Pesticide Use and Degradation Strategies: Food Safety, Challenges and Perspectives
Abstract
:1. Introduction
2. Public Health Concerns Related to Pesticide Exposure
3. Strategies Aimed to Protect Human Health and the Environment from Pesticide Exposure
4. Degradation Strategies for Organophosphate Pesticides
4.1. Biotic Degradation Strategy
4.2. Abiotic Degradation Strategy
5. Future Perspectives on Pesticide Use and Management
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Onyeka Kingsley, N.; Ayibapreye, J. Chemical Pesticides and Food Safety. In Insecticides; Ramón Eduardo Rebolledo, R., Ed.; IntechOpen: Rijeka, Croatia, 2022; p. Ch. 3. [Google Scholar]
- Antonini, C.; Argilés-Bosch, J.M. Productivity and environmental costs from intensification of farming. A panel data analysis across EU regions. J. Clean. Prod. 2017, 140, 796–803. [Google Scholar] [CrossRef] [Green Version]
- Rajmohan, K.S.; Chandrasekaran, R.; Varjani, S. A Review on Occurrence of Pesticides in Environment and Current Technologies for Their Remediation and Management. Indian J. Microbiol. 2020, 60, 125–138. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Database. Pesticides Use. 2022. Available online: http://www.fao.org/faostat/en/#data/RP (accessed on 29 May 2023).
- Donley, N. The USA lags behind other agricultural nations in banning harmful pesticides. Environ. Health 2019, 18, 44. [Google Scholar] [CrossRef] [Green Version]
- Ambrus, Á.; Szenczi-Cseh, J.; Doan, V.V.N.; Vásárhelyi, A. Evaluation of Monitoring Data in Foods. Agrochemicals 2023, 2, 69–95. [Google Scholar] [CrossRef]
- European Parliament; Directorate-General for External Policies of the Union; Sarkar, S.; Dias, J.; Gil, B.; Keeley, J.; Möhring, N.; Jansen, K. The Use of Pesticides in Developing Countries and Their Impact on Health and the Right to Food, European Parliament. 2021. Available online: https://data.europa.eu/doi/10.2861/28995 (accessed on 31 May 2023).
- Food and Agriculture Organization of the United Nations (FAO); World Health Organization (WHO). Codex Alimentarius, Pesticides; Online Publication; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC Official Journal of the European Union, 70; pp. 1–16. 16 March 2005. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02005R0396-20210525 (accessed on 24 March 2023).
- US Environmental Protection Agency. Summary of the Federal Food, Drug, and Cosmetic; US Environmental Protection Agency: District of Columbia, WA, USA, 2002. Available online: https://www.epa.gov/laws-regulations/summary-federal-food-drug-and-cosmetic-act (accessed on 23 March 2023).
- CIRS China. Available online: https://www.cirs-group.com/en (accessed on 29 May 2023).
- Agência Nacional de Vigilância Sanitária—Anvisa. Available online: https://www.gov.br/anvisa/pt-br/english/regulation-of-products/pesticides (accessed on 30 May 2023).
- van den Dries, M.A.; Lamballais, S.; El Marroun, H.; Pronk, A.; Spaan, S.; Ferguson, K.K.; Longnecker, M.P.; Tiemeier, H.; Guxens, M. Prenatal exposure to organophosphate pesticides and brain morphology and white matter microstructure in preadolescents. Environ. Res. 2020, 191, 110047. [Google Scholar] [CrossRef] [PubMed]
- Zikankuba, V.L.; Mwanyika, G.; Ntwenya, J.E.; James, A. Pesticide regulations and their malpractice implications on food and environment safety. Cogent Food Agric. 2019, 5, 1601544. [Google Scholar] [CrossRef]
- Kwong, T.C. Organophosphate Pesticides: Biochemistry and Clinical Toxicology. Ther. Drug Monit. 2002, 24, 144–149. [Google Scholar] [CrossRef]
- Fu, H.; Tan, P.; Wang, R.; Li, S.; Liu, H.; Yang, Y.; Wu, Z. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. J. Hazard. Mater. 2022, 424, 127494. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef]
- Leskovac, A. Organophosphate Pesticides: Cytotoxicity, Genotoxicity and Current Treatment Strategies. In Organophosphates: Detection, Exposure and Occurrence. Volume 1: Impact on Health and the Natural Environment; Lazarević-Pašti, T., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2022; pp. 27–61. [Google Scholar]
- Petrovic, S. Organophosphate Pesticides and Human Health: Current Knowledge and Future Prospects. In Organophosphates: Detection, Exposure and Occurrence. Volume 1: Impact on Health and the Natural Environment; Lazarević-Pašti, T., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2022; pp. 1–25. [Google Scholar]
- Kubiak-Hardiman, P.; Haughey, S.A.; Meneely, J.; Miller, S.; Banerjee, K.; Elliott, C.T. Identifying Gaps and Challenges in Global Pesticide Legislation that Impact the Protection of Consumer Health: Rice as a Case Study. Expo. Health 2022, 14, 1–22. [Google Scholar] [CrossRef]
- Hejazi, M.; Grant, J.H.; Peterson, E. Trade impact of maximum residue limits in fresh fruits and vegetables. Food Policy 2022, 106, 102203. [Google Scholar] [CrossRef]
- Jors, E.; Neupane, D.; London, L. Pesticide Poisonings in Low- and Middle-Income Countries. Environ. Health Insights 2018, 12, 1178630217750876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pesticides Atlas. Data and Facts on Toxins in Agriculture; Kenya, Ed.; Heinrich-Böll-Stiftung: Berlin, Germany, 2022. [Google Scholar]
- Wolejko, E.; Lozowicka, B.; Jablonska-Trypuc, A.; Pietruszynska, M.; Wydro, U. Chlorpyrifos Occurrence and Toxicological Risk Assessment: A Review. Int. J. Environ. Res. Public Health 2022, 19, 12209. [Google Scholar] [CrossRef]
- Foong, S.Y.; Ma, N.L.; Lam, S.S.; Peng, W.; Low, F.; Lee, B.H.K.; Alstrup, A.K.O.; Sonne, C. A recent global review of hazardous chlorpyrifos pesticide in fruit and vegetables: Prevalence, remediation and actions needed. J. Hazard. Mater. 2020, 400, 123006. [Google Scholar] [CrossRef]
- Lopez-Carmen, V.A.; Erickson, T.B.; Escobar, Z.; Jensen, A.; Cronin, A.E.; Nolen, L.T.; Moreno, M.; Stewart, A.M. United States and United Nations pesticide policies: Environmental violence against the Yaqui indigenous nation. Lancet Reg. Health Am. 2022, 10, 100255. [Google Scholar] [CrossRef] [PubMed]
