Exposure Assessment of Heavy Metals and Microplastic-like Particles from Consumption of Bivalves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Bivalve Samples
2.3. Moisture Content Determination
2.4. Analysis of Pb and Cd Levels in Bivalve Samples
2.5. Determination of MP-like Particle Contents in Bivalve Samples
2.6. Bivalve Mollusk Consumption Data for the Thai Population
2.7. Assessment of Exposure to Pb, Cd and MP-like Particles Due to Bivalve Consumption
- (1)
- Average exposure (average consumption x average concentration);
- (2)
- High contaminant level exposure (average consumption × 97.5 PCTL concentration);
- (3)
- High consumption exposure (97.5 PCTL consumption × average concentration);
- (4)
- Worst-case exposure (97.5 PCTL consumption × 97.5 PCTL concentration).
2.8. Risk Characterization of Exposure to Pb, Cd and MP-like Particles Due to Bivalve Consumption
2.9. Statistical Analysis
3. Results
3.1. Lead and Cadmium Contents in Bivalves
3.2. MP-like Particles Detected in Bivalves
3.3. Exposure Assessment and Risk Characterization of Exposure to Pb and Cd from Bivalve Consumption
3.4. Assessment of Exposure to MP-like Particles Due to Bivalve Consumption
4. Discussion
4.1. Lead and Cadmium Contents in Bivalves
4.2. Microplastic-like Particles in Bivalves
4.3. Exposure Assessment and Risk Characterization of Pb and Cd from Bivalve Consumption
4.4. Assessment of Exposure to MP-like Particles Due to Bivalve Consumption
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Crovato, S.; Mascarello, G.; Marcolin, S.; Pinto, A.; Ravarotto, L. From purchase to consumption of bivalve molluscs: A qualitative study on consumers’ practices and risk perceptions. Food Control 2019, 96, 410–420. [Google Scholar] [CrossRef]
- Wijsman, J.W.M.; Troost, K.; Fang, J.; Roncarati, A. Global production of marine bivalves. Trends and challenges. In Goods and Services of Marine Bivalves; Smaal, A.C., Ferreira, J.G., Grant, J., Petersen, J.K., Strand, Ø., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 7–26. [Google Scholar]
- Beal, T.; Ortenzi, F. Priority micronutrient density in foods. Front. Nutr. 2022, 9, 806566. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Patra, R.C.; Swarup, D.; Kumar, P.; Nandi, D.; Naresh, R.; Ali, S.L. Milk trace elements in lactating cows environmentally exposed to higher level of lead and cadmium around different industrial units. Sci. Total Environ. 2008, 404, 36–43. [Google Scholar] [CrossRef]
- Charkiewicz, A.E.; Backstrand, J.R. Lead toxicity and pollution in Poland. Int. J. Environ. Res. Public Health. 2020, 17, 4385. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Monographs on the Identification of Carcinogenic Hazards to Humans. Available online: http://monographs.iarc.who.int/list-of-classifications (accessed on 20 January 2023).
- Joint FAO/WHO Expert Committee on Food Additives. Safety Evaluation of Certain Food Additives and Contaminants. Seventy-Third Report of the Joint FAO/WHO Expert Committee on Food Additives. Available online: http://apps.who.int/iris/handle/10665/44813 (accessed on 2 October 2022).
- Kumar, A.; Dey, P.K.; Singla, P.N.; Ambasht, R.S.; Upadhyay, S.K. Blood lead levels in children with neurological disorders. J. Trop. Pediatr. 1998, 44, 320–322. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on lead in food. EFSA J. 2010, 8, 1570. [Google Scholar] [CrossRef]
- Alexander, J.; Benford, D.; Cockburn, A.; Cravedi, J.P.; Dogliotti, E.; Di Domenico, A.; Férnandez-Cruz, M.L.; Fürst, P.; Fink-Gremmels, J.; Galli, C.L.; et al. Cadmium in food-Scientific opinion of the panel on contaminants in the food chain. EFSA J. 2009, 980, 1–139. [Google Scholar]
- Yang, D.; Shi, H.; Li, L.; Li, J.; Jabeen, K.; Kolandhasamy, P. Microplastic pollution in table salts from China. Environ. Sci. Technol. 2015, 49, 13622–13627. [Google Scholar] [CrossRef]
- GESAMP. Sources, Fate and Effects of Microplastics in the Marine Environment (Part 2). Available online: http://www.gesamp.org/publications/microplastics-in-the-marine-environment-part-2 (accessed on 2 October 2022).
