Differences in Aroma Profile of Cabernet Sauvignon Grapes and Wines from Four Plots in Jieshi Mountain Region of Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Experimental Site
2.1.2. Soil Sampling and Analysis
2.1.3. Grape Berry Sampling
2.2. Reagents and Equipment
2.3. Methods
2.3.1. Acquisition of Meteorological Data
2.3.2. Small-Scale Winemaking Procedure
2.3.3. Determination of Basic Physico-Chemical Properties of Grapes and Wine
2.3.4. Extraction and Detection of Grape Aroma Compounds
2.3.5. Analysis of Aroma Compounds in Wine
2.3.6. Sensory Evaluation of Wine
2.3.7. Data Processing
3. Results
3.1. Soil Characteristics of Four Plots
3.2. Physico-Chemical Characteristics of Grapes
3.3. Two-Way ANOVA for Differences in Grape Aroma Compounds between the Plots
3.4. Effect of Soil Characteristics on Aroma Profiles of Grapes
3.5. Physico-Chemical Characteristics of Wines
3.6. Two-Way ANOVA for Differences in Wine Aroma Compounds between the Plots
3.7. Effect of Soil Characteristics on Aroma Profiles of Wines
3.8. Aroma Profiles of Wines Based on OAV
3.9. Aroma Profiles of Wines Based on Sensory Analysis
3.10. Alpha Diversity Analysis of Aroma Compounds
4. Discussion
4.1. Variation of Aroma Compounds in Grapes and Wines between the Plots
4.2. Correlation between Some Aroma Compounds in Grapes and Wines and Soil Physico-Chemical Properties
4.3. Quantifying the Complexity of Aroma Compounds
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pereira, G.E.; Gaudillere, J.P.; Van Leeuwen, C.; Hilbert, G.; Maucourt, M.; Deborde, C.; Moing, A.; Rolin, D. H-1 NMR metabolite fingerprints of grape berry: Comparison of vintage and soil effects in bordeaux grapevine growing areas. Anal. Chim. Acta 2006, 563, 346–352. [Google Scholar] [CrossRef]
- Zsofi, Z.; Gal, L.; Szilagyi, Z.; Szucs, E.; Marschall, M.; Nagy, Z.; Balo, B. Use of stomatal conductance and pre-dawn water potential to classify terroir for the grape variety kekfrankos. Aust. J. Grape Wine Res. 2009, 15, 36–47. [Google Scholar] [CrossRef]
- Priori, S.; Pellegrini, S.; Perria, R.; Puccioni, S.; Storchi, P.; Valboa, G.; Costantini, E.a.C. Scale effect of terroir under three contrasting vintages in the Chianti Classico area (Tuscany, Italy). Geoderma 2019, 334, 99–112. [Google Scholar] [CrossRef]
- Gomez-Miguez, M.J.; Gomez-Miguez, M.; Vicario, I.M.; Heredia, F.J. Assessment of colour and aroma in white wines vinifications: Effects of grape maturity and soil type. J. Food Eng. 2007, 79, 758–764. [Google Scholar] [CrossRef]
- Wheeler, S.J.P.G.J. Effects of Soil Management Techniques on Grape and Wine Quality; WFL Publisher: Helsinki, Finland, 2005; pp. 195–208. [Google Scholar]
- Bramley, R.G.V.; Hamilton, R.P. Terroir and precision viticulture: Are they compatible? J. Int. Des Sci. De La Vigne Et Du Vin 2007, 41, 1–8. [Google Scholar] [CrossRef]
- Bramley, R.G.V.; Ouzman, J.; Boss, P.K. Variation in vine vigour, grape yield and vineyard soils and topography as indicators of variation in the chemical composition of grapes, wine and wine sensory attributes. Aust. J. Grape Wine Res. 2011, 17, 217–229. [Google Scholar] [CrossRef]
- Hua, L. Wine Tasting; Science Press: Beijing, China, 2006; pp. 83–102. [Google Scholar]
- Jiang, B.; Zhang, Z.W. A preliminary study of aroma composition and impact odorants of cabernet franc wines under different terrain conditions of the Loess Plateau region (China). Molecules 2018, 23, 1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Wang, X.Y.; Li, P.H.; Lv, Y.C.; Nan, H.L.; Wen, L.K.; Wang, Z.T. Research progress of wine aroma components: A critical review. Food Chem. 2023, 402, 134491. [Google Scholar] [CrossRef]
