The Effects of Sheep Tail Fat, Fat Level, and Cooking Time on the Formation of Nε-(carboxymethyl)lysine and Volatile Compounds in Beef Meatballs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Reagents and Standards
2.2. Material
2.3. Meatball Production and Cooking
2.4. Pysicochemical Analysis
2.4.1. pH and TBARSs
2.4.2. Nε-(carboxymethyl)lysine (CML)
2.4.3. Volatile Compounds
2.5. Statistical Analysis
3. Results and Discussion
3.1. pH and TBARSs
3.2. Nε-(carboxymethyl)lysine (CML)
3.3. Volatile Compounds
3.4. Evaluation of the Relationship between Fat Type, Fat Level, Cooking Time, CML, and Volatile Compounds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Etxabide, A.; Kilmartin, P.A.; Maté, J.I.; Prabakar, S.; Brimble, M.; Naffa, R. Analysis of advanced glycation end products in ribose-, glucose-and lactose-crosslinked gelatin to correlate the physical changes induced by Maillard reaction in films. Food Hydrocoll. 2021, 117, 106736. [Google Scholar] [CrossRef]
- Şen, D.; Gökmen, V. Kinetic modeling of Maillard and caramelization reactions in sucrose-rich and low moisture foods applied for roasted nuts and seeds. Food Chem. 2022, 395, 133583. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Guo, A.; Zhang, R.; Shi, L. Mechanism of natural antioxidants regulating advanced glycosylation end products of Maillard reaction. Food Chem. 2022, 404, 134541. [Google Scholar] [CrossRef] [PubMed]
- Lund, M.N.; Ray, C.A. Control of Maillard reactions in foods: Strategies and chemical mechanisms. J. Agric. Food Chem. 2017, 65, 4537–4552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Madl, R.L.; Smith, J.S. Inhibition of advanced glycation end products in cooked beef patties by cereal bran addition. Food Cont. 2017, 73, 847–853. [Google Scholar] [CrossRef]
- Arena, S.; Salzano, A.M.; Renzone, G.; Dambrosio, C.; Scaloni, A. Non-enzymatic glycation and glycoxidation protein products in foods and diseases: An interconnected. complex scenario fully open to innovative proteomic studies. Mass Spectro. Rev. 2013, 33, 49–77. [Google Scholar] [CrossRef]
- Zhu, Z.; Huang, M.; Cheng, Y.; Khan, A.I.; Huang, J. A comprehensive review of Nε-carboxymethyllysine and Nε- carboxyethyllysine in thermal processed meat products. Trends Food Sci. Technol. 2020, 98, 30–40. [Google Scholar] [CrossRef]
- Uribarri, J.; Woodruff, S.; Goodman, S.; Cai, W.; Chen, X.; Pyzik, R.; Yong, A.; Forvet, A.E.; Vlassara, H. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J. Am. Diet. Assoc. 2010, 110, 911–916. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Li, Y.; Chen, Q.; Liu, Y.; Wu, Z.; Pan, D.; Yan, N.; Liu, L. Cereal polyphenols inhibition mechanisms on advanced glycation end products and regulation on type 2 diabetes. Crit. Rev. Food Sci. Nutr. 2023, 24, 1–19. [Google Scholar] [CrossRef]
- Poulsen, W.M.; Hedegaard, V.R.; Andersen, M.J.; Courten, B.; Bügel, S.; Nielsen, J.; Skibsted, H.; Dragsted, O.L. Advanced glycation end products in food and their effects on health. Food Chem. Toxicol. 2013, 60, 10–37. [Google Scholar] [CrossRef]
- Chen, G.; Scott Smith, J. Determination of advanced glycation endproducts in cooked meat products. Food Chem. 2015, 168, 190–195. [Google Scholar] [CrossRef]
- Sun, X.; Tang, J.; Wang, J.; Rasco, A.B.; Lai, K.; Huang, Y. Formation of free and protein-bound carboxymethyllysine and carboxyethyllysine in meats during commercial sterilization. Meat Sci. 2016, 116, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Turgut, S.S.; Işıkçı, F.; Soyer, A. Antioxidant activity of pomegranate peel extract on lipid and protein oxidation in beef meatballs during frozen storage. Meat Sci. 2017, 129, 111–119. [Google Scholar] [CrossRef]