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in seafood and the implications for human health. Curr. Environ. Health Rep. 2018, 5, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Zhang, Y.; Lemos, B.; Ren, H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci. Rep. 2017, 7, 46687. [Google Scholar] [CrossRef] [Green Version]
- Coffin, S.; Bouwmeester, H.; Brander, S.; Damdimopoulou, P.; Gouin, T.; Hermabessiere, L.; Khan, E.; Koelmans, A.A.; Lemieux, C.L.; Teerds, K.; et al. Development and application of a health-based framework for informing regulatory action in relation to exposure of microplastic particles in California drinking water. Microplast. Nanoplast. 2022, 2, 12. [Google Scholar] [CrossRef]
- Su, L.; Cai, H.; Kolandhasamy, P.; Wu, C.; Rochman, C.M.; Shi, H. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environ. Pollut. 2018, 234, 347–355. [Google Scholar] [CrossRef]
- Latimer, G. (Ed.) Official Methods of Analyses of AOAC International, 21st ed.; AOAC International: Rockville, Maryland, 2019; ISBN 0-935584-89-7. [Google Scholar]
- Sadiq, M.; Zaidi, T.H.; Alam, I.A. Bioaccumulation of lead by clams (Meretrix meretrix) collected from the Saudi Coast of the Arabian Gulf. Chem. Speciat. Bioavailab. 1992, 4, 1–8. [Google Scholar] [CrossRef]
- Li, J.; Yang, D.; Li, L.; Jabeen, K.; Shi, H. Microplastics in commercial bivalves from China. Environ. Pollut. 2015, 207, 190–195. [Google Scholar] [CrossRef]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef]
- Karami, A.; Golieskardi, A.; Choo, C.K.; Larat, V.; Galloway, T.S.; Salamatinia, B. The presence of microplastics in commercial salts from different countries. Sci. Rep. 2017, 7, 46173. [Google Scholar] [CrossRef] [Green Version]
- The National Bureau of Agricultural Commodity and Food Standards (ACFS). Food Consumption Data of Thailand. Available online: http://www.thaincd.com/document/file/info/non-communicable-disease/Thai_Food_Consumption_Data_2016.pdf (accessed on 10 November 2022). (In Thai).
- Banjong, O.; Viriyapanich, T.; Chittchang, U. Food Quantity Conversion Handbook; Institute of Nutrition, Mahidol University: Salaya, Thailand, 2013. (In Thai) [Google Scholar]
- World Health Organization. Principles and Methods for the Risk Assessment of Chemicals in Food; Food and Agriculture Organization of the United Nations; World Health Organization: Geneva, Switzerland, 2009; ISBN 978 92 4 157240 8.