- Reynolds, A.G.; Senchuk, I.V.; Van Der Reest, C.; De Savigny, C. Use of GPS and GIS for elucidation of the basis for terroir: Spatial variation in an ontario riesling vineyard. Am. J. Enol. Vitic. 2007, 58, 145–162. [Google Scholar] [CrossRef]
- Cantu, A.; Lafontaine, S.; Frias, I.; Sokolowsky, M.; Yeh, A.; Lestringant, P.; Hjelmeland, A.; Byer, S.; Heymann, H.; Runnebaum, R.C. Investigating the impact of regionality on the sensorial and chemical aging characteristics of pinot noir grown throughout the us west coast. Food Chem. 2021, 337, 127720. [Google Scholar] [CrossRef]
- Li Jun, N.; Ling Li, S.; Ya Shan, L.; Chang Wei, C.; Na, N.; Jing, H.; Ying Li, Z.; Cheng Dong, X. Changes in quality of ‘Cabernet Sauvignon’ grapevines from three plots in Shihezi region during the ripening. Sino-Overseas Grapevine Wine 2018, 222, 44–49. [Google Scholar]
- Jing, P.; Xiao Tong, R.; Xiao, H.; Jun, W.; Fei, H. Effects of different parcels on the aroma substances of wine grapes from eastern foothill of Helan mountain. Food Sci. 2022, 43, 291–300. [Google Scholar]
- Xiao Yan, Z.; Rong Ping, C.; Peng Bao, S. Environmental conditions of Jieshi mountain production area in Changli and their effects on wine grape Syrah. Mod. Agric. Sci. Technol. 2022, 813, 49–53. [Google Scholar]
- Meng Qi, L.; Shi, W.; Tong Hua, S.; Yu Bo, H.; Ying, S.; Chang Qing, D.; Yan Zhi, C.; Yi Bin, L. Analysis of varietal traits and wine flavor characteristics of different white grape varieties from Jieshi mountain region. Food Ferment. Ind. 2023. [Google Scholar] [CrossRef]
- Han, X.; Lu, H.C.; Wang, Y.; Gao, X.T.; Li, H.Q.; Tian, M.B.; Shi, N.; Li, M.Y.; Yang, X.L.; He, F.; et al. Region, vintage, and grape maturity co-shaped the ionomic signatures of the Cabernet Sauvignon wines. Food Res. Int. 2023, 163, 112165. [Google Scholar] [CrossRef]
- Brun, L.A.; Maillet, J.; Hinsinger, P.; Pepin, M. Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environ. Pollut. 2001, 111, 293–302. [Google Scholar] [CrossRef]
- Saez-Plaza, P.; Navas, M.J.; Wybraniec, S.; Michalowski, T.; Asuero, A.G. An overview of the kjeldahl method of nitrogen determination. Part ii. Sample preparation, working scale, instrumental finish, and quality control. Crit. Rev. Anal. Chem. 2013, 43, 224–272. [Google Scholar] [CrossRef]
- Wu, H.; Lin, G.H.; Tian, L.; Yan, Z.; Yi, B.Q.; Bian, X.H.; Jin, B.H.; Xie, L.Q.; Zhou, H.C.; Rogers, K.M. Origin verification of french red wines using isotope and elemental analyses coupled with chemometrics. Food Chem. 2021, 339, 127760. [Google Scholar] [CrossRef]
- Lan, Y.B.; Qian, X.; Yang, Z.J.; Xiang, X.F.; Yang, W.X.; Liu, T.; Zhu, B.Q.; Pan, Q.H.; Duan, C.Q. Striking changes in volatile profiles at sub-zero temperatures during over-ripening of ‘Beibinghong’ grapes in northeastern china. Food Chem. 2016, 212, 172–182. [Google Scholar] [CrossRef]
- Wen, Y.Q.; He, F.; Zhu, B.Q.; Lan, Y.B.; Pan, Q.H.; Li, C.Y.; Reeves, M.J.; Wang, J. Free and glycosidically bound aroma compounds in cherry (Prunus avium L.). Food Chem. 2014, 152, 29–36. [Google Scholar] [CrossRef]