- Akomea-Frempong, S.; Ofosu, I.W.; Owusu-Ansah, E.d.-G.J.; Darko, G. Health risks due to consumption of pesticides in ready-to-eat vegetables (salads) in Kumasi, Ghana. Int. J. Food Contam. 2017, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Ssemugabo, C.; Bradman, A.; Ssempebwa, J.C.; Sille, F.; Guwatudde, D. Pesticide Residues in Fresh Fruit and Vegetables from Farm to Fork in the Kampala Metropolitan Area, Uganda. Environ. Health Insights 2022, 16, 11786302221111866. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.P.S.; Bedi, J.S.; Singh, R.; Fairoze, M.N.; Hazarika, R.A.; Gaurav, A.; Satpathy, S.K.; Chauhan, A.S.; Lindahl, J.; Grace, D.; et al. Pesticide Residues in Peri-Urban Bovine Milk from India and Risk Assessment: A Multicenter Study. Sci. Rep. 2020, 10, 8054. [Google Scholar] [CrossRef]
- El-Sheikh, E.A.; Ramadan, M.M.; El-Sobki, A.E.; Shalaby, A.A.; McCoy, M.R.; Hamed, I.A.; Ashour, M.B.; Hammock, B.D. Pesticide Residues in Vegetables and Fruits from Farmer Markets and Associated Dietary Risks. Molecules 2022, 27, 8072. [Google Scholar] [CrossRef]
- El-Sheikh, E.-S.A.; Li, D.; Hamed, I.; Ashour, M.-B.; Hammock, B.D. Residue Analysis and Risk Exposure Assessment of Multiple Pesticides in Tomato and Strawberry and Their Products from Markets. Foods 2023, 12, 1936. [Google Scholar] [CrossRef]
- Bouhala, A.; Lahmar, H.; Benamira, M.; Moussi, A.; Trari, M. Photodegradation of Organophosphorus Pesticides in Honey Medium by Solar Light Irradiation. Bull. Environ. Contam. Toxicol. 2020, 104, 792–798. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority). The 2016 European Union report on pesticide residues in food. EFSA J. 2018, 16, e05348. [Google Scholar] [CrossRef] [Green Version]
- Witczak, A.; Pohoryło, A.; Abdel-Gawad, H.; Cybulski, J. Residues of some organophosphorus pesticides on and in fruits and vegetables available in Poland, an assessment based on the European union regulations and health assessment for human populations. Phosphorus Sulfur Silicon Relat. Elem. 2018, 193, 711–720. [Google Scholar] [CrossRef]
- Mert, A.; Qi, A.; Bygrave, A.; Stotz, H.U. Trends of pesticide residues in foods imported to the United Kingdom from 2000 to 2020. Food Control. 2022, 133, 108616. [Google Scholar] [CrossRef]
- Panseri, S.; Bonerba, E.; Nobile, M.; Di Cesare, F.; Mosconi, G.; Cecati, F.; Arioli, F.; Tantillo, G.; Chiesa, L. Pesticides and Environmental Contaminants in Organic Honeys According to Their Different Productive Areas toward Food Safety Protection. Foods 2020, 9, 1863. [Google Scholar] [CrossRef]
- Nardelli, V.; D’Amico, V.; Ingegno, M.; Della Rovere, I.; Iammarino, M.; Casamassima, F.; Calitri, A.; Nardiello, D.; Li, D.; Quinto, M. Pesticides Contamination of Cereals and Legumes: Monitoring of Samples Marketed in Italy as a Contribution to Risk Assessment. Appl. Sci. 2021, 11, 7283. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority); Carrasco Cabrera, L.; Di Piazza, G.; Dujardin, B.; Medina Pastor, P. The 2021 European Union report on pesticide residues in food. EFSA J. 2023, 21, e07939. [Google Scholar] [CrossRef]
- de Jong, E.; van der Voet, H.; Marx-Stoelting, P.; Bennekou, S.H.; Sprong, C.; Bloch, D.; Burchardt, A.; Lasch, A.; Opialla, T.; Rotter, S.; et al. Roadmap for action on Risk Assessment of Combined Exposure to Multiple Chemicals (RACEMiC). EFSA Support. Publ. 2022, 19, 7555E. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). International framework dealing with human risk assessment of combined exposure to multiple chemicals. EFSA J. 2013, 11, 2125. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA J. 2019, 17, e05634. [Google Scholar] [CrossRef] [Green Version]
- EFSA (European Food Safety Authority); Anastassiadou, M.; Choi, J.; Coja, T.; Dujardin, B.; Hart, A.; Hernandez-Jerrez, A.F.; Jarrah, S.; Lostia, A.; Machera, K. Mohimont Cumulative dietary risk assessment of chronic acetylcholinesterase inhibition by residues of pesticides 2021. EFSA J. 2021, 19, 6392. [Google Scholar] [CrossRef]
- Geissen, V.; Silva, V.; Lwanga, E.H.; Beriot, N.; Oostindie, K.; Bin, Z.; Pyne, E.; Busink, S.; Zomer, P.; Mol, H.; et al. Cocktails of pesticide residues in conventional and organic farming systems in EuropeLegacy of the past and turning point for the future. Environ. Pollut. 2021, 278, 116827. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, I.; Kalian, A.D.; Di Nicola, M.R.; Dujardin, B.; Levorato, S.; Mohimont, L.; Nathanail, A.V.; Carnessechi, E.; Astuto, M.C.; Tarazona, J.V.; et al. Risk Assessment of Combined Exposure to Multiple Chemicals at the European Food Safety Authority: Principles, Guidance Documents, Applications and Future Challenges. Toxins 2023, 15, 40. [Google Scholar] [CrossRef] [PubMed]
- Rempelos, L.; Wang, J.; Baranski, M.; Watson, A.; Volakakis, N.; Hoppe, H.W.; Kuhn-Velten, W.N.; Hadall, C.; Hasanaliyeva, G.; Chatzidimitriou, E.; et al. Diet and food type affect urinary pesticide residue excretion profiles in healthy individuals: Results of a randomized controlled dietary intervention trial. Am. J. Clin. Nutr. 2022, 115, 364–377. [Google Scholar] [CrossRef]
- Vasylieva, N.; Barnych, B.; Wan, D.; El-Sheikh, E.A.; Nguyen, H.M.; Wulff, H.; McMahen, R.; Strynar, M.; Gee, S.J.; Hammock, B.D. Hydroxy-fipronil is a new urinary biomarker of exposure to fipronil. Environ. Int. 2017, 103, 91–98. [Google Scholar] [CrossRef]
- Andersen, H.R.; Rambaud, L.; Riou, M.; Buekers, J.; Remy, S.; Berman, T.; Govarts, E. Exposure Levels of Pyrethroids, Chlorpyrifos and Glyphosate in EU-An Overview of Human Biomonitoring Studies Published since 2000. Toxics 2022, 10, 789. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Statement on the available outcomes of the human health assessment in the context of the pesticides peer review of the active substance chlorpyrifos. EFSA J. 2019, 17, e05809. [Google Scholar] [CrossRef]
- Qiang, S.; Mohamed, F.; Mackenzie, L.; Roberts, M.S. Rapid determination of polyethoxylated tallow amine surfactants in human plasma by LC-MSMS. Talanta 2023, 254, 124115. [Google Scholar] [CrossRef]
