.64 f | 0.63 ± 0.15 b | 2.84 ± 1.00 d |
2 | 15.4 ± 1.8 a,b | 1.51 ± 0.23 b,c | 2.06 ± 0.32 b,c | 0.72 ± 0.12 b–d | 1.93 ± 0.51 a,b |
3 | 17.6 ± 1.8 d | 1.23 ± 0.25 a | 2.54 ± 0.48 e,f | 0.48 ± 0.11 a | 2.01 ± 0.11 a,b |
4 | 16.5 ± 1.9 b–d | 1.43 ± 0.29 a,b | 2.31 ± 0.36 c–e | 0.61 ± 0.13 b | 2.12 ± 0.62 b,c |
5 | 16.9 ± 1.1 c–d | 1.43 ± 0.25 a,b | 1.70 ± 0.34 a | 0.83 ± 0.13 d–f | 1.58 ± 0.54 a |
6 | 16.8 ± 1.3 b–d | 1.42 ± 0.26 a,b | 2.08 ± 0.35 b,c | 0.67 ± 0.12 b,c | 1.90 ± 0.57 a,b |
7 | 16.3 ± 2.3 a–d | 1.91 ± 0.46 d | 2.20 ± 0.63 b–d | 0.89 ± 0.23 f | 2.65 ± 1.10 c,d |
8 | 17.4 ± 2.0 c–d | 1.87 ± 0.38 d | 2.31 ± 0.36 c–e | 0.80 ± 0.18 d–f | 2.61 ± 0.74 c,d |
9 | 16.6 ± 1.8 b–d | 1.68 ± 0.25 c,d | 1.94 ± 0.32 a,b | 0.87 ± 0.18 e,f | 1.94 ± 0.50 a,b |
10 | 15.1 ± 2.2 a | 1.85 ± 0.34 d | 2.44 ± 0.46 d–f | 0.77 ± 0.19 c–e | 2.70 ± 0.74 d |
Microorganisms | Contaminated Samples |
---|---|
Aspergillus tubingensis or A. costaricaensis | 3, 7, 9 |
Sporobolomyces roseus | 7 |
Cladosporium piniponderosae or C. colombiae | 2, 3, 4, 7, 9 |
Metschnikowia vanudenii | 3, 4 |
Neurospora dictyophora or N. tetraspora | 2, 9, 10 |
Penicillium brevicompactum | 2, 3, 4, 5, 7, 9, 10 |
Compound | Formula | m/z | TR (min) | Score/Identification | |
---|---|---|---|---|---|
Anthocyanins | Delphinidin 3-pyranoside | C21H21O12 | 465.1028 | 9.44 | MS/MS |
Delphinidin 3-arabinoside | C20H19O11 | 435.0922 | 11.50 | MS/MS | |
Cyanidin 3-galactoside | C21H21O11 | 449.1078 | 11.59 | MS/MS | |
Petunidin 3-pyranoside | C22H23O12 | 479.1184 | 13.16 | MS/MS | |
Cyanidin 3-arabinoside | C20H19O10 | 419.0973 | 15.11 | MS/MS | |
Malvidin 3-galactoside | C23H25O12 | 493.1341 | 16.19 | Standard solution | |
Peonidin 3-pyranoside | C22H23O11 | 463.1235 | 16.39 | MS/MS | |
Malvidin 3-glucoside | C23H25O12 | 493.1341 | 17.01 | Standard solution | |
Malvidin 3-arabinoside | C22H23O11 | 463.1235 | 18.36 | MS/MS | |
Flavonols | Quercetin 3-pyranosides | C21H20O12 | 464.0949 | 23.80 | Standard solution |
Flavanols | Catechin | C15H14O6 | 291.0863 | 9.79 | 97.67 |
Epicatechin | C15H14O6 | 291.0863 | 14.42 | 95.79 | |
Phenolic acids | Chlorogenic acid | C16H18O9 | 355.1024 | 10.37 | Standard solution |
Samples | Chlorogenic Acid | Malvidin 3-Arabinoside | Malvidin 3-Pyranoside | Petunidin 3-Arabinoside | Petunidin 3-Pyranoside | Delphinidin 3-Arabinoside | Delphinidin 3-Pyranoside |
---|---|---|---|---|---|---|---|
1 | 32.97 ± 2.61 a | 30.37 ± 0.91 d | 20.03 ± 0.67 a | 7.56 ± 0.26 c | 5.99 ± 0.31 a | 29.14 ± 1.87 b | 25.47 ± 1.56 a |
2 | 36.03 ± 0.90 a | 23.04 ± 0.39 c | 39.91 ± 1.03 c | 9.52 ± 0.34 d | 19.07 ± 0.83 d | 58.07 ± 1.15 d | 89.65 ± 3.60 d |
3 | 35.93 ± 2.06 a | 8.72 ± 0.96 a | 19.78 ± 2.23 a | 0.00 ± 0.00 a | 9.72 ± 1.32 b | 25.99 ± 3.14 ab | 40.64 ± 5.84 b |
4 | 30.67 ± 3.71 a | 18.22 ± 2.09 b | 31.52 ± 3.33 b | 6.67 ± 0.74 c | 13.53 ± 1.68 c | 40.62 ± 2.53 c | 58.50 ± 5.91 c |
5 | 59.28 ± 2.29 ab | 28.37 ± 1.08 d | 30.27 ± 1.25 b | 3.44 ± 0.52 b | 8.42 ± 0.39 b | 22.69 ± 0.17 a | 29.07 ± 0.15 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Ballesta, M.T.; Marti-Anders, C.; Álvarez, M.D.; Escribano, M.I.; Merodio, C.; Romero, I. Are the Blueberries We Buy Good Quality? Comparative Study of Berries Purchased from Different Outlets. Foods 2023, 12, 2621. https://doi.org/10.3390/foods12132621
Sanchez-Ballesta MT, Marti-Anders C, Álvarez MD, Escribano MI, Merodio C, Romero I. Are the Blueberries We Buy Good Quality? Comparative Study of Berries Purchased from Different Outlets. Foods. 2023; 12(13):2621. https://doi.org/10.3390/foods12132621
Chicago/Turabian StyleSanchez-Ballesta, M. Teresa, Carmen Marti-Anders, M. Dolores Álvarez, M. Isabel Escribano, Carmen Merodio, and Irene Romero. 2023. "Are the Blueberries We Buy Good Quality? Comparative Study of Berries Purchased from Different Outlets" Foods 12, no. 13: 2621. https://doi.org/10.3390/foods12132621
APA StyleSanchez-Ballesta, M. T., Marti-Anders, C., Álvarez, M. D., Escribano, M. I., Merodio, C., & Romero, I. (2023). Are the Blueberries We Buy Good Quality? Comparative Study of Berries Purchased from Different Outlets. Foods, 12(13), 2621. https://doi.org/10.3390/foods12132621