- Xu, X.Q.; Liu, B.; Zhu, B.Q.; Lan, Y.B.; Gao, Y.; Wang, D.; Reeves, M.J.; Duan, C.Q. Differences in volatile profiles of Cabernet Sauvignon grapes grown in two distinct regions of china and their responses to weather conditions. Plant Physiol. Biochem. 2015, 89, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.B.; Xiang, X.F.; Qian, X.; Wang, J.M.; Ling, M.Q.; Zhu, B.Q.; Liu, T.; Sun, L.B.; Shi, Y.; Reynolds, A.G.; et al. Characterization and differentiation of key odor-active compounds of ‘Beibinghong’ icewine and dry wine by Gas Chromatography-Olfactometry and aroma reconstitution. Food Chem. 2019, 287, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.B.; Guo, J.X.; Qian, X.; Zhu, B.Q.; Shi, Y.; Wu, G.F.; Duan, C.Q. Characterization of key odor-active compounds in sweet Petit Manseng (Vitis vinifera L.) wine by gas chromatography-olfactometry, aroma reconstitution, and omission tests. J. Food Sci. 2021, 86, 1258–1272. [Google Scholar] [CrossRef] [PubMed]
- Moreno, C.E.; Calderon-Patron, J.M.; Martin-Regalado, N.; Martinez-Falcon, A.P.; Ortega-Martinez, I.J.; Rios-Diaz, C.L.; Rosas, F. Measuring species diversity in the tropics: A review of methodological approaches and framework for future studies. Biotropica 2018, 50, 929–941. [Google Scholar] [CrossRef]
- Chen, K.; Qiu, S.; Liu, C.P.; Zhang, L.; Wu, X.G.; Ma, L.Y.; Li, J.M. Abiotic factors play important roles in complexity and characterization of aroma precursors in Vidal blanc grape. Food Res. Int. 2022, 162, 112015. [Google Scholar] [CrossRef] [PubMed]
- Ke Ning, W.; Rui, Z. Soil texture classification and its application in China. Acta Pedol. Sin. 2019, 56, 227–241. [Google Scholar]
- Ju, Y.L.; Liu, M.; Tu, T.Y.; Zhao, X.F.; Yue, X.F.; Zhang, J.X.; Fang, Y.L.; Meng, J.F. Effect of regulated deficit irrigation on fatty acids and their derived volatiles in ‘Cabernet Sauvignon’ grapes and wines of Ningxia, China. Food Chem. 2018, 245, 667–675. [Google Scholar] [CrossRef]
- Xie, S.; Lei, Y.J.; Wang, Y.J.; Wang, X.Q.; Ren, R.H.; Zhang, Z.W. Influence of continental climates on the volatile profile of Cabernet Sauvignon grapes from five Chinese viticulture regions. Plant Growth Regul. 2019, 87, 83–92. [Google Scholar] [CrossRef]
- Karaoglan, S.Y. The expected impact of climate change on grape flavor components - a review. Ann. Univ. Craiova-Agric. Mont. Cadastre Ser. 2018, 48, 215–220. [Google Scholar]
- Gonzalez-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gandara, J. Wine aroma compounds in grapes: A critical review. Crit. Rev. Food Sci. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef]
- Ferreira, V.; Lopez, R. The actual and potential aroma of winemaking grapes. Biomolecules 2019, 12, 818. [Google Scholar] [CrossRef] [Green Version]
- Skinkis, P.A.; Bordelon, B.P.; Butz, E.M. Effects of sunlight exposure on berry and wine monoterpenes and sensory characteristics of traminette. Am. J. Enol. Vitic. 2010, 61, 147–156. [Google Scholar] [CrossRef]
- Koundouras, S.; Marinos, V.; Gkoulioti, A.; Kotseridis, Y.; Van Leeuwen, C. Influence of vineyard location and vine water status on fruit maturation of nonirrigated cv. Agiorgitiko (Vitis vinifera L.). Effects on wine phenolic and aroma components. J. Agric. Food Chem. 2006, 54, 5077–5086. [Google Scholar] [CrossRef]
- Slaghenaufi, D.; Guardini, S.; Tedeschi, R.; Ugliano, M. Volatile terpenoids, norisoprenoids and benzenoids as markers of fine scale vineyard segmentation for Corvina grapes and wines. Food Res. Int. 2019, 125, 108507. [Google Scholar] [CrossRef] [PubMed]
- Antalick, G.; Perello, M.C.; De Revel, G. Characterization of fruity aroma modifications in red wines during malolactic fermentation. J. Agric. Food Chem. 2012, 60, 12371–12383. [Google Scholar] [CrossRef] [PubMed]
- Yan Er, M.; Li, Y.; Yu Yun, H.; Hua, L.; Wang, H. Effects of rainfall on polyphenols in grapes. Jiangsu Agric. Sci. 2016, 44, 221–224. [Google Scholar]
