Beyond Chemical Preservatives: Enhancing the Shelf-Life and Sensory Quality of Ready-to-Eat (RTE) Hummus with Vinegar and Other Natural Antimicrobials
Abstract
:1. Introduction
2. Methodology
2.1. Preparation of Hummus Dip
2.2. Preparation of Treatments, Packaging, and Storage of Samples
- Potassium sorbate (≥99.0%; CAS 24634-61-5; Sigma-Aldrich, Taufkirchen, Germany) was added at a concentration of 0.09% w/w, which is a standard hummus formulation used in commercial production. This concentration is within the highest acceptable limit for the use of potassium sorbate (0.1%) in preservation of several types of food, as per CODEX ALIMENTARIUS, US, and Canada Regulations [19,20,21].
- Thymol (≥99%, CAS 89-93-8, Sigma Aldrich, Taufkirchen, Germany) and carvacrol (≥98%, CAS 499-75-2, Sigma Aldrich, Taufkirchen, Germany) were mixed in equal amounts (1/1) and added at a concentration of 0.2% (w/w) [22].
- Natacid® is the commercial name of natamycin (CSK food enrichment, E235, Toruń, Poland). The minimum inhibitory concentration (MIC) of natamycin ranges for fungi between 5 and 20 ppm [23]. The highest range limit (20 ppm) was used in the study (equivalent to 0.002% w/w) and it is the maximum acceptable limit according to the US and EU regulations [24,25].
- Garlic powder supplied from the local market was added based on its MICs. The MIC of garlic powder ranges from 6.25 to 12.5 mg/mL for 29 enteric bacteria Bacillus spp., Escherichia coli, Shigella spp., Vibrio spp., Salmonella, Lactobacillus spp., etc. [26]. Lower MIC values for pathogenic bacteria and yeasts and molds were obtained by other researchers [27,28]. Based on these data, the highest MIC of 12.5 mg/mL (1.25% w/w) was used.
- Grapes red vinegar supplied from the local market contains 5% w/w acetic acid. The MIC of acetic acid against different strains of fungi was higher than that of bacteria and it was found to be 38.1–41.6 mM [29]. The higher end of the range of the antifungal effect of 41.6 mM was used, which is equivalent to 5% w/w of red vinegar by weight.
2.3. Microbiological Analysis
2.4. Sensory Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Microbiological Analysis
3.1.1. Total Aerobic Count (TAC)
3.1.2. Pseudomonas spp.
3.1.3. Lactic Acid Bacteria (LAB)
3.2. Sensorial Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amr, A.S.; Yaseen, E.I. Thermal processing requirements of canned chickpea dip. Int. J. Food Sci. Technol. 1994, 29, 441–448. [Google Scholar] [CrossRef]
- Frankenfeld, C.L.; Wallace, T.C. Dietary Patterns and Nutritional Status in Relation to Consumption of Chickpeas and Hummus in the U.S. Population. Appl. Sci. 2020, 10, 7341. [Google Scholar] [CrossRef]
- Yamani, M.I.; Al-Dababseh, B.A. Microbial Quality of Hoummos (Chickpea Dip) Commercially Produced in Jordan. J. Food Prot. 1994, 57, 431–435. [Google Scholar] [CrossRef]
- Faris, M.A.-I.E.; Takruri, H.R. Study of the effect of using different levels of tahinah (sesame butter) on the protein digestibility-corrected amino acid score (PDCAAS) of chickpea dip. J. Sci. Food Agric. 2003, 83, 7–12. [Google Scholar] [CrossRef]
- Alvarez, M.D.; Fuentes, R.; Guerrero, G.; Canet, W. Characterization of commercial Spanish hummus formulation: Nutritional composition, rheology, and structure. Int. J. Food Prop. 2016, 20, 845–863. [Google Scholar] [CrossRef]
- Al-Holy, M.; Al-Qadiri, H.; Lin, M.; Rasco, B. Inhibition of Listeria innocua in Hummus by a Combination of Nisin and Citric Acid. J. Food Prot. 2006, 69, 1322–1327. [Google Scholar] [CrossRef] [PubMed]