- Şişik Oğraş, Ş.; Akköse, A.; Kaban, G.; Kaya, M. Volatile profile and fatty acid composition of kavurma (a cooked uncured meat product) produced with animal fat combinations. Int. J. Food Prop. 2018, 21, 364–373. [Google Scholar] [CrossRef] [Green Version]
- Akköse, A.; Oğraş, Ş.Ş.; Kaya, M.; Kaban, G. Microbiological, physicochemical and sensorial changes during the ripening of sucuk, a traditional Turkish dry-fermented sausage: Effects of autochthonous strains, sheep tail fat and ripening rate. Fermentation 2023, 9, 558. [Google Scholar] [CrossRef]
- Sallan, S. Influence of sheep tail fat and autochthonous starter culture on the formation of volatile nitrosamines in sucuk. Kafkas Univ. Vet. Fak. Derg. 2023, 29, 171–176. [Google Scholar] [CrossRef]
- Ghafari, H.; Rezaeian, M.; Sharifi, S.D.; Khadem, A.A.; Afzalzadeh, A. Effects of dietary sesame oil on growth performance and fatty acid composition of muscle and tail fat in fattening Chaal lambs. Anim. Feed Sci. Technol. 2016, 220, 216–225. [Google Scholar] [CrossRef]
- Jiang, T.; Busboom, J.R.; Nelson, M.L.; O’Fallon, J.; Ringkob, T.P.; Joos, D.; Piper, K. Effect of sampling fat location and cooking on fatty acid composition of beef steaks. Meat Sci. 2010, 84, 86–92. [Google Scholar] [CrossRef]
- Jiang, T.; Mueller, C.J.; Busboom, J.R.; Nelson, M.L.; O’Fallon, J.; Tschida, G. Fatty acid composition of adipose tissue and muscle from Jersey steers was affected by finishing diet and tissue location. Meat Sci. 2013, 93, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Y.B.; Liu, C.J. Changes in lipid oxidation and fatty acids in altay sheep fat during a long time of low temperature storage. J. Oleo. Sci. 2017, 66, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Ünsal, M.; Aktaş, N. Fractionation and characterization of edible sheep tail fat. Meat Sci. 2003, 63, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xue, C.; Quan, W.; Qin, F.; Wang, Z.; He, Z.; Zeng, M.; Chen, J. Assessment the influence of salt and polyphosphate on protein oxidation and Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine formation in roasted beef patties. Meat Sci. 2021, 177, 108489. [Google Scholar] [CrossRef]
- Yu, L.; Li, Q.; Li, Y.; Yang, Y.; Guo, C.; Li, M. Impact of frozen storage duration of raw pork on the formation of advanced glycation end-products in meatballs. LWT Food Sci. Technol. 2021, 146, 111481. [Google Scholar] [CrossRef]
- Xue, C.; Quan, W.; Li, Y.; He, Z.; Qin, F.; Wang, Z.; Zeng, M. Mitigative capacity of Kaempferia galanga L. and kaempferol on heterocyclic amines and advanced glycation end products in roasted beef patties and related mechanistic analysis by density functional theory. Food Chem. 2022, 385, 132660. [Google Scholar] [CrossRef]
- Kaban, G.; Sallan, S.; Çinar Topçu, K.; Sayın Börekçi, B.; Kaya, M. Assessment of technological attributes of autochthonous starter cultures in Turkish dry fermented sausage (sucuk). Int. J. Food Sci. Technol. 2022, 57, 4392–4399. [Google Scholar] [CrossRef]
- Lemon, D.W. An Improved TBA Test for Rancidity New Series Circular; No:51; Halifax-Laboratory: Halifax, NS, Canada, 1975; Available online: https://waves-vagues.dfo-mpo.gc.ca/library-bibliotheque/15127.pdf (accessed on 5 June 2023).