- Bindon, K.; Varela, C.; Kennedy, J.; Holt, H.; Herderich, M. Relationships between harvest time and wine composition in vitis vinifera L. cv. Cabernet Sauvignon L. Grape and wine chemistry. Food Chem. 2013, 141, 147. [Google Scholar] [CrossRef]
- Munoz-Gonzalez, C.; Martin-Alvarez, P.J.; Moreno-Arribas, M.V.; Pozo-Bayon, M.A. Impact of the nonvolatile wine matrix composition on the in vivo aroma release from wines. J. Agric. Food Chem. 2014, 62, 66–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Bencomo, J.J.; Munoz-Gonzalez, C.; Andujar-Ortiz, I.; Martin-Alvarez, P.J.; Moreno-Arribas, M.V.; Pozo-Bayon, M.A. Assessment of the effect of the non-volatile wine matrix on the volatility of typical wine aroma compounds by headspace solid phase microextraction/gas chromatography analysis. J. Sci. Food Agric. 2011, 91, 2484–2494. [Google Scholar] [CrossRef] [Green Version]
- Villamor, R.R.; Evans, M.A.; Mattinson, D.S.; Ross, C.F. Effects of ethanol, tannin and fructose on the headspace concentration and potential sensory significance of odorants in a model wine. Food Res. Int. 2013, 50, 38–45. [Google Scholar] [CrossRef]
- Villamor, R.R.; Ross, C.F. Wine matrix compounds affect perception of wine aromas. Annu. Rev. Food Sci. Technol. 2013, 4, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.L.; Ebeler, S.E.; Heymann, H.; Boss, P.K.; Solomon, P.S.; Trengove, R.D. Interactions between wine volatile compounds and grape and wine matrix components influence aroma compound headspace partitioning. J. Agric. Food Chem. 2009, 57, 10313–10322. [Google Scholar] [CrossRef] [PubMed]
- Curtin, D.; Beare, M.H.; Hernandez-Ramirez, G. Temperature and moisture effects on microbial biomass and soil organic matter mineralization. Soil Sci. Soc. Am. J. 2012, 76, 2055–2067. [Google Scholar] [CrossRef]
- Bell, S.J.; Henschke, P.A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Roby, J.P.; De Resseguier, L. Soil-related terroir factors: A review. Oeno One 2018, 52, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Crews, T.E.; Brookes, P.C. Changes in soil phosphorus forms through time in perennial versus annual agroecosystems. Agric. Ecosyst. Environ. 2014, 184, 168–181. [Google Scholar] [CrossRef]
- Maltais-Landry, G.; Scow, K.; Brennan, E. Soil phosphorus mobilization in the rhizosphere of cover crops has little effect on phosphorus cycling in california agricultural soils. Soil Biol. Biochem. 2014, 78, 255–262. [Google Scholar] [CrossRef]
- Jalali, M.; Ostovarzadeh, H. Evaluation of phosphorus leaching from contaminated calcareous soils due to the application of sheep manure and ethylenediamine tetraacetic acid. Environ. Earth Sci. 2009, 59, 441–448. [Google Scholar] [CrossRef]
- Hong Bo, R. The Research on the Transference Law of the Mineral Elements in the Soil. Master’s Thesis, Ocean University of China, Qingdao, China, 2008. [Google Scholar]
- Rui, W. Relationship between Soil Quality with Grape Growth and Composition at the Eastern Foot of Helan Mountain Wine Production Regions. Ph.D. Thesis, Northwest A&F University, Yangling, China, 2016. [Google Scholar]
- Singh, B.P.; Cowie, A.L.; Chan, K.Y. Soil Health and Climate Change; Springer: Heidelberg, Germany, 2011; pp. 33–34. [Google Scholar]