- Almualla, N.A.; Laleye, L.C.; Abushelaibi, A.A.; Al-Qassemi, R.A.; Wasesa, A.A.; Baboucarr, J. Aspects of the Microbiological Quality and Safety of Ready-to-Eat Foods in Sharjah Supermarkets in the United Arab Emirates. J. Food Prot. 2010, 73, 1328–1331. [Google Scholar] [CrossRef]
- World Health Organization. Hazard Analysis and Critical Control Point Generic Models for Some Traditional Foods: A Manual for the Eastern Mediterranean Region; WHO Regional Office for the Eastern Mediterranean: Cairo, Egypt, 2008. [Google Scholar]
- Olaimat, A.N.; Al-Holy, M.A.; Abu-Ghoush, M.H.; Osaili, T.M.; Al-Nabulsi, A.A.; Rasco, B.A. Inhibition of Shigella sonnei and Shigella flexneri in hummus using citric acid and garlic extract. J. Food Sci. 2017, 82, 1908–1915. [Google Scholar] [CrossRef]
- Yamani, M.I.; Mehyar, G.F. Effect of chemical preservatives on the shelf life of hummus during different storage temperatures. Jordan J. Agric. Sci. 2011, 7, 19–31. [Google Scholar]
- Olaimat, A.N.; Al-Holy, M.A.; Abu Ghoush, M.; Al-Nabulsi, A.A.; Holley, R.A. Control of Salmonella enterica and Listeria monocytogenes in hummus using allyl isothiocyanate. Int. J. Food Microbiol. 2018, 278, 73–80. [Google Scholar] [CrossRef]
- Gutiérrez-Larraínzar, M.; Rúa, J.; Caro, I.; de Castro, C.; de Arriaga, D.; García-Armesto, M.R.; del Valle, P. Evaluation of antimicrobial and antioxidant activities of natural phenolic compounds against foodborne pathogens and spoilage bacteria. Food Control 2012, 26, 555–563. [Google Scholar] [CrossRef]
- Karapinar, M.; Gönül, Ş.A. Removal of Yersinia enterocolitica from fresh parsley by washing with acetic acid or vinegar. Int. J. Food Microbiol. 1992, 16, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Sternisa, M.; Purgatorio, C.; Paparella, A.; Mraz, J.; Smole Mozina, S. Combination of rosemary extract and buffered vinegar inhibits Pseudomonas and Shewanella growth in common carp (Cyprinus carpio). J. Sci. Food Agric. 2020, 100, 2305–2312. [Google Scholar] [CrossRef] [PubMed]
- Tsiraki, M.I.; El-Obeid, T.; Yehia, H.M.; Karam, L.; Savvaidis, I.N. Effects of Chitosan and Natamycin on Vacuum-Packaged Phyllo: A Pastry Product. J. Food Prot. 2018, 81, 1982–1987. [Google Scholar] [CrossRef]
- Tsiraki, M.I.; Savvaidis, I.N. Citrus extract or natamycin treatments on “Tzatziki”—A traditional Greek salad. Food Chem. 2014, 142, 416–422. [Google Scholar] [CrossRef]
- Karam, L.; Chehab, R.; Osaili, T.M.; Savvaidis, I.N. Antimicrobial effect of thymol and carvacrol added to a vinegar-based marinade for controlling spoilage of marinated beef (Shawarma) stored in air or vacuum packaging. Int. J. Food Microbiol. 2020, 332, 108769. [Google Scholar] [CrossRef]
- Karam, L.; Roustom, R.; Abiad, M.G.; El-Obeid, T.; Savvaidis, I.N. Combined effects of thymol, carvacrol and packaging on the shelf-life of marinated chicken. Int. J. Food Microbiol. 2019, 291, 42–47. [Google Scholar] [CrossRef]
- Government of Canada. List of Permitted Preservatives (Lists of Permitted Food Additives). Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/food-safety/food-additives/lists-permitted/11-preservatives.html#a2 (accessed on 7 January 2023).
- Codex Alimentarius. Regional Standard For Chilli Sauce 2020. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B306R-2011%252FCXS_306Re.pdf (accessed on 6 January 2023).
- FDA. CFR—Code of Federal Regulations Title 21. Sec. 582.3640 Potassium Sorbate. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=582&showFR=1&subpartNode=21:6.0.1.1.25.4#:~:text= (accessed on 7 January 2023).