- Bureau of Fisheries Development and Technology Transfer. Cockle Farming. 2007. Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok, Thailand. Available online: https://www.fisheries.go.th/it-database/dbweb/ebook/pdf (accessed on 21 February 2023). (In Thai)
- Bureau of Fisheries Development and Technology Transfer. Bivalves Farming. 2019. Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok, Thailand. Available online: https://www4.fisheries.go.th/local/file_document/20190612162228_1_file.pdf (accessed on 21 February 2023). (In Thai)
- George, R.; Martin, G.D.; Nair, S.M.; Chandramohanakumar, N. Biomonitoring of trace metal pollution using the bivalve molluscs, Villorita cyprinoides, from the Cochin backwaters. Environ. Monit. Assess. 2013, 185, 10317–10331. [Google Scholar] [CrossRef]
- Wang, W.-X.; Lu, G. Chapter 21—Heavy Metals in Bivalve Mollusks. In Chemical Contaminants and Residues in Food, 6th ed.; Schrenk, D., Cartus, A., Eds.; Woodhead Publishing: Thorston, UK, 2017; pp. 553–594. [Google Scholar]
- Notification of Ministry of Public Health No. 414 (B.E. 2563) Issued by Virtue of the Food Act B.E. 2522. Re: Standards for Contaminants in Food. Available online: https://fsvps.gov.ru/sites/default/files/files/ehksport-import/tailand/umz_414.pdf (accessed on 21 February 2023).
- FAO/WHO Codex Alimentarius. Codex Stan 193-1995 (Revised in 2019), General Standard for Contaminants and Toxins in Food and Feed. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/ (accessed on 2 March 2023).
- Commission Regulation (EC) No. 1881/2006. 2006. Commission Regulation (EC) No. 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Available online: https://eur-lex.europa.eu/lexuriserv/lexuriserv.do?uri=oj:l:2006:364:0005:0024:en:pdf (accessed on 2 March 2023).
- Pan, X.-D.; Han, J.-L. Heavy metals accumulation in bivalve mollusks collected from coastal areas of southeast China. Mar. Pollut. Bull. 2023, 189, 114808. [Google Scholar] [CrossRef]
- Thang, N.Q.; Huy, B.T.; Khanh, D.N.; Vy, N.T.; Phuong, T.H.; Sy, D.T.; Tham, L.T.; Phuong, N.T. Potential health risks of toxic heavy metals and nitrate via commonly consumed bivalve and vegetable species in Ho Chi Minh City, Vietnam. Environ. Sci. Pollut. Res. 2021, 28, 54960–54971. [Google Scholar] [CrossRef]
- Soegianto, A.; Putranto, T.W.C.; Payus, C.M.; Wahyuningsih, D.; Wati, F.N.I.R.; Utamadi, F.H.B.; Widyaningsih, N.S.; Sinuraya, S. Metal concentrations and potential health risk in clam (Meretrix lyrata Sowerby 1851) tissues from East Java Coast, Indonesia. Environ. Monit. Assess. 2021, 193, 753. [Google Scholar] [CrossRef]
- Rattikansukha, C.; Sratongtian, S.; Janta, R.; Sichum, S. Health risk assessment of cadmium and mercury via seafood consumption in coastal area of Nai Thung, Nakhon Si Thammarat Province, Thailand. WJST 2021, 18, 9244. [Google Scholar] [CrossRef]