- Webster, D.R.; Edwards, C.G.; Spayd, S.E.; Peterson, J.C.; Seymour, B.J. Influence of vineyard nitrogen-fertilization on the concentrations of monoterpenes, higher alcohols, and esters in aged riesling wines. Am. J. Enol. Vitic. 1993, 44, 275–284. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Barbe, J.C.; Darriet, P.; Geffroy, O.; Gomes, E.; Guillaumie, S.; Helwi, P.; Laboyrie, J.; Lytra, G.; Le Menn, N. Recent advancements in understanding the terroir effect on aromas in grapes and wines. OENO One 2020, 54, 985–1006. [Google Scholar] [CrossRef]
- Jiang, P.K.; Xu, Q.F.; Zhou, G.M.; Wu, Q.F.; Wu, J.S. Effects of green manure on soil nutrients and bio-properties of Castanea mollissima Blume plantations. J. Beijing For. Univ. 2007, 29, 120–123. [Google Scholar]
- Liu, D.; Chen, Q.L.; Zhang, P.Z.; Chen, D.L.; Howell, K.S. The fungal microbiome is an important component of vineyard ecosystems and correlates with regional distinctiveness of wine. Msphere 2020, 5, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Lindemann, W.C.; Whitford, W.G.; Steiner, R.L. Microbial diversity and activity of disturbed soil in the northern Chihuahuan desert. Biol. Fertil. Soils 2000, 32, 243–249. [Google Scholar] [CrossRef]
- Ovreas, L.; Torsvik, V. Microbial diversity and community structure in two different agricultural soil communities. Microb. Ecol. 1998, 36, 303–315. [Google Scholar] [PubMed]
- Peinado, R.A.; Moreno, J.; Bueno, J.E.; Moreno, J.A.; Mauricio, J.C. Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chem. 2004, 84, 585–590. [Google Scholar] [CrossRef]
- Guth, H. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Gomez-Miguez, M.J.; Cacho, J.F.; Ferreira, V.; Vicario, I.M.; Heredia, F.J. Volatile components of Zalema white wines. Food Chem. 2007, 100, 1464–1473. [Google Scholar] [CrossRef]
- Li, N.; Wang, L.Y.; Yin, J.; Ma, N.; Tao, Y.S. Adjustment of impact odorants in hutai-8 rose wine by co-fermentation of Pichia fermentans and Saccharomyces cerevisiae. Food Res. Int. 2022, 153, 110959. [Google Scholar] [CrossRef]
- Franco, M.; Peinado, R.A.; Medina, M.; Moreno, J. Off-vine grape drying effect on volatile compounds and aromatic series in must from Pedro Ximenez grape variety. J. Agric. Food Chem. 2004, 52, 3905–3910. [Google Scholar] [CrossRef]
- Furdikova, K.; Makysova, K.; Durcanska, K.; Spanik, I.; Malik, F. Influence of yeast strain on aromatic profile of Gewurztraminer wine. LWT-Food Sci. Technol. 2014, 59, 256–262. [Google Scholar]
- Garcia-Carpintero, E.G.; Sanchez-Palomo, E.; Gallego, M.a.G.; Gonzalez-Vinas, M.A. Characterization of impact odorants and sensory profile of Bobal red wines from Spain’s la Mancha region. Flavour Fragr. J. 2012, 27, 60–68. [Google Scholar] [CrossRef]
- Moreno, J.A.; Zea, L.; Moyano, L.; Medina, M. Aroma compounds as markers of the changes in sherry wines subjected to biological ageing. Food Control 2005, 16, 333–338. [Google Scholar] [CrossRef]
- Peinado, R.A.; Mauricio, J.C.; Moreno, J. Aromatic series in sherry wines with gluconic acid subjected to different biological aging conditions by Saccharomyces cerevisiae var. Capensis. Food Chem. 2006, 94, 232–239. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, L. Intensity prediction of typical aroma characters of Cabernet Sauvignon wine in Changli county (China). LWT - Food Sci. Technol. 2010, 43, 1550–1556. [Google Scholar] [CrossRef]
- La Guerche, S.; Dauphin, B.; Pons, M.; Blancard, D.; Darriet, P. Characterization of some mushroom and earthy off-odors microbially induced by the development of rot on grapes. J. Agric. Food Chem. 2006, 54, 9193–9200. [Google Scholar] [CrossRef] [PubMed]
- 1-octen-3-ol. Available online: https://www.vcf-online.nl/VcfCompoundDetails.cfm?volatkey=0205251300 (accessed on 28 April 2023).