- Mie, A.; Andersen, H.R.; Gunnarsson, S.; Kahl, J.; Kesse-Guyot, E.; Rembiałkowska, E.; Quaglio, G.; Grandjean, P. Human health implications of organic food and organic agriculture: A comprehensive review. Environ. Health 2017, 16, 111. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Ramos, M.d.M.; Nannou, C.; Martínez Bueno, M.J.; Goday, A.; Murcia-Morales, M.; Ferrer, C.; Fernández-Alba, A.R. Pesticide residues evaluation of organic crops. A critical appraisal. Food Chem. X 2020, 5, 100079. [Google Scholar] [CrossRef]
- Rebouillat, P.; Vidal, R.; Cravedi, J.P.; Taupier-Letage, B.; Debrauwer, L.; Gamet-Payrastre, L.; Touvier, M.; Hercberg, S.; Lairon, D.; Baudry, J.; et al. Estimated dietary pesticide exposure from plant-based foods using NMF-derived profiles in a large sample of French adults. Eur. J. Nutr. 2021, 60, 1475–1488. [Google Scholar] [CrossRef] [PubMed]
- Witczak, A.; Abdel-Gawad, H. Comparison of organochlorine pesticides and polychlorinated biphenyls residues in vegetables, grain and soil from organic and conventional farming in Poland. J. Environ. Sci. Health. Part. B Pestic. Food Contam. Agric. Wastes 2012, 47, 343–354. [Google Scholar] [CrossRef] [PubMed]
- EC European Commission Regulation (EC) No 850/2004 of the European Parliament and of the Council of 29 April 2004 on Persistent Organic Pollutants and Amending Directive 79/117/EEC 2009. Available online: http://data.europa.eu/eli/reg/2004/850/2009-05-05 (accessed on 23 June 2023).
- Sivaperumal, P.; Thasale, R.; Kumar, D.; Mehta, T.G.; Limbachiya, R. Human health risk assessment of pesticide residues in vegetable and fruit samples in Gujarat State, India. Heliyon 2022, 8, e10876. [Google Scholar] [CrossRef]
- Yao, R.; Yao, S.; Ai, T.; Huang, J.; Liu, Y.; Sun, J. Organophosphate Pesticides and Pyrethroids in Farmland of the Pearl River Delta, China: Regional Residue, Distributions and Risks. Int. J. Environ. Res. Public Health 2023, 20, 1017. [Google Scholar] [CrossRef]
- European Parliament and the Council Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009L0128 (accessed on 6 June 2023).
- Tataridas, A.; Kanatas, P.; Chatzigeorgiou, A.; Zannopoulos, S.; Travlos, I. Sustainable Crop and Weed Management in the Era of the EU Green Deal: A Survival Guide. Agronomy 2022, 12, 589. [Google Scholar] [CrossRef]
- Helepciuc, F.-E.; Todor, A. Greener European Agriculture? Evaluating EU Member States’ Transition Efforts to Integrated Pest Management through Their National Action Plans. Agronomy 2022, 12, 2438. [Google Scholar] [CrossRef]
- Umetsu, N.; Shirai, Y. Development of novel pesticides in the 21st century. J. Pestic. Sci. 2020, 45, 54–74. [Google Scholar] [CrossRef] [Green Version]
- Damalas, C.A.; Koutroubas, S.D. Current Status and Recent Developments in Biopesticide Use. Agriculture 2018, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Iammarino, M.; Panseri, S.; Unlu, G.; Marchesani, G.; Bevilacqua, A. Editorial: Novel chemical, microbiological and physical approaches in food safety control. Front. Nutr. 2022, 9, 1060480. [Google Scholar] [CrossRef]
- Iammarino, M.; Palermo, C.; Tomasevic, I. Advanced Analysis Techniques of Food Contaminants and Risk Assessment-Editorial. Appl. Sci. 2022, 12, 4863. [Google Scholar] [CrossRef]
- EFSA-SANTE. EFSA-SANTE Action Plan on Cumulative Risk Assessment for Pesticides Residues. Standing Committee for Plants, Animals, Food and Feed, Section Phytopharmaceuticals, Pesticide Residues. SANTE/10178/2021. 2021. Available online: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_cum-risk-ass_sante-10178-2021.pdf (accessed on 24 March 2023).
- Rawtani, D.; Khatri, N.; Tyagi, S.; Pandey, G. Nanotechnology-based recent approaches for sensing and remediation of pesticides. J. Environ. Manag. 2018, 206, 749–762. [Google Scholar] [CrossRef]
- Zamora-Sequeira, R.; Starbird-Pérez, R.; Rojas-Carillo, O.; Vargas-Villalobos, S. What are the Main Sensor Methods for Quantifying Pesticides in Agricultural Activities? A Review. Molecules 2019, 24, 2659. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; AlKafaas, S.S.; Bornman, C.; Apollon, W.; Hussien, A.M.; Badawy, A.E.; Amer, M.H.; Kamel, M.B.; Mekawy, E.A.; Bedair, H. The application of rapid test paper technology for pesticide detection in horticulture crops: A comprehensive review. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 73. [Google Scholar] [CrossRef]
- Pelton, R. Bioactive paper provides a low-cost platform for diagnostics. Trends Anal. Chem. 2009, 28, 925–942. [Google Scholar] [CrossRef] [PubMed]
- Sicard, C.; Glen, C.; Aubie, B.; Wallace, D.; Jahanshahi-Anbuhi, S.; Pennings, K.; Daigger, G.T.; Pelton, R.; Brennan, J.D.; Filipe, C.D.M. Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Res. 2015, 70, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Phongphut, A.; Chayasombat, B.; Cass, A.E.G.; Phisalaphong, M.; Prichanont, S.; Thanachayanont, C.; Chodjarusawad, T. Biosensors Based on Acetylcholinesterase Immobilized on Clay–Gold Nanocomposites for the Discrimination of Chlorpyrifos and Carbaryl. ACS Omega 2022, 7, 39848–39859. [Google Scholar] [CrossRef]
- Jia, M.; Zhombo, E.; Zhai, F.; Bing, X. Rapid Multi-Residue Detection Methods for Pesticides and Veterinary Drugs. Molecules 2020, 25, 3590. [Google Scholar] [CrossRef]
- Garvey, J.; Walsh, T.; Devaney, E.; King, T.; Kilduff, R. Multi-residue analysis of pesticide residues and polychlorinated biphenyls in fruit and vegetables using orbital ion trap high-resolution accurate mass spectrometry. Anal. Bioanal. Chem. 2020, 412, 7113–7121. [Google Scholar] [CrossRef]
- Hajrulai-Musliu, Z.; Uzunov, R.; Jovanov, S.; Jankuloski, D.; Stojkovski, V.; Pendovski, L.; Sasanya, J.J. A new LC-MS/MS method for multiple residues/contaminants in bovine meat. BMC Chem. 2021, 15, 62. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.; Hakme, E.; Ninga, E.; Frandsen, H.L. Analysis of veterinary drug- and pesticide residues in pig muscle by LC-QTOF-MS. Food Control. 2023, 148, 109656. [Google Scholar] [CrossRef]
- BS EN 15662:2018; Foods of Plant Origin—Multimethod for the Determination of Pesticide Residues Using GC- and LC-Based Analysis Following Acetonitrile Extraction/Partitioning and Clean-Up by Dispersive SPE. Modular QuEChERS-Method. B S I Standards: Hemel Hempstead, UK, 2018.