- Jina, Y.; Chihib, N.-E.; Gharsallaoui, A.; Dumas, E.; Ismail, A.; Karam, L. Essential oils and their active components applied as: Free, encapsulated and in hurdle technology to fight microbial contaminations. A review. Heliyon 2022, 8, e12472. [Google Scholar]
- Hagan, E.E. A Multidisciplinary Approach to Food Safety Evaluation: Hummus Spoilage and Microbial Analysis of Kitchen Surfaces in Residential Child Care Institutions (rcci) in Massachusetts, U.S.A. Master’s Thesis, University of Massachusetts Amherst, Amherst, MA, USA, 2011. [Google Scholar]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the use of natamycin (E 235) as a food additive. EFSA J. 2009, 7, 1412. [Google Scholar] [CrossRef]
- FDA. CFR—Code of Federal Regulations Title 21. Sec 172. 155 Natamycin (Pimaricin). Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=172.155 (accessed on 7 January 2023).
- Ross, Z.M.; O'Gara, E.A.; Hill, D.J.; Sleightholme, H.V.; Maslin, D.J. Antimicrobial Properties of Garlic Oil against Human Enteric Bacteria: Evaluation of Methodologies and Comparisons with Garlic Oil Sulfides and Garlic Powder. Appl. Environ. Microbiol. 2001, 67, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Chikwem, A.J.; Chikwem, J.O.; Swinton, D.J. Aqueous Extraction of Dried and Fresh Garlic, and Comparative Antimicrobial Susceptibility Testing of Garlic Extracts on Selected Bacteria. BIOS 2008, 79, 56–60. [Google Scholar] [CrossRef]
- Kundaković, T.; Milenković, M.; Zlatković, S.; Kovačević, N.; Goran, N. Composition of Satureja kitaibelii Essential Oil and its Antimicrobial Activity. Nat. Product. Commun. 2011, 6, 1934578X1100600934. [Google Scholar] [CrossRef] [Green Version]
- Peláez, A.L.; Cataño, C.S.; Yepes, E.Q.; Villarroel, R.G.; De Antoni, G.; Giannuzzi, L. Inhibitory activity of lactic and acetic acid on Aspergillus flavus growth for food preservation. Food Control 2012, 24, 177–183. [Google Scholar] [CrossRef]
- Lee, K.J.; Park, H.W.; Choi, E.J.; Chun, H.H. Effects of CFSs produced by lactic acid bacteria in combination with grape seed extract on the microbial quality of ready-to-eat baby leaf vegetables. Cogent Food Agric. 2016, 2, 1268742. [Google Scholar] [CrossRef]
- Adekanmi, A.A.; Ayoade, J.O.; Cole, A.T.; Adekanmi Adeniyi, S. Bacteriological Assessment of Pre-Cut Fruits Sold At Igbona Market, Osogbo, Osun State. 2021. Available online: https://www.researchgate.net/profile/Adekanmi-Abideen-Adeyinka-2/publication/354890470_Bacteriological_Assessment_of_Pre-Cut_Fruits_Sold_At_Igbona_Market_Osogbo_Osun_State/links/6152f5cd522ef665fb665333/Bacteriological-Assessment-of-Pre-Cut-Fruits-Sold-At-Igbona-Market-Osogbo-Osun-State.pdf (accessed on 10 July 2023).
- ISO Norm 13720:2010; Meat and Meat Products-Enumeration of Presumptive Pseudomonas spp. ISO: Geneva, Switzerland, 2010.
- Favero, M.; Carson, L.; Bond, W.; Petersen, N. Pseudomonas aeruginosa: Growth in distilled water from hospitals. Science 1971, 173, 836–838. [Google Scholar] [CrossRef]
- ISO N. 6888-1 (2008); Microbiology of Food and Animal Feeding Stuffs-Horizontal Method for the Enumeration of Coagulase Positive Staphylococci. ISO: Geneva, Switzerland, 2008.
- ISO 6888-1:2021; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and Other Species)—Part 1: Method Using Baird-Parker Agar Medium. ISO: Geneva, Switzerland, 2021.
- Ciolacu, L.; Stessl, B.; Bolocan, A.S.; Oniciuc, E.A.; Wagner, M.; Rychli, K.; Nicolau, A.I. Tracking foodborne pathogenic bacteria in raw and ready-to-eat food illegally sold at the eastern EU border. Foodborne Pathog. Dis. 2016, 13, 148–155. [Google Scholar] [CrossRef]
- ISO 15214:1998; Microbiology of Food and Animal Feeding Stuffs: Horizontal Method for the Emumeration of Mesophilic Lactic Acid Bacteria: Colony-Count Technique at 30 °C. ISO: Geneva, Switzerland, 1998.