- Callejon, R.M.; Morales, M.L.; Ferreira, A.C.S.; Troncoso, A.M. Defining the typical aroma of sherry vinegar: Sensory and chemical approach. J. Agric. Food Chem. 2008, 56, 8086–8095. [Google Scholar] [CrossRef]
- Gurbuz, O.; Rouseff, J.M.; Rouseff, R.L. Comparison of aroma volatiles in commercial Merlot and Cabernet Sauvignon wines using gas chromatography - olfactometry and gas chromatography - mass spectrometry. J. Agric. Food Chem. 2006, 54, 3990–3996. [Google Scholar] [CrossRef]
- Ferreira, V.; Lopez, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Zhang, M.; Zhong, T.; Heygi, F.; Wang, Z.; Du, M. Effects of inoculation protocols on aroma profiles and quality of plum wine in mixed culture fermentation of Metschnikowia pulcherrima with Saccharomyces cerevisiae. LWT 2022, 161, 113338. [Google Scholar] [CrossRef]
- Li, H.; Tao, Y.S.; Wang, H.; Zhang, L. Impact odorants of chardonnay dry white wine from Changli county (China). Eur. Food Res. Technol. 2008, 227, 287–292. [Google Scholar] [CrossRef]
- Mayr, C.M.; Geue, J.P.; Holt, H.E.; Pearson, W.P.; Jeffery, D.W.; Francis, I.L. Characterization of the key aroma compounds in shiraz wine by quantitation, aroma reconstitution, and omission studies. J. Agric. Food Chem. 2014, 62, 4528–4536. [Google Scholar] [CrossRef] [PubMed]
- Diez-Ozaeta, I.; Lavilla, M.; Amarita, F. Wine aroma profile modification by Oenococcus oeni strains from Rioja Alavesa region: Selection of potential malolactic starters. Int. J. Food Microbiol. 2021, 356, 109324. [Google Scholar] [CrossRef] [PubMed]
- Takeoka, G.; Buttery, R.G.; Flath, R.A.; Teranishi, R.; Wheeler, E.L.; Wieczorek, R.L.; Guentert, M. Volatile constituents of pineapple (Ananas-comosus [L] Merr). ACS Symp. Ser. 1989, 388, 223–237. [Google Scholar]
- Meilgaard, M.C. Flavor chemistry of beer: Part ii: Flavor and threshold of 239 aroma volatiles. MBAA TQ 1975, 12, 151–168. [Google Scholar]
- Yang, F.; Shi, C.; Yan, L.; Xu, Y.; Dai, Y.; Bi, S.; Liu, Y. Low-frequency ultrasonic treatment: A potential strategy to improve the flavor of fresh watermelon juice. Ultrason. Sonochem. 2022, 91, 106238. [Google Scholar] [CrossRef]
- Avalos-Martinez, E.; Pino, J.A.; Sayago-Ayerdi, S.; Sosa-Moguel, O.; Cuevas-Glory, L. Assessment of volatile compounds and sensory characteristics of Mexican hibiscus (Hibiscus sabdariffa L.) calyces hot beverages. J. Food Sci. Technol. 2019, 56, 360–366. [Google Scholar] [CrossRef]
- Yu, H.Y.; Guo, W.; Xie, T.; Ai, L.Z.; Tian, H.X.; Chen, C. Aroma characteristics of traditional huangjiu produced around winter solstice revealed by sensory evaluation, gas chromatography-mass spectrometry and gas chromatography-ion mobility spectrometry. Food Res. Int. 2021, 145. [Google Scholar] [CrossRef]