- Peycheva, K.; Panayotova, V.; Stancheva, R.; Merdzhanova, A.; Dobreva, D.; Parrino, V.; Cicero, N.; Fazio, F.; Licata, P. Seasonal variations in the trace elements and mineral profiles of the bivalve species, Mytilus galloprovincialis, Chamelea gallina and Donax trunculus, and human health risk assessment. Toxics 2023, 11, 319. [Google Scholar] [CrossRef]
- Sudsandee, S.; Tantrakarnapa, K.; Tharnpoophasiam, P.; Limpanont, Y.; Mingkhwan, R.; Worakhunpiset, S. Evaluating health risks posed by heavy metals to humans consuming blood cockles (Anadara granosa) from the Upper Gulf of Thailand. Environ. Sci. Pollut. Res. 2017, 24, 14605–14615. [Google Scholar] [CrossRef]
- Claessens, M.; van Cauwenberghe, L.; Vandegehuchte, M.B.; Janssen, C.R. New techniques for the detection of microplastics in sediments and field collected organisms. Mar. Pollut. Bull. 2013, 70, 227–233. [Google Scholar] [CrossRef]
- Pinto da Costa, J.; Reis, V.; Paço, A.; Costa, M.; Duarte, A.C.; Rocha-Santos, T. Micro(nano)plastics—Analytical challenges towards risk evaluation. TrAC Trends Anal. Chem. 2019, 111, 173–184. [Google Scholar] [CrossRef]
- Teng, J.; Wang, Q.; Ran, W.; Wu, D.; Liu, Y.; Sun, S.; Liu, H.; Cao, R.; Zhao, J. Microplastic in cultured oysters from different coastal areas of China. Sci. Total Environ. 2019, 653, 1282–1292. [Google Scholar] [CrossRef]
- Cho, Y.; Shim, W.J.; Jang, M.; Han, G.M.; Hong, S.H. Abundance and characteristics of microplastics in market bivalves from South Korea. Environ. Pollut. 2019, 245, 1107–1116. [Google Scholar] [CrossRef]
- Renzi, M.; Guerranti, C.; Blašković, A. Microplastic contents from maricultured and natural mussels. Mar. Pollut. Bull. 2018, 131, 248–251. [Google Scholar] [CrossRef]
- Acharya, S.; Rumi, S.S.; Hu, Y.; Abidi, N. Microfibers from synthetic textiles as a major source of microplastics in the environment: A review. Text. Res. J. 2021, 91, 2136–2156. [Google Scholar] [CrossRef]
- Thongra-ar, W.; Musika, C.; Wongsudawan, W.; Munhapon, A. Health risk assessment of heavy metals via consumption of seafood from coastal area of Map Ta Phut industrial estate, Rayong Province. Burapha J. 2014, 19, 39–54. (In Thai) [Google Scholar]
- Van Cauwenberghe, L.; Janssen, C.R. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 2014, 193, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Barboza, L.G.A.; Vethaak, A.D.; Lavorante, B.R.; Lundebye, A.K.; Guilhermino, L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 2018, 133, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Bouwmeester, H.; Hollman, P.C.; Peters, R.J. Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: Experiences from nanotoxicology. Environ. Sci. Technol. 2015, 49, 8932–8947. [Google Scholar] [CrossRef] [PubMed]