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. ISO: Geneva, Switzerland, 2017.
- Wangcharoen, W.; Phimphilai, S. Chlorophyll and total phenolic contents, antioxidant activities and consumer acceptance test of processed grass drinks. J. Food Sci. Technol. 2016, 53, 4135–4140. [Google Scholar] [CrossRef] [Green Version]
- Health Canada. Microbial Guidelines for Ready-to-Eat Foods a Guide for the Conveyance Industry and Environment Health Officers (EHO); Minister of Health: Ottawa, ON, Canada, 2010.
- Food Standards Australia. Compendium of Microbiological Criteria for Food; Food Standards Australia: New Zealand, Australia, 2016.
- Centre for Food Safety. Microbiological Guidelines for Food (For Ready-to-Eat Food in General and Specific Food Items); Food and Environmental Hygiene Department: Hong Kong, China, 2014.
- Tsiraki, M.I.; Karam, L.; Abiad, M.G.; Yehia, H.M.; Savvaidis, I.N. Use of natural antimicrobials to improve the quality characteristics of fresh “Phyllo”—A dough-based wheat product—Shelf life assessment. Food Microbiol. 2017, 62, 153–159. [Google Scholar] [CrossRef]
- Osaili, T.M.; Al-Nabulsi, A.A.; Hasan, F.; Olaimat, A.N.; Taha, S.; Ayyash, M.; Nazzal, D.S.; Savvaidis, I.N.; Obaid, R.S.; Holley, R. Antimicrobial effects of chitosan and garlic against Salmonella spp., Escherichia coli O157:H7, and Listeria monocytogenes in hummus during storage at various temperatures. J. Food Sci. 2022, 87, 833–844. [Google Scholar] [CrossRef]
- Osaili, T.M.; Hasan, F.; Dhanasekaran, D.K.; Obaid, R.S.; Al-Nabulsi, A.A.; Karam, L.; Savvaidis, I.N.; Olaimat, A.N.; Ayyash, M.; Al-Holy, M.; et al. Effect of yogurt-based marinade combined with essential oils on the behavior of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella spp. in camel meat chunks during storage. Int. J. Food Microbiol. 2021, 343, 109106. [Google Scholar] [CrossRef]
- Dehghan, P.; Mohammadi, A.; Mohammadzadeh-Aghdash, H.; Dolatabadi, J.E.N. Pharmacokinetic and toxicological aspects of potassium sorbate food additive and its constituents. Trends Food Sci. Technol. 2018, 80, 123–130. [Google Scholar] [CrossRef]
- Mancini, S.; Mattioli, S.; Nuvoloni, R.; Pedonese, F.; Dal Bosco, A.; Paci, G. Effects of garlic powder and salt on meat quality and microbial loads of rabbit burgers. Foods 2020, 9, 1022. [Google Scholar] [CrossRef] [PubMed]
- Gheisari, H.R.; Ranjbar, V.R. Antioxidative and antimicrobial effects of garlic in ground camel meat. Turk. J. Vet. Anim. Sci. 2012, 36, 13–20. [Google Scholar] [CrossRef]
- Olaniran, A.F.; Abiose, S.H.; Adeniran, A.H. Biopreservative Effect of Ginger (Zingiber officinale) and Garlic Powder (Allium sativum) on Tomato Paste. J. Food Saf. 2015, 35, 440–452. [Google Scholar] [CrossRef] [Green Version]
- Lobiuc, A.; Pavăl, N.-E.; Mangalagiu, I.I.; Gheorghiță, R.; Teliban, G.-C.; Amăriucăi-Mantu, D.; Stoleru, V. Future antimicrobials: Natural and functionalized phenolics. Molecules 2023, 28, 1114. [Google Scholar] [CrossRef]
- Hill, A.R.; Kethireddipalli, P. Chapter 8—Dairy Products: Cheese and Yogurt. In Biochemistry of Foods, 3rd ed.; Eskin, N.A.M., Shahidi, F., Eds.; Academic Press: San Diego, CA, USA, 2013; pp. 319–362. [Google Scholar]
- Stanojevic, D.; Comic, L.; Stefanovic, O.; Solujic-Sukdolak, S. Antimicrobial effects of sodium benzoate, sodium nitrite and potassium sorbate and their synergistic action in vitro. Bulg. J. Agric. Sci. 2009, 15, 307–311. [Google Scholar]
- Chouliara, E.; Karatapanis, A.; Savvaidis, I.; Kontominas, M. Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extension of fresh chicken breast meat, stored at 4 °C. Food Microbiol. 2007, 24, 607–617. [Google Scholar] [CrossRef]