- Noguerol-Pato, R.; Gonzalez-Alvarez, M.; Gonzalez-Barreiro, C.; Cancho-Grande, B.; Simal-Gandara, J. Evolution of the aromatic profile in Garnacha Tintorera grapes during raisining and comparison with that of the naturally sweet wine obtained. Food Chem 2013, 139, 1052–1061. [Google Scholar] [CrossRef]
- Chin, S.T.; Eyres, G.T.; Marriott, P.J. Application of integrated comprehensive/multidimensional gas chromatography with mass spectrometry and olfactometry for aroma analysis in wine and coffee. Food Chem 2015, 185, 355–361. [Google Scholar] [CrossRef]
- Welke, J.E.; Nicolli, K.P.; Hernandes, K.C.; Biasoto, A.C.T.; Zini, C.A. Adaptation of an olfactometric system in a GC-FID in combination with GC×GC/MS to evaluate odor-active compounds of wine. Food Chem. 2022, 370, 131004. [Google Scholar] [CrossRef]
- Du, X.; Finn, C.E.; Qian, M.C. Volatile composition and odour-activity value of thornless ‘black diamond’ and ‘marion’ blackberries. Food Chem. 2010, 119, 1127–1134. [Google Scholar] [CrossRef]
- Cullere, L.; Escudero, A.; Cacho, J.; Ferreira, V. Gas chromatography-olfactometry and chemical quantitative study of the aroma of six premium quality Spanish aged red wines. J. Agric. Food Chem. 2004, 52, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.L.; Li, A.H.; Su, J.; Wang, X.C.; Chen, C.Q.; Tao, Y.S. Flavor modification of dry red wine from Chinese spine grape by mixed fermentation with Pichia fermentans and s. cerevisiae. LWT-Food Sci. Technol. 2019, 109, 83–92. [Google Scholar] [CrossRef]
- Delgado, J.A.; Sánchez-Palomo, E.; Osorio Alises, M.; González Viñas, M.A. Chemical and sensory aroma typicity of la mancha petit verdot wines. LWT 2022, 162, 113418. [Google Scholar] [CrossRef]
- Parker, M.; Osidacz, P.; Baldock, G.A.; Hayasaka, Y.; Black, C.A.; Pardon, K.H.; Jeffery, D.W.; Geue, J.P.; Herderich, M.J.; Francis, I.L. Contribution of several volatile phenols and their glycoconjugates to smoke-related sensory properties of red wine. J. Agric. Food Chem. 2012, 60, 2629–2637. [Google Scholar] [CrossRef] [PubMed]
- Ling, M.Q.; Bai, X.X.; Cui, D.S.; Shi, Y.; Duan, C.Q.; Lan, Y.B. An efficient methodology for modeling to predict wine aroma expression based on quantitative data of volatile compounds: A case study of oak barrel-aged red wines. Food Res. Int. 2023, 164, 112440. [Google Scholar] [CrossRef]
Characteristics | Vintage | CS1 | CS2 | CS3 | CS4 | V | P | V × P |
---|---|---|---|---|---|---|---|---|
hundred-grain weight (g) | 2020 | 146.8 ± 0.7 b | 163.7 ± 4.2 a | 166.0 ± 5.5 a | 151.6 ± 5.3 b | * | **** | **** |
2021 | 147.7 ± 3.5 c | 126.3 ± 9.5 d | 161.4 ± 1.6 b | 172.6 ± 2.8 a | ||||