- Ninga, E.; Lehotay, S.J.; Sapozhnikova, Y.; Lightfield, A.R.; Strahan, G.D.; Monteiro, S.H. Analysis of pesticides, veterinary drugs, and environmental contaminants in goat and lamb by the QuEChERSER mega-method. Anal. Methods 2022, 14, 2761–2770. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, S.H.; Lehotay, S.J.; Sapozhnikova, Y.; Ninga, E.; Moura Andrade, G.C.R.; Lightfield, A.R. Validation of the QuEChERSER mega-method for the analysis of pesticides, veterinary drugs, and environmental contaminants in tilapia (Oreochromis Niloticus). Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess 2022, 39, 699–709. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef] [Green Version]
- Nayak, S.B.; Sahoo, A.K.; Kolanthasamy, E.; Rao, K. Role of pesticide application in environmental degradation and its remediation strategies. In Environmental Degradation: Causes and Remediation Strategies: Volume 1; Kumar, V., Singh, J., Kumar, P., Eds.; Agro Environ Media: Uttarakhand, India, 2020; pp. 36–46. [Google Scholar]
- Hussain, S.; Siddique, T.; Arshad, M.; Saleem, M. Bioremediation and phytoremediation of pesticides: Recent advances. Crit. Rev. Environ. Sci. Technol. 2009, 39, 843–907. [Google Scholar] [CrossRef]
- Ning, J.; Gang, G.; Bai, Z.; Hu, Q.; Qi, H.; Ma, A.; Zhuan, X.; Zhuang, G. In situ enhanced bioremediation of dichlorvos by a phyllosphere Flavobacterium strain. Front. Environ. Sci. Eng. 2012, 6, 231–237. [Google Scholar] [CrossRef]
- Ozdal, M.; Ozdal, O.G.; Algur, O.F.; Kurbanoglu, E.B. Biodegradation of α-endosulfan via hydrolysis pathway by Stenotrophomonas maltophilia OG2. 3 Biotech 2017, 7, 113. [Google Scholar] [CrossRef] [Green Version]
- Ramu, S.; Seetharaman, B. Biodegradation of acephate and methamidophos by a soil bacterium Pseudomonas aeruginosa strain Is-6. J. Environ. Sci. Health Part B 2014, 49, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Xiao, L.; Li, F.; Xiao, M.; Lin, D.; Long, X.; Wu, Z. Microbial Degradation of Pesticide Residues and an Emphasis on the Degradation of Cypermethrin and 3-phenoxy Benzoic Acid: A Review. Molecules 2018, 23, 2313. [Google Scholar] [CrossRef] [Green Version]
- Wolicka, D.; Suszek, A.; Borkowski, A.; Bielecka, A. Application of aerobic microorganisms in bioremediation in situ of soil contaminated by petroleum products. Bioresour. Technol. 2009, 100, 3221–3227. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, M.; da Fonseca, M.M.; de Carvalho, C.C. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 2011, 22, 231–241. [Google Scholar] [CrossRef]
- Iyer, R.; Iken, B.; Damania, A. A comparison of organophosphate degradation genes and bioremediation applications. Environ. Microbiol. Rep. 2013, 5, 787–798. [Google Scholar] [CrossRef]
- Dvořák, P.; Nikel, P.I.; Damborský, J.; de Lorenzo, V. Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol. Adv. 2017, 35, 845–866. [Google Scholar] [CrossRef] [Green Version]
- Briceño, G.; Palma, G.; Durán, N. Influence of Organic Amendment on the Biodegradation and Movement of Pesticides. Crit. Rev. Environ. Sci. Technol. 2007, 37, 233–271. [Google Scholar] [CrossRef]
- Choi, M.K.; Kim, K.D.; Ahn, K.M.; Shin, D.H.; Hwang, J.H.; Seong, C.N.; Ka, J.O. Genetic and phenotypic diversity of parathion-degrading bacteria isolated from rice paddy soils. J. Microbiol. Biotechnol. 2009, 19, 1679–1687. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.K.; Walker, A.; Morgan, J.A.; Wright, D.J. Biodegradation of chlorpyrifos by enterobacter strain B-14 and its use in bioremediation of contaminated soils. Appl. Environ. Microbiol. 2004, 70, 4855–4863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanika, E.; Georgiadou, D.; Soueref, E.; Karas, P.; Karanasios, E.; Tsiropoulos, N.G.; Tzortzakakis, E.A.; Karpouzas, D.G. Isolation of soil bacteria able to hydrolyze both organophosphate and carbamate pesticides. Bioresour. Technol. 2011, 102, 3184–3192. [Google Scholar] [CrossRef] [PubMed]
- Cycoń, M.; Wójcik, M.; Piotrowska-Seget, Z. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere 2009, 76, 494–501. [Google Scholar] [CrossRef]
- Singh, B.K.; Walker, A. Microbial degradation of organophosphorus compounds. FEMS Microbiol. Rev. 2006, 30, 428–471. [Google Scholar] [CrossRef] [Green Version]
- Caceres, T.P.; Megharaj, M.; Naidu, R. Biodegradation of the pesticide fenamiphos by ten different species of green algae and cyanobacteria. Curr. Microbiol. 2008, 57, 643–646. [Google Scholar] [CrossRef]
- Abdelrazek, M.; Abozeid, A.; Eltholth, M.; Abouelenien, F.; El-Midany, S.; Moustafa, N.; Mohamed, R. Bioremediation of a pesticide and selected heavy metals in wastewater from various sources using a consortium of microalgae and cyanobacteria. Slov. Vet. Res. 2019, 56, 61–74. [Google Scholar] [CrossRef]
- Zhao, R.-B.; Bao, H.-Y.; Liu, Y.-X. Isolation and Characterization of Penicillium oxalicum ZHJ6 for Biodegradation of Methamidophos. Agric. Sci. China 2010, 9, 695–703. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, D.; Han, J. Isolation and Characterization of Dimethoate Degrading Phytopathogen Fungus from Soil. In Proceedings of the 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China, 11–13 June 2009; pp. 1–4. [Google Scholar]
- Tian, J.; Dong, Q.; Yu, C.; Zhao, R.; Wang, J.; Chen, L. Biodegradation of the Organophosphate Trichlorfon and Its Major Degradation Products by a Novel Aspergillus sydowii PA F-2. J. Agric. Food Chem. 2016, 64, 4280–4287. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, C.; Peng, C.; Liu, H.; Hu, M.; Zhong, G. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS ONE 2012, 7, e47205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, R.; Veena, G.; Singh, K.; Sheetal, G. Isolation and characterization of monocrotophos degrading activity of soil fungal isolate Aspergillus Niger MCP1 (ITCC7782.10). Int. J. Environ. Sci. 2012, 3, 841–850. [Google Scholar] [CrossRef]