- Kaban, G. Changes in the composition of volatile compounds and in microbiological and physicochemical parameters during pastırma processing. Meat Sci. 2009, 82, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Medyński, A.; Pospiech, E.; Kniat, R. Effect of various concentrations of lactic acid and sodium chloride on selected physico-chemical meat traits. Meat Sci. 2000, 55, 285–290. [Google Scholar] [CrossRef]
- Lazárková, Z.; Kratochvílová, A.; Salek, R.N.; Polášek, Z.; Šiška, L.; Petová, M.; Bunka, F. Influence of heat treatment on the chemical. physical. microbiological and sensorial properties of pork liver pâté as affected by fat content. Foods 2023, 12, 2423. [Google Scholar] [CrossRef]
- Warriss, P.D. Meat Science: An Introductory Text; CABI International: New York, NY, USA, 2000; ISBN 0851994245. [Google Scholar]
- Djenane, D.; Sanchez-Escalante, A.; Beltrán, J.A.; Roncalés, P. Ability of α-tocopherol. taurine and rosemary. in combination with vitamin C. to increase the oxidative stability of beef steaks packaged in modified atmospheres. Food Chem. 2002, 76, 407–415. [Google Scholar] [CrossRef]
- Yu, L.; Chai, M.; Zeng, M.; He, Z.; Chen, J. Effect lipid oxidation on the formation of Nε-carboxymethyl-lysine and Nε-carboxyethyl-lysine in Chinese-style sausage during storage. Food Chem. 2018, 269, 466–472. [Google Scholar] [CrossRef]
- Yu, L.; He, Z.; Zeng, M.; Zheng, Z.; Chen, J. Effect of irradiation on Nε—Carboxymethyl-lysine and Nε –carboxyethyl-lysine formation in cooked meat products during storage. Radiat. Phys. Chem. 2016, 120, 73–80. [Google Scholar] [CrossRef]
- Yu, L.; He, Z.; Zeng, M.; Zheng, Z.; Chen, J. Effects of raw meat and process procedure on Nε-carboxymethyllysine and Nε-carboxyethyl-lysine formation in meat products. Food Sci. Biotechnol. 2016, 25, 1163–1168. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Tang, J.; Wang, J.; Rasco, A.B.; Lai, K.; Huang, Y. Formation of advanced glycation endproducts in ground beef under pasteurisation conditions. Food Chem. 2015, 172, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Bayrak Kul, D.; Anlar, P.; Yılmaz Oral, Z.F.; Kaya, M.; Kaban, G. Furosine and Nε-carboxymethyl-lysine in cooked meat product (kavurma): Effects of salt and fat levels during storage. J. Stored Prod. Res. 2021, 93, 101856. [Google Scholar] [CrossRef]