- Pinto, L.; Tapia-Rodríguez, M.R.; Baruzzi, F.; Ayala-Zavala, J.F. Plant Antimicrobials for Food Quality and Safety: Recent Views and Future Challenges. Foods 2023, 12, 2315. [Google Scholar] [CrossRef]
- Saeed, F.; Afzaal, M.; Tufail, T.; Ahmad, A. Use of natural antimicrobial agents: A safe preservation approach. In Active Antimicrobial Food Packaging; BoD: Norderstedt, Germany, 2019; Volume 18. [Google Scholar]
- Restaino, L.; Komatsu, K.; Syracuse, M. Effects of acids on potassium sorbate inhibition of food-related microorganisms in culture media. J. Food Sci. 1982, 47, 134–143. [Google Scholar] [CrossRef]
- Collins, E.; Moustafa, H.H. Sensory and shelf-life evaluations of cottage cheese treated with potassium sorbate. J. Dairy. Sci. 1969, 52, 439–442. [Google Scholar] [CrossRef]
- Nyaitondi, O.; Wanjau, R.; Nyambaka, H.; Hassanali, A. Anti-bacterial properties and GC-MS analysis of extracts and essential oils of selected plant product. Asian J. Nat. Prod. Biochem. 2018, 16, 44–58. [Google Scholar] [CrossRef]
- Ji, J.; Shankar, S.; Royon, F.; Salmieri, S.; Lacroix, M. Essential oils as natural antimicrobials applied in meat and meat products—A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 993–1009. [Google Scholar] [CrossRef]
- Proulx, J.; Sullivan, G.; Marostegan, L.; VanWees, S.; Hsu, L.; Moraru, C. Pulsed light and antimicrobial combination treatments for surface decontamination of cheese: Favorable and antagonistic effects. J. Dairy Sci. 2017, 100, 1664–1673. [Google Scholar] [CrossRef] [PubMed]
- Pintado, C.M.; Ferreira, M.A.; Sousa, I. Control of pathogenic and spoilage microorganisms from cheese surface by whey protein films containing malic acid, nisin and natamycin. Food Control 2010, 21, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Nikmaram, N.; Budaraju, S.; Barba, F.J.; Lorenzo, J.M.; Cox, R.B.; Mallikarjunan, K.; Roohinejad, S. Application of plant extracts to improve the shelf-life, nutritional and health-related properties of ready-to-eat meat products. Meat Sci. 2018, 145, 245–255. [Google Scholar] [CrossRef]
- Tóbiás, A.; Lehoczki-Tornai, J.; Szalai, Z.; Csambalik, L.; Radics, L. Effect of different treatments to bacterial canker (Clavibacter michiganensis subsp. michiganensis), bacterial speck (Pseudomonas syringae pv. tomato) in tomato, and bacterial spot (Xanthomonas campestris pv. vesicatoria) in pepper. Int. J. Hortic. Sci. 2007, 13, 49–53. [Google Scholar] [CrossRef]
- Oh, M.-H.; Park, B.-Y.; Jo, H.; Lee, S.; Lee, H.; Choi, K.-H.; Yoon, Y. Use of antimicrobial food additives as potential dipping solutions to control Pseudomonas spp. contamination in the frankfurters and ham. Korean J. Food Sci. Anim. Resour. 2014, 34, 591. [Google Scholar] [CrossRef] [Green Version]
- Federico, B.; Pinto, L.; Quintieri, L.; Carito, A.; Calabrese, N.; Caputo, L. Efficacy of lactoferricin B in controlling ready-to-eat vegetable spoilage caused by Pseudomonas spp. Int. J. Food Microbiol. 2015, 215, 179–186. [Google Scholar] [CrossRef]
- Rezac, S.; Kok, C.R.; Heermann, M.; Hutkins, R. Fermented Foods as a Dietary Source of Live Organisms. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef]
- Vermeiren, L.; Devlieghere, F.; De Graef, V.; Debevere, J. In vitro and in situ growth characteristics and behaviour of spoilage organisms associated with anaerobically stored cooked meat products. J. Appl. Microbiol. 2005, 98, 33–42. [Google Scholar] [CrossRef]