- Gaber, S.E.; Hussain, M.T.; Jahin, H.S. Bioremediation of diazinon pesticide from aqueous solution by fungal-strains isolated from wastewater. World J. Chem. 2020, 15, 15–23. [Google Scholar]
- Sethunathan, N.; Yoshida, T. A Flavobacterium sp. that degrades diazinon and parathion. Can. J. Microbiol. 1973, 19, 873–875. [Google Scholar] [CrossRef]
- Serdar, C.M.; Gibson, D.T.; Munnecke, D.M.; Lancaster, J.H. Plasmid Involvement in Parathion Hydrolysis by Pseudomonas diminuta. Appl. Environ. Microbiol. 1982, 44, 246–249. [Google Scholar] [CrossRef] [Green Version]
- Lyagin, I.; Efremenko, E. Enzymes, Reacting with Organophosphorus Compounds as Detoxifiers: Diversity and Functions. Int. J. Mol. Sci. 2021, 22, 1761. [Google Scholar] [CrossRef]
- Theriot, C.M.; Grunden, A.M. Hydrolysis of organophosphorus compounds by microbial enzymes. Appl. Microbiol. Biotechnol. 2011, 89, 35–43. [Google Scholar] [CrossRef]
- Sogorb, M.A.; Vilanova, E. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol. Lett. 2002, 128, 215–228. [Google Scholar] [CrossRef]
- Ragnarsdottir, K.V. Environmental fate and toxicology of organophosphate pesticides. J. Geol. Soc. 2000, 157, 859–876. [Google Scholar] [CrossRef]
- Haque, M.A.; Hong, S.Y.; Hwang, C.E.; Kim, S.C.; Cho, K.M. Cloning of an organophosphorus hydrolase (opdD) gene of Lactobacillus sakei WCP904 isolated from chlorpyrifos-impregnated kimchi and hydrolysis activities of its gene product for organophosphorus pesticides. Appl. Biol. Chem. 2018, 61, 643–651. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Zhang, N.; Xing, Y.; Lian, L.; Chen, Y.; Zhang, D.; Li, G.; Sun, G.; Song, Y. Microbial degradation of organophosphorus pesticides: Novel degraders, kinetics, functional genes, and genotoxicity assessment. Environ. Sci. Pollut. Res. 2019, 26, 21668–21681. [Google Scholar] [CrossRef] [PubMed]
- Alejo-Gonzalez, K.; Hanson-Viana, E.; Vazquez-Duhalt, R. Enzymatic detoxification of organophosphorus pesticides and related toxicants. J. Pestic. Sci. 2018, 43, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, S.R.; Raushel, F.M. Detoxification of organophosphate pesticides using an immobilized phosphotriesterase from Pseudomonas diminuta. Biotechnol. Bioeng. 1991, 37, 103–109. [Google Scholar] [CrossRef]
- Benning, M.M.; Shim, H.; Raushel, F.M.; Holden, H.M. High resolution X-ray structures of different metal-substituted forms of phosphotriesterase from Pseudomonas diminuta. Biochemistry 2001, 40, 2712–2722. [Google Scholar] [CrossRef]
- Kang, D.G.; Li, L.; Ha, J.H.; Choi, S.S.; Cha, H.J. Efficient cell surface display of organophosphorous hydrolase using N-terminal domain of ice nucleation protein in Escherichia coli. Korean J. Chem. Eng. 2008, 25, 804–807. [Google Scholar] [CrossRef]
- Horne, I.; Sutherland, T.D.; Harcourt, R.L.; Russell, R.J.; Oakeshott, J.G. Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl. Environ. Microbiol. 2002, 68, 3371–3376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawson, R.M.; Pantelidis, S.; Rose, H.R.; Kotsonis, S.E. Degradation of nerve agents by an organophosphate-degrading agent (OpdA). J. Hazard. Mater. 2008, 157, 308–314. [Google Scholar] [CrossRef]
- Anderson, B.; Phillips, B.; Hunt, J.; Largay, B.; Shihadeh, R.; Tjeerdema, R. Pesticide and toxicity reduction using an integrated vegetated treatment system. Environ. Toxicol. Chem. 2011, 30, 1036–1043. [Google Scholar] [CrossRef]
- Scott, C.; Begley, C.; Taylor, M.J.; Pandey, G.; Momiroski, V.; French, N.; Brearley, C.; Kotsonis, S.E.; Selleck, M.J.; Carino, F.A.; et al. Free-Enzyme Bioremediation of Pesticides. In Pesticide Mitigation Strategies for Surface Water Quality; ACS Symposium Series; American Chemical Society: Washington, WA, USA, 2011; Volume 1075, pp. 155–174. [Google Scholar]
- DeFrank, J.J.; Cheng, T.C. Purification and properties of an organophosphorus acid anhydrase from a halophilic bacterial isolate. J. Bacteriol. 1991, 173, 1938–1943. [Google Scholar] [CrossRef] [Green Version]
- Jain, M.; Yadav, P.; Joshi, B.; Joshi, A.; Kodgire, P. A novel biosensor for the detection of organophosphorus (OP)-based pesticides using organophosphorus acid anhydrolase (OPAA)-FL variant. Appl. Microbiol. Biotechnol. 2021, 105, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K. Organophosphorus-degrading bacteria: Ecology and industrial applications. Nat. Rev. Microbiol. 2009, 7, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Kulshreshtha, S.; Mathur, N.; Bhatnagar, P. Mushroom as a product and their role in mycoremediation. AMB Express 2014, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Pandey, C.; Prabha, D.; Negi, Y.K. Mycoremediation of Common Agricultural Pesticides. In Mycoremediation and Environmental Sustainability: Volume 2; Prasad, R., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 155–179. [Google Scholar]
- Adenipekun, C.O.; Lawal, R. Uses of mushrooms in bioremediation: A Review. Biotechnol. Mol. Biol. Rev. 2012, 7, 62–68. [Google Scholar] [CrossRef]
- Hock, W.; Sisler, H. Metabolism of Chloroneb by Rhizoctonia solani and Other Fungi. J. Agric. Food Chem. 1969, 17, 123–128. [Google Scholar] [CrossRef]
- Singh, H. Fungal Degradation of Pesticides. In Mycoremediation: Fungal Bioremediation; Singh, H., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 181–214. [Google Scholar]
- Katayama, A.; Matsumura, F. Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environ. Toxicol. Chem. 1993, 12, 1059–1065. [Google Scholar] [CrossRef]