- Chen, G. Formation and Inhibition of Advanced Glycation End Products in Meat and Model Systems. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2006. [Google Scholar]
- Zhang, O.; Ames, J.M.; Smith, R.D.; Baynes, J.W.; Metz, T.O. A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: Probing the pathogenesis of chronic disease. J. Proteome Res. 2009, 8, 754–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domínguez, R.; Gómez, M.; Fonseca, S.; Lorenzo, J.M. Influence of thermal treatment on formation of volatile compounds. cooking loss and lipid oxidation in foal meat. LWT Food Sci. Technol. 2014, 58, 439–445. [Google Scholar] [CrossRef]
- Shahidi, F.; Hossain, A. Role of lipids in food flavor generation. Molecules 2022, 27, 5014. [Google Scholar] [CrossRef]
Factors | N | pH | TBARS (µmol MDA/kg) | CML (µg/g) |
---|---|---|---|---|
Fat type (FT) | ||||
Beef fat | 36 | 5.97 ± 0.12 a | 10.36 ± 2.57 b | 8.98 ± 2.71 b |
Sheep tail fat | 36 | 5.95 ± 0.15 a | 12.02 ± 2.07 a | 12.31 ± 5.44 a |
Significance | ns | ** | ** | |
Fat level (FL) | ||||
%10 | 24 | 5.94 ± 0.14 a | 10.91 ± 1.98 b | 10.16 ± 2.94 a |
%20 | 24 | 5.95 ± 0.15 a | 10.68 ± 2.61 b | 11.42 ± 4.78 a |
%30 | 24 | 5.98 ± 0.13 a | 11.98 ± 2.64 a | 10.36 ± 5.69 a |
Significance | ns | * | ns | |
Cooking time (min)(CT) | ||||
0 (Raw) | 18 | 5.80 ± 0.10 c | 9.88 ± 2.20 b | 7.27 ± 1.81 c |
2 (Rare) | 18 | 5.93 ± 0.09 b | 10.55 ± 2.17 b | 9.87 ± 2.18 b |
4 (Medium) | 18 | 6.03 ± 0.09 a | 11.69 ± 2.24 a | 11.01 ± 3.54 b |
6 (Medium–well) | 18 | 6.06 ± 0.09 a | 12.64 ± 2.46 a | 14.44 ± 6.26 a |
Significance | ** | ** | ** | |
Interaction | ||||
FT × FL | ns | ** | ns | |
FT × CT | ns | ns | * | |
FL × CT | ns | ns | ns | |
FT × FL × CT | ns | ns | ns |
Compounds | Fat Type | Fat Level (%) | Cooking Time (min) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
KI | R | Beef fat | Sheep Tail Fat | 10% | 20% | 30% | 0 | 2 | 4 | 6 | |
Hexane | 600 | a | 3.67 ± 3.03 | 3.24 ± 2.46 | 3.44 ± 2.77 | 3.54 ± 3.00 | 3.39 ± 2.58 | 3.82 ± 2.67 | 4.66 ± 2.96 | 2.40 ± 2.74 | 2.93 ± 2.22 |
Octane | 800 | a | 1.03 ± 1.51 | 0.67 ± 0.98 | 0.53 ± 0.96 | 0.73 ± 1.11 | 1.29 ± 1.61 | 0.74 ± 1.06 | 0.87 ± 1.11 | 0.70 ± 1.37 | 1.11 ± 1.58 |
Decane | 1000 | a | 2.11 ± 2.91 | 1.18 ± 2.26 | 1.51 ± 2.47 | 1.40 ± 2.42 | 2.03 ± 3.02 | 2.01 ± 3.05 | 1.64 ± 2.62 | 1.28 ± 2.35 | 1.66 ± 2.62 |