- Baechler, B.R.; Granek, E.F.; Hunter, M.V.; Conn, K.E. Microplastic concentrations in two Oregon bivalve species: Spatial, temporal, and species variability. Limnol. Oceanogr. Lett. 2020, 5, 54–65. [Google Scholar] [CrossRef]
Type of Bivalve | Collection Year | Heavy Metal Contents | |||
---|---|---|---|---|---|
Pb (mg/kg Wet wt.) | Cd (mg/kg Wet wt.) | Pb (mg/kg Dry wt.) | Cd (mg/kg Dry wt.) | ||
Clam | Rainy, 2017 | 0.078 ± 0.037 c | 0.103 ± 0.064 b | 0.497 ± 0.239 c | 0.630 ± 0.403 b |
Winter, 2018 | 0.219 ± 0.062 a | 0.216 ± 0.063 a | 1.445 ± 0.062 a | 1.433 ± 0.410 a | |
Summer, 2019 | 0.098 ± 0.041 b | 0.109 ± 0.026 b | 0.624 ± 0.242 b | 0.694 ± 0.137 b | |
Total | 0.112 ± 0.068 B | 0.126 ± 0.067 B | 0.722 ± 0.440 B | 0.802 ± 0.440 B | |
Mussel | Rainy, 2017 | 0.036 ± 0.029 c | 0.116 ± 0.135 a | 0.290 ± 0.225 c | 0.878 ± 0.876 a |
Winter, 2018 | 0.095 ± 0.052 a | 0.101 ± 0.070 a | 1.669 ± 2.777 a | 1.039 ± 0.630 a | |
Summer, 2019 | 0.062 ± 0.039 b | 0.103 ± 0.073 a | 0.599 ± 0.382 b | 0.934 ± 0.631 a | |
Total | 0.064 ± 0.047 C | 0.107 ± 0.098 B | 0.853 ± 1.728 B | 0.950 ± 0.725 B | |
Cockle | Rainy, 2017 | 0.080 ± 0.040 c | 0.252 ± 0.077 b | 0.509 ± 0.227 c | 1.625 ± 0.551 b |
Winter, 2018 | 0.214 ± 0.071 a | 0.523 ± 0.174 a | 1.438 ± 0.420 a | 3.803 ± 1.860 a | |
Summer, 2019 | 0.159 ± 0.063 b | 0.596 ± 0.229 a | 1.011 ± 0.332 b | 3.807 ± 1.127 a | |
Total | 0.151 ± 0.081 A | 0.457 ± 0.227 A | 0.987 ± 0.505 A | 3.078 ± 1.654 A |
Type of Bivalve | Collection Year | Number of MP-like Particles | |
---|---|---|---|
Item/g Wet wt. | Item/Individual | ||
Clam | Rainy, 2017 | 0.08 ± 0.10 b (ND-0.30) | 0.18 ± 0.23 b (ND-0.68) |
Winter, 2018 | 0.13 ± 0.12 a (ND-0.30) | 0.30 ± 0.28 a (ND-0.68) | |
Summer, 2019 | 0.03 ± 0.10 c (ND-0.30) | 0.08 ± 0.23 c (ND-0.68) | |
Total | 0.06 ± 0.04 B (ND-0.30) | 0.14 ± 0.35 C (ND-0.68) | |
Mussel | Rainy, 2017 | 0.11 ± 0.17 a (ND-0.50) | 0.95 ± 1.42 a (ND-4.26) |
Winter, 2018 | 0.03 ± 0.09 c (ND-0.30) | 0.28 ± 0.80 c (ND-2.55) | |
Summer, 2019 | 0.067 ± 0.11 b (ND-0.30) | 0.57 ± 0.90 b (ND-2.55) | |
Total | 0.07 ± 0.13 B (ND-0.50) | 0.60 ± 1.11 A (ND-4.26) | |
Cockle | Rainy, 2017 | 0.18 ± 0.20 a (ND-0.60) | 0.55 ± 0.62 a (ND-1.87) |
Winter, 2018 | 0.04 ± 0.08 b (ND-0.20) | 0.14 ± 0.26 b (ND-0.62) | |
Summer, 2019 | 0.15 ± 0.40 a (ND-1.20) | 0.47 ± 1.23 a (ND-3.73) | |
Total | 0.12 ± 0.26 A (ND-1.20) | 0.38 ± 0.81 B (ND-3.73) |
Bivalve/ Age Group | Exposure to Pb (µg/kg bw/day) | MOE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
3–5.9 | 6–12.9 | 13–17.9 | 18–34.9 | 35–64.9 | ≥65 | 3–5.9 | 6–12.9 | 13–17.9 | 18–34.9 | 35–64.9 | ≥65 | |
Average exposure scenario (average consumption × average content) | ||||||||||||
Clam | 0.0018 | 0.0018 | 0.0011 | 0.0014 | 0.0012 | 0.0005 | 278 | 278 | 573 | 450 | 525 | 1260 |