- George, N.; Chauhan, P.; Sondhi, S.; Saini, S.; Puri, N.; Gupta, N. Biodegradation and Analytical Methods for Detection of Organophosphorous Pesticide: Chlorpyrifos. Int. J. Pure Appl. Sci. Technol. 2014, 20, 79–94. [Google Scholar]
- Rao, A.V.; Sethunathan, N. Degradation of parathion by Penicillium waksmanii Zaleski isolated from flooded acid sulphate soil. Arch. Microbiol. 1974, 97, 203–208. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Ahn, J.-Y.; Moon, S.-H.; Lee, J. Biodegradation and detoxification of organophosphate insecticide, malathion by Fusarium oxysporum f. sp. pisi cutinase. Chemosphere 2005, 60, 1349–1355. [Google Scholar] [CrossRef]
- Mir, Z.A.; Bharose, R.; Lone, A.H.; Malik, Z.A. Review on phytoremediation: An ecofriendly and green technology for removal of heavy metals. Crop Res. 2017, 52, 74–82. [Google Scholar]
- Truua, J.; Truu, J.; Espenberg, M.; Nõlvak, H.; Juhanson, J. Phytoremediation And Plant-Assisted Bioremediation In Soil And Treatment Wetlands: A Review. Open Biotechnol. J. 2015, 9, 85–92. [Google Scholar] [CrossRef]
- Tonelli, F.C.P.; Tonelli, F.M.P.; Lemos, M.S.; Nunes, N.A.d.M. Chapter 3—Mechanisms of phytoremediation. In Phytoremediation; Bhat, R.A., Tonelli, F.M.P., Dar, G.H., Hakeem, K., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 37–64. [Google Scholar]
- Bhalla, G.; Bhalla, B.; Kumar, V.; Sharma, A. Chapter 16—Bioremediation and phytoremediation of pesticides residues from contaminated water: A novel approach. In Pesticides Remediation Technologies from Water and Wastewater; Hadi Dehghani, M., Karri, R.R., Anastopoulos, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 339–363. [Google Scholar]
- Singh, T.; Singh, D.K. Phytoremediation of organochlorine pesticides: Concept, method, and recent developments. Int. J. Phytoremediation 2017, 19, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-Fernández, J.B.; Martínez-Rizo, A.B.; Ramírez-Sandoval, M.; Domínguez-Ojeda, D. Biodegradation and bioremediation of organic pesticides. Pestic.-Recent Trends Pestic. Residue Assay 2012, 253–272. [Google Scholar] [CrossRef] [Green Version]
- Takkar, S.; Shandilya, C.; Agrahari, R.; Chaurasia, A.; Vishwakarma, K.; Mohapatra, S.; Varma, A.; Mishra, A. Green technology: Phytoremediation for pesticide pollution. In Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water; Elsevier: Amsterdam, The Netherlands, 2022; pp. 353–375. [Google Scholar]
- Trapp, S.; Karlson, U. Aspects of phytoremediation of organic pollutants. J. Soils Sediments 2001, 1, 37–43. [Google Scholar] [CrossRef]
- Misra, N.N.; Pankaj, S.K.; Walsh, T.; O’Regan, F.; Bourke, P.; Cullen, P.J. In-package nonthermal plasma degradation of pesticides on fresh produce. J. Hazard. Mater. 2014, 271, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.-A.; Sutar, P.P.; Bian, Q.; Fang, X.-M.; Ni, J.-B.; Xiao, H.-W. Pesticide residue elimination for fruits and vegetables: The mechanisms, applications, and future trends of thermal and non-thermal technologies. J. Future Foods 2022, 2, 223–240. [Google Scholar] [CrossRef]
- Hanafi, A.; Elsheshetawy, H.E.; Faied, S.F. Reduction of pesticides residues on okra fruits by different processing treatments. J. Für Verbraucherschutz Und Leb. 2016, 11, 337–343. [Google Scholar] [CrossRef]
- Ranjitha Gracy, T.K.; Sharanyakanth, P.S.; Radhakrishnan, M. Non-thermal technologies: Solution for hazardous pesticides reduction in fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2022, 62, 1782–1799. [Google Scholar] [CrossRef]
- Yang, L.; Hai, C.; Zhang, H.; Feng, C.; Luo, M.; Zhou, P.; Leng, J.; Tian, X.; Zhao, C.; Lai, B. Insights into the role of oxidation and adsorption for degradation of methyl parathion by ferrate (VI). J. Environ. Chem. Eng. 2023, 11, 110171. [Google Scholar] [CrossRef]
- Wang, J.; Yue, W.; Teng, Y.; Zhai, Y.; Zhu, H. Degradation kinetics and transformation pathway of methyl parathion by δ-MnO2/oxalic acid reaction system. Chemosphere 2023, 320, 138054. [Google Scholar] [CrossRef] [PubMed]
- Alhalili, Z. Metal Oxides Nanoparticles: General Structural Description, Chemical, Physical, and Biological Synthesis Methods, Role in Pesticides and Heavy Metal Removal through Wastewater Treatment. Molecules 2023, 28, 3086. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, J.; Khatri, M.; Arya, S.K. A treatise on Organophosphate pesticide pollution: Current strategies and advancements in their environmental degradation and elimination. Ecotoxicol. Environ. Saf. 2021, 207, 111483. [Google Scholar] [CrossRef]
- Xiao, Q.; Xuan, X.; Boczkaj, G.; Yoon, J.Y.; Sun, X. Photolysis for the Removal and Transformation of Pesticide Residues During Food Processing: A State-of-the-Art Minireview. Front. Nutr. 2022, 9, 888047. [Google Scholar] [CrossRef] [PubMed]
- Abedi-Firoozjah, R.; Ghasempour, Z.; Khorram, S.; Khezerlou, A.; Ehsani, A. Non-thermal techniques: A new approach to removing pesticide residues from fresh products and water. Toxin Rev. 2021, 40, 562–575. [Google Scholar] [CrossRef]
- Velioglu, Y.; Fikirdeşici Ergen, S.; Aksu, P.; Altindağ, A. Effects of Ozone Treatment on the Degradation and Toxicity of Several Pesticides in Different Grou. J. Agric. Sci. 2018, 24, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Alsager, O.A.; Alnajrani, M.N.; Alhazzaa, O. Decomposition of antibiotics by gamma irradiation: Kinetics, antimicrobial activity, and real application in food matrices. Chem. Eng. J. 2018, 338, 548–556. [Google Scholar] [CrossRef]