Dodecane | 1200 | a | 1.74 ± 2.32 | 2.06 ± 2.34 | 1.66 ± 1.80 | 1.21 ± 2.01 | 2.82 ± 2.81 | 2.80 ± 1.98 | 1.48 ± 2.43 | 1.15 ± 1.85 | 2.16 ± 2.74 |
Ethyl acetate | 648 | a | 3.82 ± 1.68 a | 1.26 ± 2.30 b | 2.22 ± 1.65 | 2.18 ± 2.22 | 3.21 ± 3.01 | 1.39 ± 1.26 b | 2.76 ± 2.52 a | 3.21 ± 2.85 a | 2.80 ± 2.34 a |
Butyl propionate | 952 | b | 1.08 ± 2.37 a | 0.27 ± 0.69 b | 0.58 ± 1.29 | 1.19 ± 0.53 | 1.26 ± 2.69 | 0.56 ± 1.31 | 0.26 ± 0.63 | 0.63 ± 2.18 | 1.25 ± 2.41 |
Pentanal | 742 | a | 2.25 ± 1.84 b | 2.92 ± 1.65 a | 1.62 ± 1.36 c | 2.68 ± 1.61 b | 3.46 ± 1.85 a | 1.00 ± 1.08 c | 2.32 ± 1.53 b | 3.45 ± 1.62 a | 3.58 ± 1.54 a |
Hexanal | 849 | a | 2.88 ± 1.32 b | 3.30 ± 1.26 a | 2.20 ± 0.90 b | 3.34 ± 1.22 a | 3.74 ± 1.26 a | 1.88 ± 0.70 c | 3.05 ± 1.06 b | 3.40 ± 1.17 b | 4.03 ± 1.21 a |
Heptanal | 955 | a | 2.33 ± 0.91 b | 3.36 ± 1.10 a | 2.45 ± 0.82 b | 2.86 ± 1.22 ab | 3.22 ± 1.22 a | 2.53 ± 0.97 b | 2.53 ± 1.37 b | 3.07 ± 0.97 ab | 3.25 ± 1.07 a |
Octanal | 1044 | a | 3.27 ± 1.03 | 3.56 ± 1.02 | 3.20 ± 0.87 b | 3.26 ± 1.06 ab | 3.77 ± 1.09 a | 2.56 ± 0.82 c | 3.43 ± 0.82 b | 3.57 ± 0.81 ab | 4.08 ± 1.08 a |
Nonanal | 1146 | a | 1.88 ± 2.86 | 2.67 ± 2.40 | 2.58 ± 2.83 | 2.23 ± 2.85 | 2.01 ± 2.33 | 2.14 ± 2.32 | 2.60 ± 2.77 | 2.76 ± 3.02 | 1.59 ± 2.52 |
2-Nonenal | 1219 | b | 1.13 ± 2.04 b | 3.65 ± 2.29 a | 2.07 ± 2.37 | 2.19 ± 2.36 | 2.91 ± 2.76 | 1.70 ± 2.62 | 1.92 ± 2.03 | 2.41 ± 2.30 | 3.52 ± 2.78 |
4-Decenal | 1246 | b | 2.53 ± 3.56 b | 4.47 ± 3.62 a | 4.24 ± 3.83 | 3.00 ± 3.60 | 3.26 ± 3.69 | 3.57 ± 3.61 | 3.56 ± 3.77 | 3.73 ± 3.96 | 3.14 ± 3.72 |
2,4-Decadienal | 1363 | a | 1.00 ± 1.79 b | 3.72 ± 1.08 a | 2.01 ± 1.81 | 2.34 ± 1.97 | 2.71 ± 2.23 | 1.69 ± 1.83 b | 1.58 ± 1.79 b | 2.81 ± 2.21 a | 3.34 ± 1.73 a |
2-Butanone | 780 | b | 2.36 ± 2.07 a | 1.43 ± 2.38 b | 1.50 ± 1.90 b | 1.66 ± 1.97 b | 2.53 ± 2.77 a | 1.26 ± 1.81 | 2.08 ± 2.42 | 1.99 ± 2.42 | 2.25 ± 2.41 |
2-Heptanone | 948 | b | 2.28 ± 2.27 | 1.82 ± 2.63 | 2.27 ± 2.52 | 1.44 ± 2.16 | 2.44 ± 2.63 | 1.63 ± 2.07 | 2.09 ± 2.87 | 1.95 ± 2.15 | 2.52 ± 2.74 |
2-Octanone | 1035 | b | 0.00 ± 0.00 b | 2.50 ± 2.91 a | 1.16 ± 2.60 | 0.94 ± 2.15 | 1.65 ± 3.54 | 2.39 ± 3.54 a | 0.93 ± 1.87 b | 0.94 ± 1.84 b | 0.76 ± 1.68 b |