soluble solids content (Brix) | 2020 | 24.0 ± 0.9 a | 23.3 ± 0.1 a | 23.4 ± 0.8 a | 23.6 ± 0.7 a | *** | ns | ns |
2021 | 22.2 ± 1.8 a | 21.2 ± 1.1 a | 22.4 ± 0.8 a | 21.7 ± 1.0 a | ||||
titratable acid (g tartaric acid/L) | 2020 | 3.7 ± 0.4 b | 5.4 ± 1.1 a | 3.9 ± 0.1 b | 4.1 ± 0.3 b | *** | ns | ** |
2021 | 5.0 ± 0.4 ab | 4.7 ± 0.2 b | 5.2 ± 0.3 a | 5.5 ± 0.1 a | ||||
pH | 2020 | 3.87 ± 0.01 a | 3.65 ± 0.01 c | 3.77 ± 0.02 b | 3.84 ± 0.03 a | **** | **** | **** |
2021 | 3.41 ± 0.01 d | 3.43 ± 0.01 c | 3.62 ± 0.01 a | 3.58 ± 0 b |
Characteristics | Vintage | CS1 | CS2 | CS3 | CS4 | V | P | V × P |
---|---|---|---|---|---|---|---|---|
alcohol (%) | 2020 | 13.1 ± 0.02 a | 12.7 ± 0.01 c | 12.6 ± 0.02 d | 12.9 ± 0.0 b | **** | **** | **** |
2021 | 12.1 ± 0.0 b | 11.6 ± 0.02 d | 12.1 ± 0.02 a | 11.8 ± 0.0 c | ||||
reducing sugar (g/L) | 2020 | 2.9 ± 0.05 c | 3.0 ± 0.05 bc | 6.5 ± 0.14 a | 3.1 ± 0.05 b | **** | **** | **** |
2021 | 3.5 ± 0.05 a | 3.2 ± 0.09 b | 3.4 ± 0.08 a | 3.2 ± 0.0 b | ||||
total acidity (g tartaric acid/L) | 2020 | 5.9 ± 0.0 c | 6.0 ± 0.0 b | 7.2 ± 0.05 a | 5.7 ± 0.05 d | **** | **** | **** |
2021 | 5.9 ± 0.0 c | 6.0 ± 0.05 b | 6.2 ± 0.0 a | 5.9 ± 0.0 c | ||||
pH | 2020 | 3.71 ± 0.01 b | 3.63 ± 0 c | 3.42 ± 0.01 d | 3.75 ± 0 a | **** | **** | **** |
2021 | 3.77 ± 0 a | 3.65 ± 0 b | 3.59 ± 0.01 c | 3.65 ± 0 b | ||||
volatile acid (g acetic acid/L) | 2020 | 0.5 ± 0 a | 0.5 ± 0.01 a | 0.6 ± 0 a | 0.5 ± 0 b | **** | **** | **** |
2021 | 0.5 ± 0 a | 0.5 ± 0.01 b | 0.4 ± 0 c | 0.4 ± 0 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Wu, Y.-P.; Lan, Y.-B.; Cui, Y.-Z.; Shi, T.-H.; Hua, Y.-B.; Duan, C.-Q.; Pan, Q.-H. Differences in Aroma Profile of Cabernet Sauvignon Grapes and Wines from Four Plots in Jieshi Mountain Region of Eastern China. Foods 2023, 12, 2668. https://doi.org/10.3390/foods12142668
Chen Z, Wu Y-P, Lan Y-B, Cui Y-Z, Shi T-H, Hua Y-B, Duan C-Q, Pan Q-H. Differences in Aroma Profile of Cabernet Sauvignon Grapes and Wines from Four Plots in Jieshi Mountain Region of Eastern China. Foods. 2023; 12(14):2668. https://doi.org/10.3390/foods12142668
Chicago/Turabian StyleChen, Zhuo, Yang-Peng Wu, Yi-Bin Lan, Yan-Zhi Cui, Tong-Hua Shi, Yu-Bo Hua, Chang-Qing Duan, and Qiu-Hong Pan. 2023. "Differences in Aroma Profile of Cabernet Sauvignon Grapes and Wines from Four Plots in Jieshi Mountain Region of Eastern China" Foods 12, no. 14: 2668. https://doi.org/10.3390/foods12142668
APA StyleChen, Z., Wu, Y. -P., Lan, Y. -B., Cui, Y. -Z., Shi, T. -H., Hua, Y. -B., Duan, C. -Q., & Pan, Q. -H. (2023). Differences in Aroma Profile of Cabernet Sauvignon Grapes and Wines from Four Plots in Jieshi Mountain Region of Eastern China. Foods, 12(14), 2668. https://doi.org/10.3390/foods12142668