- Khedr, T.; Hammad, A.; Elmarsafy, A.; Halawa, E.; Soliman, M. Degradation of some organophosphorus pesticides in aqueous solution by gamma irradiation. J. Hazard. Mater. 2019, 373, 23–28. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, J.; Feng, Y. Removal of pesticide residues from fresh vegetables by the coupled free chlorine/ultrasound process. Ultrason. Sonochemistry 2022, 82, 105891. [Google Scholar] [CrossRef]
- Zhou, Q.; Bian, Y.; Peng, Q.; Liu, F.; Wang, W.; Chen, F. The effects and mechanism of using ultrasonic dishwasher to remove five pesticides from rape and grape. Food Chem. 2019, 298, 125007. [Google Scholar] [CrossRef]
- Pallares, N.; Sebastia, A.; Martinez-Lucas, V.; Gonzalez-Angulo, M.; Barba, F.J.; Berrada, H.; Ferrer, E. High Pressure Processing Impact on Alternariol and Aflatoxins of Grape Juice and Fruit Juice-Milk Based Beverages. Molecules 2021, 26, 3769. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, T.; Maeda, S.; Shimizu, A. Removal of pesticide residue in cherry tomato by hydrostatic pressure. J. Food Eng. 2013, 116, 796–800. [Google Scholar] [CrossRef]
- Cherif, M.M.; Assadi, I.; Khezami, L.; Ben Hamadi, N.; Assadi, A.A.; Elfalleh, W. Review on Recent Applications of Cold Plasma for Safe and Sustainable Food Production: Principles, Implementation, and Application Limits. Appl. Sci. 2023, 13, 2381. [Google Scholar] [CrossRef]
- Zhou, R.; Zhou, R.; Yu, F.; Xi, D.; Wang, P.; Li, J.; Wang, X.; Zhang, X.; Bazaka, K.; Ostrikov, K. Removal of organophosphorus pesticide residues from Lycium barbarum by gas phase surface discharge plasma. Chem. Eng. J. 2018, 342, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Ranjitha Gracy, T.K.; Gupta, V.; Radhakrishnan, M. Influence of low-pressure non-thermal dielectric barrier discharge (DBD) plasma on chlorpyrifos reduction in tomatoes. J. Food Process. Eng. 2019, 42, e13242. [Google Scholar] [CrossRef]
- Dorraki, N.; Mahdavi, V.; Ghomi, H.; Ghasempour, A. Elimination of diazinon insecticide from cucumber surface by atmospheric pressure air-dielectric barrier discharge plasma. Biointerphases 2016, 11, 041007. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, S.; Dang, J.; Wang, S.; Liu, Z.; Fang, J.; Han, P.; Zhang, J. Reduction of phoxim pesticide residues from grapes by atmospheric pressure non-thermal air plasma activated water. J. Hazard. Mater. 2019, 377, 98–105. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul-Malek, Z.; Roobab, U.; Munir, M.A.; Naderipour, A.; Qureshi, M.I.; El-Din Bekhit, A.; Liu, Z.-W.; Aadil, R.M. Pulsed electric field: A potential alternative towards a sustainable food processing. Trends Food Sci. Technol. 2021, 111, 43–54. [Google Scholar] [CrossRef]
- Lozowicka, B.; Jankowska, M.; Hrynko, I.; Kaczynski, P. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environ. Monit. Assess. 2016, 188, 51. [Google Scholar] [CrossRef] [Green Version]
- Akdemir Evrendilek, G.; Keskin, E.; Golge, O. Interaction and multi-objective effects of multiple non-thermal treatments of sour cherry juice: Pesticide removal, microbial inactivation, and quality preservation. J. Sci. Food Agric. 2020, 100, 1653–1661. [Google Scholar] [CrossRef]
- Tomer, V. Vegetable Processing At Household Level: Effective Tool Against Pesticide Residue Exposure. IOSR J. Environ. Sci. Toxicol. Food Technol. 2013, 6, 43–53. [Google Scholar] [CrossRef]
- Yuan, Z.; Yao, J.; Liu, H.; Han, J.; Trebse, P. Photodegradation of organophosphorus pesticides in honey medium. Ecotoxicol. Environ. Saf. 2014, 108, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.W.; Shahbaz, H.M.; Kim, J.U.; Kim, D.-H.; Yoon, S.; Jeong, S.H.; Park, J.; Lee, D.-U. Photolysis and TiO2 Photocatalytic Treatment under UVC/VUV Irradiation for Simultaneous Degradation of Pesticides and Microorganisms. Appl. Sci. 2020, 10, 4493. [Google Scholar] [CrossRef]
- Yang, L.; Li, M.; Li, W.; Jiang, Y.; Qiang, Z. Bench- and pilot-scale studies on the removal of pesticides from water by VUV/UV process. Chem. Eng. J. 2018, 342, 155–162. [Google Scholar] [CrossRef]
- Savic, J.Z.; Petrovic, S.Z.; Leskovac, A.R.; Lazarevic Pasti, T.D.; Nastasijevic, B.J.; Tanovic, B.B.; Gasic, S.M.; Vasic, V.M. UV-C light irradiation enhances toxic effects of chlorpyrifos and its formulations. Food Chem. 2019, 271, 469–478. [Google Scholar] [CrossRef]
- Papagiannaki, D.; Medana, C.; Binetti, R.; Calza, P.; Roslev, P. Effect of UV-A, UV-B and UV-C irradiation of glyphosate on photolysis and mitigation of aquatic toxicity. Sci. Rep. 2020, 10, 20247. [Google Scholar] [CrossRef]
- Baranda, A.B.; Fundazuri, O.; Martínez de Marañón, I. Photodegradation of several triazidic and organophosphorus pesticides in water by pulsed light technology. J. Photochem. Photobiol. A Chem. 2014, 286, 29–39. [Google Scholar] [CrossRef]
- El-Saeid, M.H.; Alotaibi, M.O.; Alshabanat, M.; Alharbi, K.; Altowyan, A.S.; Al-Anazy, M. Photo-Catalytic Remediation of Pesticides in Wastewater Using UV/TiO2. Water 2021, 13, 3080. [Google Scholar] [CrossRef]
- Kaur, R.; Singh, D.; Kumari, A.; Sharma, G.; Rajput, S.; Arora, S.; Kaur, R. Pesticide residues degradation strategies in soil and water: A review. Int. J. Environ. Sci. Technol. 2023, 20, 3537–3560. [Google Scholar] [CrossRef]
- Jafari, S.J.; Moussavi, G.; Hossaini, H. Degradation and mineralization of diazinon pesticide in UVC and UVC/TiO2 process. Desalination Water Treat. 2016, 57, 3782–3790. [Google Scholar] [CrossRef]