Mussel | 0.0036 | 0.0029 | 0.0016 | 0.0025 | 0.0013 | 0.0005 | 139 | 172 | 394 | 252 | 485 | 1260 |
Cockle | 0.0138 | 0.0126 | 0.0083 | 0.0080 | 0.0039 | 0.0014 | 36 | 40 | 76 | 79 | 162 | 450 |
Total | 0.0192 | 0.0173 | 0.011 | 0.0119 | 0.0064 | 0.0024 | 26 | 29 | 57 | 53 | 98 | 263 |
High-concentration exposure scenario (average consumption × 97.5 PCTL content) | ||||||||||||
Clam | 0.0042 | 0.0044 | 0.0027 | 0.0033 | 0.0027 | 0.0012 | 119 | 114 | 233 | 191 | 233 | 525 |
Mussel | 0.0093 | 0.0075 | 0.0042 | 0.0063 | 0.0034 | 0.0013 | 54 | 67 | 150 | 100 | 185 | 485 |
Cockle | 0.0263 | 0.0240 | 0.0159 | 0.0153 | 0.0075 | 0.0027 | 19 | 21 | 40 | 41 | 84 | 233 |
High consumer-exposure scenario (97.5 PCTL consumption × average content) | ||||||||||||
Clam | 0.0200 | 0.0207 | 0.0129 | 0.0153 | 0.0109 | 0.0058 | 25 | 24 | 49 | 41 | 58 | 109 |
Mussel | 0.0492 | 0.0254 | 0.0159 | 0.0202 | 0.0133 | 0.0053 | 10 | 20 | 40 | 31 | 47 | 119 |
Cockle | 0.0730 | 0.1510 | 0.0943 | 0.0798 | 0.0397 | 0.0113 | 7 | 3 | 7 | 8 | 16 | 56 |
Worst-case exposure scenario (97.5 PCTL consumption × 97.5 PCTL content) | ||||||||||||
Clam | 0.0477 | 0.0493 | 0.0308 | 0.0365 | 0.0259 | 0.0138 | 49 | 41 | 20 | 17 | 24 | 46 |
Mussel | 0.1266 | 0.0654 | 0.0409 | 0.0519 | 0.0344 | 0.0137 | 37 | 29 | 15 | 12 | 18 | 46 |
Cockle | 0.1395 | 0.2884 | 0.1802 | 0.1525 | 0.0758 | 0.0216 | 8 | 10 | 3 | 4 | 8 | 29 |
Bivalve/ Age Group | Exposure to Cd (µg/kg bw/month) | HQ of Exposure to Cd | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
3–5.9 | 6–12.9 | 13–17.9 | 18–34.9 | 35–64.9 | ≥65 | 3–5.9 | 6–12.9 | 13–17.9 | 18–34.9 | 35–64.9 | ≥65 | |
Average exposure scenario (average consumption × average content) | ||||||||||||
Clam | 0.0597 | 0.0617 | 0.0385 | 0.0471 | 0.0386 | 0.0170 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.001 |
Mussel | 0.1816 | 0.1464 | 0.0825 | 0.1228 | 0.0660 | 0.0257 | 0.007 | 0.006 | 0.003 | 0.005 | 0.003 | 0.001 |
Cockle | 1.2483 | 1.1373 | 0.7563 | 0.7245 | 0.3564 | 0.1274 | 0.050 | 0.045 | 0.030 | 0.029 | 0.014 | 0.005 |
Total | 1.4896 | 1.3454 | 0.8773 | 0.8944 | 0.461 | 0.1701 | 0.060 | 0.054 | 0.035 | 0.036 | 0.018 | 0.007 |
High-concentration exposure scenario (average consumption × 97.5 PCTL content) | ||||||||||||
Clam | 0.1221 | 0.1262 | 0.0788 | 0.0962 | 0.0790 | 0.0349 | 0.005 | 0.005 | 0.003 | 0.004 | 0.003 | 0.001 |
Mussel | 0.5921 | 0.4771 | 0.2689 | 0.4004 | 0.2153 | 0.0838 | 0.024 | 0.019 | 0.011 | 0.016 | 0.009 | 0.003 |
Cockle | 2.6333 | 2.3990 | 1.5955 | 1.5284 | 0.7519 | 0.2687 | 0.105 | 0.096 | 0.064 | 0.061 | 0.030 | 0.011 |
High consumer-exposure scenario (97.5 PCTL consumption × average content) | ||||||||||||
Clam | 0.6726 | 0.6952 | 0.4344 | 0.5144 | 0.3653 | 0.1938 | 0.027 | 0.028 | 0.017 | 0.021 | 0.015 | 0.008 |