- Kalschne, D.L.; Womer, R.; Mattana, A.; Sarmento, C.M.P.; Colla, L.M.; Colla, E. Characterization of the spoilage lactic acid bacteria in “sliced vacuum-packed cooked ham”. Braz. J. Microbiol. 2015, 46, 173–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klingberg, T.D.; Axelsson, L.; Naterstad, K.; Elsser, D.; Budde, B.B. Identification of potential probiotic starter cultures for Scandinavian-type fermented sausages. Int. J. Food Microbiol. 2005, 105, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Asehraou, A.; Mohieddine, S.; Faid, M. Use of antifungal principles from garlic for the Inhibition of yeasts and moulds in fermenting green olives. Grasas Y Aceites 1997, 48, 68–73. [Google Scholar] [CrossRef]
- Arroyo Lopez, F.; Duran Quintana, M.; Fernández, A.G. Microbial evolution during storage of seasoned olives prepared with organic acids with potassium sorbate, sodium benzoate, and ozone used as preservatives. J. Food Prot. 2006, 69, 1354–1364. [Google Scholar] [CrossRef]
- Shen, X.L.; Wu, J.M.; Chen, Y.; Zhao, G. Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocoll. 2010, 24, 285–290. [Google Scholar] [CrossRef]
- Desai, M.; Kurve, V.; Smith, B.; Campano, S.; Soni, K.; Schilling, W. Utilization of buffered vinegar to increase the shelf life of chicken retail cuts packaged in carbon dioxide. Poult. Sci. 2014, 93, 1850–1854. [Google Scholar] [CrossRef]
- Skandamis, P.N.; Nychas, G.J. Effect of oregano essential oil on microbiological and physico-chemical attributes of minced meat stored in air and modified atmospheres. J. Appl. Microbiol. 2001, 91, 1011–1022. [Google Scholar] [CrossRef]
- Olaimat, A.N.; Al-Holy, M.A.; Abu Ghoush, M.H.; Al-Nabulsi, A.A.; Osaili, T.M.; Holley, R.A. Inhibitory effects of cinnamon and thyme essential oils against Salmonella spp. in hummus (chickpea dip). J. Food Process. Preserv. 2019, 43, e13925. [Google Scholar] [CrossRef]
- Makkia, D.I.; Bahout, A.A.; Bayoumi, M.A.; Alnakip, M.E.; Moustafa, A.H. Effect of essential oils on multidrug resistant gram-negative bacteria. Slov. Vet. Res. 2023, 60. [Google Scholar] [CrossRef]
- Alali, W.Q.; Mann, D.A.; Beuchat, L.R. Viability of Salmonella and Listeria monocytogenes in delicatessen salads and hummus as affected by sodium content and storage temperature. J. Food Prot. 2012, 75, 1043–1056. [Google Scholar] [CrossRef]
- Pothakos, V.; Taminiau, B.; Huys, G.; Nezer, C.; Daube, G.; Devlieghere, F. Psychrotrophic lactic acid bacteria associated with production batch recalls and sporadic cases of early spoilage in Belgium between 2010 and 2014. Int. J. Food Microbiol. 2014, 191, 157–163. [Google Scholar] [CrossRef] [PubMed]
- García-Gimeno, R.M.; Zurera-Cosano, G. Determination of ready-to-eat vegetable salad shelf-life. Int. J. Food Microbiol. 1997, 36, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Giannuzzi, L.; Contreras, E.; Zaritzky, N. Modeling the aerobic growth and decline of Staphylococcus aureus as affected by pH and potassium sorbate concentration. J. Food Prot. 1999, 62, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Bakir, S.; Devecioglu, D.; Kayacan, S.; Toydemir, G.; Karbancioglu-Guler, F.; Capanoglu, E. Investigating the antioxidant and antimicrobial activities of different vinegars. Eur. Food Res. Technol. 2017, 243, 2083–2094. [Google Scholar] [CrossRef]
- Yamani, M.I.; Abu Tayeh, S.J.; Salhab, A.S. Aspects of microbiological and chemical quality of turmus, lupin seeds debittered by soaking in water. J. Food Prot. 1998, 61, 1480–1483. [Google Scholar] [CrossRef]
- Deacon, J. Prevention and Control of Fungal Growth. In Modern Mycology, 3rd ed.; Deacon, J.W., Ed.; Blackwell Science: Oxford, UK, 1997; pp. 289–290. [Google Scholar]
- FDA. Food Additive Status List. Available online: https://www.fda.gov/food/food-additives-petitions/food-additive-status-list (accessed on 7 January 2023).