- Gupta, V.K.; Eren, T.; Atar, N.; Yola, M.L.; Parlak, C.; Karimi-Maleh, H. CoFe2O4@TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos. J. Mol. Liq. 2015, 208, 122–129. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Y.; Yan, X.; Duan, J.; Saint, C.P.; Beecham, S. Transformation pathway and toxicity assessment of malathion in aqueous solution during UV photolysis and photocatalysis. Chemosphere 2019, 234, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Di Vaio, A.; Boccia, F.; Landriani, L.; Palladino, R. Artificial Intelligence in the Agri-Food System: Rethinking Sustainable Business Models in the COVID-19 Scenario. Sustainability 2020, 12, 4851. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, J.W.; Li, J.; Han, B. Designing future crops: Challenges and strategies for sustainable agriculture. Plant J. 2021, 105, 1165–1178. [Google Scholar] [CrossRef] [PubMed]
- European Union. Farm to Fork Strategy. For a Fair, Healthy and Environmentally-Friendly Food System; European Union: Brussels, Belgium, 2020. [Google Scholar]
- McGinley, J.; Healy, M.G.; Ryan, P.C.; Harmon O’Driscoll, J.; Mellander, P.E.; Morrison, L.; Siggins, A. Impact of historical legacy pesticides on achieving legislative goals in Europe. Sci. Total Environ. 2023, 873, 162312. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Khunger, A.; Wallen, S.L.; Kaushik, A.; Chaudhary, G.R.; Varma, R.S. Advanced green analytical chemistry for environmental pesticide detection. Curr. Opin. Green Sustain. Chem. 2021, 30, 100488. [Google Scholar] [CrossRef]
- Chaudhary, V.; Rustagi, S.; Kaushik, A. Bio-derived smart nanostructures for efficient biosensors. Curr. Opin. Green Sustain. Chem. 2023, 42, 100817. [Google Scholar] [CrossRef]
- Rani, M.; Yadav, J.; Chaudhary, S.; Shanker, U. An updated review on synthetic approaches of green nanomaterials and their application for removal of water pollutants: Current challenges, assessment and future perspectives. J. Environ. Chem. Eng. 2021, 9, 106763. [Google Scholar] [CrossRef]
- Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics 2022, 10, 484. [Google Scholar] [CrossRef]
- Dangi, A.K.; Sharma, B.; Hill, R.T.; Shukla, P. Bioremediation through microbes: Systems biology and metabolic engineering approach. Crit. Rev. Biotechnol. 2019, 39, 79–98. [Google Scholar] [CrossRef]
- Dash, D.M.; Osborne, W.J. A systematic review on the implementation of advanced and evolutionary biotechnological tools for efficient bioremediation of organophosphorus pesticides. Chemosphere 2023, 313, 137506. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.; Yesankar, P.; Bhanse, P.; Maitreya, A.; Kapley, A.; Qureshi, A. Omics Perspective: Molecular Blueprint for Agrochemical Bioremediation Process in the Environment. In Agrochemicals in Soil and Environment: Impacts and Remediation; Naeem, M., Bremont, J.F.J., Ansari, A.A., Gill, S.S., Eds.; Springer Nature: Singapore, 2022; pp. 585–608. [Google Scholar]
- Hassan, S.; Ganai, B.A. Deciphering the recent trends in pesticide bioremediation using genome editing and multi-omics approaches: A review. World J. Microbiol. Biotechnol. 2023, 39, 151. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Shukla, P. Designing synthetic microbial communities for effectual bioremediation: A review. Biocatal. Biotransformation 2020, 38, 405–414. [Google Scholar] [CrossRef]
- Zimny, T. New genomic techniques and their European Union reform. Potential policy changes and their implications. Front. Bioeng. Biotechnol. 2022, 10, 1019081. [Google Scholar] [CrossRef] [PubMed]
- Armenova, N.; Tsigoriyna, L.; Arsov, A.; Petrov, K.; Petrova, P. Microbial Detoxification of Residual Pesticides in Fermented Foods: Current Status and Prospects. Foods 2023, 12, 1163. [Google Scholar] [CrossRef] [PubMed]
- Petrova, P.; Arsov, A.; Tsvetanova, F.; Parvanova-Mancheva, T.; Vasileva, E.; Tsigoriyna, L.; Petrov, K. The Complex Role of Lactic Acid Bacteria in Food Detoxification. Nutrients 2022, 14, 2038. [Google Scholar] [CrossRef]
- Sachithra, V.; Subhashini, L.D.C.S. How artificial intelligence uses to achieve the agriculture sustainability: Systematic review. Artif. Intell. Agric. 2023, 8, 46–59. [Google Scholar] [CrossRef]
- Ghatrehsamani, S.; Jha, G.; Dutta, W.; Molaei, F.; Nazrul, F.; Fortin, M.; Bansal, S.; Debangshi, U.; Neupane, J. Artificial Intelligence Tools and Techniques to Combat Herbicide Resistant Weeds—A Review. Sustainability 2023, 15, 1843. [Google Scholar] [CrossRef]
- Azmi, H.N.; Hajjaj, S.S.H.; Gsangaya, K.R.; Sultan, M.T.H.; Mail, M.F.; Hua, L.S. Design and fabrication of an agricultural robot for crop seeding. Mater. Today Proc. 2023, 81, 283–289. [Google Scholar] [CrossRef]
- Yang, J.; Ma, S.; Li, Y.; Zhang, Z. Efficient Data-Driven Crop Pest Identification Based on Edge Distance-Entropy for Sustainable Agriculture. Sustainability 2022, 14, 7825. [Google Scholar] [CrossRef]
- Zhou, Z.; Majeed, Y.; Diverres Naranjo, G.; Gambacorta, E.M.T. Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications. Comput. Electron. Agric. 2021, 182, 106019. [Google Scholar] [CrossRef]
- Marvin, H.J.P.; Bouzembrak, Y.; Janssen, E.M.; van der Fels-Klerx, H.J.; van Asselt, E.D.; Kleter, G.A. A holistic approach to food safety risks: Food fraud as an example. Food Res. Int. 2016, 89, 463–470. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leskovac, A.; Petrović, S. Pesticide Use and Degradation Strategies: Food Safety, Challenges and Perspectives. Foods 2023, 12, 2709. https://doi.org/10.3390/foods12142709
Leskovac A, Petrović S. Pesticide Use and Degradation Strategies: Food Safety, Challenges and Perspectives. Foods. 2023; 12(14):2709. https://doi.org/10.3390/foods12142709
Chicago/Turabian StyleLeskovac, Andreja, and Sandra Petrović. 2023. "Pesticide Use and Degradation Strategies: Food Safety, Challenges and Perspectives" Foods 12, no. 14: 2709. https://doi.org/10.3390/foods12142709
APA StyleLeskovac, A., & Petrović, S. (2023). Pesticide Use and Degradation Strategies: Food Safety, Challenges and Perspectives. Foods, 12(14), 2709. https://doi.org/10.3390/foods12142709