Mussel | 2.4626 | 1.2726 | 0.7952 | 1.0095 | 0.6687 | 0.2666 | 0.099 | 0.051 | 0.032 | 0.040 | 0.027 | 0.011 |
Cockle | 6.6150 | 13.6805 | 8.5484 | 7.2347 | 3.5958 | 1.0230 | 0.265 | 0.547 | 0.342 | 0.289 | 0.144 | 0.041 |
Worst-case exposure scenario (97.5 PCTL consumption × 97.5 PCTL content) | ||||||||||||
Clam | 1.3758 | 1.4220 | 0.8885 | 1.0523 | 0.7471 | 0.3965 | 0.055 | 0.057 | 0.036 | 0.042 | 0.030 | 0.016 |
Mussel | 8.0278 | 4.1486 | 2.5923 | 3.2909 | 2.1798 | 0.8691 | 0.321 | 0.166 | 0.104 | 0.132 | 0.087 | 0.035 |
Cockle | 13.9540 | 28.8584 | 18.0324 | 15.2613 | 7.5851 | 2.1580 | 0.558 | 1.154 | 0.721 | 0.610 | 0.303 | 0.086 |
Bivalve/ Age Group | Exposure to MP-like Particles Due to Bivalve Consumption (Items/Person/Day) | |||||
---|---|---|---|---|---|---|
3–5.9 | 6–12.9 | 13–17.9 | 18–34.9 | 35–64.9 | ≥65 | |
Average exposure scenario (average consumption × average content) | ||||||
Clam | 0.016 | 0.033 | 0.033 | 0.047 | 0.039 | 0.015 |
Mussel | 0.068 | 0.107 | 0.096 | 0.169 | 0.092 | 0.031 |
Cockle | 0.188 | 0.332 | 0.353 | 0.400 | 0.198 | 0.062 |
Total | 0.272 | 0.472 | 0.482 | 0.616 | 0.329 | 0.108 |
High-concentration exposure scenario (average consumption × 97.5 PCTL content) | ||||||
Clam | 0.082 | 0.164 | 0.164 | 0.236 | 0.195 | 0.076 |
Mussel | 0.360 | 0.562 | 0.507 | 0.892 | 0.483 | 0.165 |
Cockle | 1.297 | 2.286 | 2.433 | 2.754 | 1.364 | 0.428 |
High consumer-exposure scenario (97.5 PCTL consumption × average content) | ||||||
Clam | 0.185 | 0.369 | 0.369 | 0.517 | 0.369 | 0.172 |
Mussel | 0.928 | 0.928 | 0.928 | 1.392 | 0.928 | 0.325 |
Cockle | 0.997 | 3.991 | 3.991 | 3.991 | 1.996 | 0.499 |
Worst-case exposure scenario (97.5 PCTL consumption × 97.5 PCTL content) | ||||||
Clam | 0.923 | 1.846 | 1.846 | 2.583 | 1.846 | 0.860 |
Mussel | 4.888 | 4.888 | 4.888 | 7.332 | 4.888 | 1.711 |
Cockle | 6.872 | 27.502 | 27.502 | 27.502 | 13.758 | 3.436 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaviyutpakdee, P.; Karnpanit, W. Exposure Assessment of Heavy Metals and Microplastic-like Particles from Consumption of Bivalves. Foods 2023, 12, 3018. https://doi.org/10.3390/foods12163018
Tanaviyutpakdee P, Karnpanit W. Exposure Assessment of Heavy Metals and Microplastic-like Particles from Consumption of Bivalves. Foods. 2023; 12(16):3018. https://doi.org/10.3390/foods12163018
Chicago/Turabian StyleTanaviyutpakdee, Pharrunrat, and Weeraya Karnpanit. 2023. "Exposure Assessment of Heavy Metals and Microplastic-like Particles from Consumption of Bivalves" Foods 12, no. 16: 3018. https://doi.org/10.3390/foods12163018
APA StyleTanaviyutpakdee, P., & Karnpanit, W. (2023). Exposure Assessment of Heavy Metals and Microplastic-like Particles from Consumption of Bivalves. Foods, 12(16), 3018. https://doi.org/10.3390/foods12163018