- Ray, L.L.; Bullerman, L.B. Preventing growth of potentially toxic molds using antifungal agents. J. Food Prot. 1982, 45, 953–963. [Google Scholar] [CrossRef]
- FDA. CFR—Code of Federal Regulations Title 21. Sec. 184.1317 Garilc and its derivatives. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1317 (accessed on 7 January 2023).
- Wu, X.; Santos, R.R.; Fink-Gremmels, J. Analyzing the antibacterial effects of food ingredients: Model experiments with allicin and garlic extracts on biofilm formation and viability of Staphylococcus epidermidis. Food Sci. Nutr. 2015, 3, 158–168. [Google Scholar] [CrossRef]
- Bazaka, K.; Jacob, M.; Chrzanowski, W.; Ostrikov, K. Anti-bacterial surfaces: Natural agents, mechanisms of action, and plasma surface modification. Rsc Adv. 2015, 5, 48739–48759. [Google Scholar] [CrossRef] [Green Version]
- Khoshtinat, K.; Barzegar, M.; Sahari, M.A.; Hamidi, Z. Use of Encapsulated Garlic Oil in Low-Fat Salad Dressings: Physicochemical, Microbial and Sensory Properties. Appl. Food Biotechnol. 2022, 9, 113–125. [Google Scholar]
- Jiménez, M.J.; Tárrega, A.; Fuentes, R.; Canet, W.; Álvarez, M.D. Consumer perceptions, descriptive profile, and mechanical properties of a novel product with chickpea flour: Effect of ingredients. Food Sci. Technol. Int. 2016, 22, 547–562. [Google Scholar] [CrossRef]
- Fencioglu, H.; Oz, E.; Turhan, S.; Proestos, C.; Oz, F. The Effects of the Marination Process with Different Vinegar Varieties on Various Quality Criteria and Heterocyclic Aromatic Amine Formation in Beef Steak. Foods 2022, 11, 3251. [Google Scholar] [CrossRef]
- Abdulmumeen, H.A.; Risikat, A.N.; Sururah, A.R. Food: Its preservatives, additives and applications. Int. J. Chem. Biochem. Sci. 2012, 1, 36–47. [Google Scholar]
- Laranjo, M.; Potes, M.E.; Gomes, A.; Véstia, J.; Garcia, R.; Fernandes, M.J.; Fraqueza, M.J.; Elias, M. Shelf-life extension and quality improvement of a Portuguese traditional ready-to-eat meat product with vinegar. Int. J. Food Sci. Technol. 2019, 54, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Mexis, S.; Chouliara, E.; Kontominas, M. Combined effect of an O2 absorber and oregano essential oil on shelf-life extension of Greek cod roe paste (tarama salad) stored at 4 °C. Innov. Food Sci. Emerg. Technol. 2009, 10, 572–579. [Google Scholar] [CrossRef]
Label | Antimicrobial Treatment | Concentration % (w/w) |
---|---|---|
C | No antimicrobials added | N/A * |
S | Potassium sorbate | 0.09 |
G | Garlic powder | 1.25 |
V | Vinegar | 5 |
N | Natamycin | 0.002 |
GV | Garlic powder + vinegar | 1.25 + 5 |
VN | Vinegar + natamycin | 5 + 0.002 |
GN | Garlic powder + natamycin | 1.25 + 0.002 |
GVN | Garlic powder + vinegar + natamycin | 1.25 +5 + 0.002 |
O | Mixture of active components of essential oils at equal amounts (thymol + carvacrol) | 0.2 |