2-Nonanone | 1079 | b | 0.00 ± 0.00 b | 2.34 ± 2.56 a | 1.22 ± 2.29 | 0.69 ± 1.51 | 1.60 ± 2.51 | 0.91 ± 1.04 | 1.20 ± 2.07 | 1.36 ± 2.33 | 1.21 ± 2.90 |
1-Pentanol | 835 | a | 2.58 ± 2.22 a | 0.00 ± 0.00 b | 0.85 ± 1.36 | 1.17 ± 1.76 | 1.86 ± 2.68 | 0.58 ± 2.16 | 1.35 ± 1.98 | 1.55 ± 1.92 | 1.68 ± 2.04 |
1-Hexanol | 935 | a | 2.67 ± 2.10 a | 1.09 ± 2.03 b | 1.79 ± 1.85 | 1.85 ± 2.33 | 2.00 ± 2.47 | 1.13 ± 2.08 | 2.11 ± 2.12 | 2.69 ± 2.15 | 1.58 ± 2.32 |
1-Heptanol | 1033 | a | 1.37 ± 1.63 | 1.00 ± 2.04 | 1.40 ± 2.15 | 1.22 ± 1.95 | 0.93 ± 1.38 | 1.05 ± 1.93 | 1.63 ± 1.80 | 0.99 ± 1.83 | 1.06 ± 1.90 |
1-Octen-3-ol | 1041 | b | 2.16 ± 2.83 a | 0.85 ± 1.60 b | 1.37 ± 2.18 | 1.42 ± 2.07 | 1.71 ± 2.89 | 2.04 ± 2.92 | 1.16 ± 1.89 | 0.97 ± 1.82 | 1.85 ± 2.71 |
2-Ethyl-1-hexanol | 1084 | b | 1.95 ± 2.70 | 2.65 ± 2.79 | 2.36 ± 2.81 | 1.94 ± 2.88 | 2.60 ± 2.63 | 1.70 ± 2.35 | 1.94 ± 2.53 | 1.63 ± 2.16 | 3.92 ± 3.36 |
2-Pentyl furan | 1022 | b | 0.85 ± 2.36 | 2.12 ± 3.14 | 2.02 ± 3.36 | 0.82 ± 2.05 | 1.61 ± 2.91 | 0.88 ± 2.06 | 1.78 ± 2.93 | 1.70 ± 3.33 | 1.59 ± 2.99 |
Furan | 1107 | b | 0.50 ± 1.20 b | 2.74 ± 3.18 a | 1.11 ± 1.36 | 2.23 ± 3.51 | 1.52 ± 2.58 | 1.50 ± 2.64 | 1.08 ± 1.29 | 2.23 ± 3.57 | 1.68 ± 2.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Öztürk, K.; Yılmaz Oral, Z.F.; Kaya, M.; Kaban, G. The Effects of Sheep Tail Fat, Fat Level, and Cooking Time on the Formation of Nε-(carboxymethyl)lysine and Volatile Compounds in Beef Meatballs. Foods 2023, 12, 2834. https://doi.org/10.3390/foods12152834
Öztürk K, Yılmaz Oral ZF, Kaya M, Kaban G. The Effects of Sheep Tail Fat, Fat Level, and Cooking Time on the Formation of Nε-(carboxymethyl)lysine and Volatile Compounds in Beef Meatballs. Foods. 2023; 12(15):2834. https://doi.org/10.3390/foods12152834
Chicago/Turabian StyleÖztürk, Kübra, Zeynep Feyza Yılmaz Oral, Mükerrem Kaya, and Güzin Kaban. 2023. "The Effects of Sheep Tail Fat, Fat Level, and Cooking Time on the Formation of Nε-(carboxymethyl)lysine and Volatile Compounds in Beef Meatballs" Foods 12, no. 15: 2834. https://doi.org/10.3390/foods12152834
APA StyleÖztürk, K., Yılmaz Oral, Z. F., Kaya, M., & Kaban, G. (2023). The Effects of Sheep Tail Fat, Fat Level, and Cooking Time on the Formation of Nε-(carboxymethyl)lysine and Volatile Compounds in Beef Meatballs. Foods, 12(15), 2834. https://doi.org/10.3390/foods12152834