Sensorial Analysis Score (Mean ± SD) | ||||||||
---|---|---|---|---|---|---|---|---|
Treatment | Appearance | Odor | Taste | Overall | ||||
Day 0 | Day 21 | Day 0 | Day 21 | Day 0 | Day 21 | Day 0 | Day 21 | |
C | 7.9 ± 0.3 a | 8.3 ± 0.7 ac | 7.6 ± 0.7 a | 7.9 ± 1.8 a | 7.6 ± 0.8 a | 7.4 ± 1.6 a | 7.8 ± 1.0 a | 7.7 ± 1.9 a |
S | 8.4 ± 0.8 a | 8.7 ± 0.5 a | 7.8 ± 1.3 a | 7.9 ± 1.1 a | 7.9 ± 1.2 a | 7.6 ± 1.8 ab | 7.9 ± 1.3 a | 7.7 ± 1.2 a |
G | 8.1 ± 1.0 a | 7.9 ± 1.4 bc | 6.1 ± 1.8 c | 5.4 ± 1.5 b | 6.6 ± 1.6 ab | 5.1 ± 1.3 c | 6.0 ± 1.9 b | 5.9 ± 1.1 b |
V | 8.4 ± 1.1 a | 8.4 ± 0.7 ac | 7.4 ± 1.3 ad | 7.4 ± 1.4 ac | 7.6 ± 1.3 a | 8.3 ± 0.8 ad | 7.6 ± 1.3 ac | 8.1 ± 1.0 a |
N | 8.4 ± 0.5 a | 8.7 ± 0.5 a | 7.6 ± 0.8 a | 8.6 ± 0.7 ad | 7.9 ± 1.0 a | 8.6 ± 0.7 bde | 8.0 ± 0.7 a | 8.6 ± 0.5 a |
GV | 8.2 ± 1.0 a | 8.3 ± 0.9 ac | 6.1 ± 1.1 c | 6.5 ± 1.4 bce | 6.6 ± 1.0 ab | 6.5 ± 1.2 a | 6.6 ± 1.2 bc | 6.7 ± 1.1 ab |
VN | 8.5 ± 0.7 a | 8.3 ± 0.7 ac | 7.3 ± 0.9 ae | 6.1 ± 2.1 bf | 7.3 ± 0.7 a | 7.8 ± 0.4 ae | 7.9 ± 0.7 a | 7.0 ± 1.8 ab |
GN | 7.9 ± 1.1 a | 7.4 ± 0.8 bc | 6.4 ± 1.2 cde | 5.1 ± 0.7 b | 6.9 ± 1.5 a | 4.9 ± 0.6 c | 6.6 ± 1.1 bc | 6.6 ± 1.2 ab |
GVN | 7.9 ± 1.0 a | 8.1 ± 0.3 ac | 6.4 ± 1.3 cde | 6.7 ± 1.2 adef | 6.8 ± 1.5 a | 6.6 ± 0.5 a | 6.1 ± 0.7 b | 7.3 ± 1.2 ac |
O | 8.6 ± 0.7 a | 8.4 ± 0.7 ac | 6.6 ± 1.9 abc | 5.2 ± 1.9 b | 3.8 ± 1.9 c | 3.1 ± 2.0 f | 4.1 ± 1.7 d | 4.7 ± 1.9 b |
p-value | 0.485 | 0.018 | 0.008 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karam, L.; Ghonim, F.; Dahdah, P.; Attieh, G.; Al-Ahmad, S.; Ghonim, S.; Osaili, T. Beyond Chemical Preservatives: Enhancing the Shelf-Life and Sensory Quality of Ready-to-Eat (RTE) Hummus with Vinegar and Other Natural Antimicrobials. Foods 2023, 12, 2947. https://doi.org/10.3390/foods12152947
Karam L, Ghonim F, Dahdah P, Attieh G, Al-Ahmad S, Ghonim S, Osaili T. Beyond Chemical Preservatives: Enhancing the Shelf-Life and Sensory Quality of Ready-to-Eat (RTE) Hummus with Vinegar and Other Natural Antimicrobials. Foods. 2023; 12(15):2947. https://doi.org/10.3390/foods12152947
Chicago/Turabian StyleKaram, Layal, Fatma Ghonim, Patricia Dahdah, Grace Attieh, Shama Al-Ahmad, Salma Ghonim, and Tareq Osaili. 2023. "Beyond Chemical Preservatives: Enhancing the Shelf-Life and Sensory Quality of Ready-to-Eat (RTE) Hummus with Vinegar and Other Natural Antimicrobials" Foods 12, no. 15: 2947. https://doi.org/10.3390/foods12152947
APA StyleKaram, L., Ghonim, F., Dahdah, P., Attieh, G., Al-Ahmad, S., Ghonim, S., & Osaili, T. (2023). Beyond Chemical Preservatives: Enhancing the Shelf-Life and Sensory Quality of Ready-to-Eat (RTE) Hummus with Vinegar and Other Natural Antimicrobials. Foods, 12(15), 2947. https://doi.org/10.3390/foods12152947