A High-Performance Liquid Chromatography with Electrochemical Detection Method Developed for the Sensitive Determination of Ascorbic Acid: Validation, Application, and Comparison with Titration, Spectrophotometric, and High-Performance Liquid Chromatography with Diode-Array Detection Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Regents
2.2. Honey and Other Samples
2.3. Titrimetric Determination of VC
2.4. Spectrophotometric Determination of VC
2.5. HPLC-DAD and HPLC-ECD Methods
2.6. Method Validation
2.7. Statistical Analysis
3. Results and Discussion
3.1. Validation of the Analytical Method for VC
3.2. Comparison of HPLC-ECD and Other Three Methods
3.3. Application of the HPLC-ECD Method for VC Quantitation in Different Samples
3.3.1. Evolution of VC Contents in Honey during Storage
3.3.2. VC Contents in Different Varieties of Honey
3.3.3. VC Contents in Different Fruit and Biological Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rowe, S.; Carr, A.C. Global vitamin C status and prevalence of deficiency: A cause for concern? Nutrients 2020, 12, 2008. [Google Scholar] [CrossRef]
- Ngo, B.; Van Riper, J.M.; Cantley, L.C.; Yun, J. Targeting cancer vulnerabilities with high-dose vitamin C. Nat. Rev. Cancer 2019, 19, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Kashiouris, M.G.; L’Heureux, M.; Cable, C.A.; Fisher, B.J.; Leichtle, S.W.; Fowler, A.A. The emerging role of vitamin C as a treatment for sepsis. Nutrients 2020, 12, 292. [Google Scholar] [CrossRef] [PubMed]
- Paciolla, C.; Fortunato, S.; Dipierro, N.; Paradiso, A.; De Leonardis, S.; Mastropasqua, L.; de Pinto, M.C. Vitamin C in plants: From functions to biofortification. Antioxidants 2019, 8, 519. [Google Scholar] [CrossRef]
- Fenech, M.; Amaya, I.; Valpuesta, V.; Botella, M.A. Vitamin C content in fruits: Biosynthesis and regulation. Front. Plant Sci. 2019, 9, 2006. [Google Scholar] [CrossRef]
- Arya, S.P.; Mahajan, M.; Jain, P. Non-spectrophotometric methods for the determination of Vitamin C. Anal. Chim. Acta 2000, 417, 1–14. [Google Scholar] [CrossRef]
- Arya, S.P.; Mahajan, M.; Jain, P. Photometric methods for the determination of vitamin C. Anal. Sci. 1998, 14, 889–895. [Google Scholar] [CrossRef]
- Fontannaz, P.; Kilinç, T.; Heudi, O. HPLC-UV determination of total vitamin C in a wide range of fortified food products. Food Chem. 2006, 94, 626–631. [Google Scholar] [CrossRef]
- Mudasir; Yoshioka, N.; Inoue, H. Ligand-exchange reaction between tris (1,10-phenanthroline) metal (II) and tris (4,7-diphenyl-1,10-phenanthroline) metal (II) ions. J. Coord. Chem. 2001, 52, 333–344. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, H.; Xue, X.; Liu, C.; He, L.; Cheng, N.; Cao, W. Identification of acacia honey treated with macroporous adsorption resins using HPLC-ECD and chemometrics. Food Chem. 2020, 309, 125656. [Google Scholar] [CrossRef]
- Li, X.; Franke, A.A. Fast HPLC–ECD analysis of ascorbic acid, dehydroascorbic acid and uric acid. J. Chromatogr. B 2009, 877, 853–856. [Google Scholar] [CrossRef]
- Khan, A.; Khan, M.I.; Iqbal, Z.; Shah, Y.; Ahmad, L.; Nazir, S.; Watson, D.G.; Khan, J.A.; Nasir, F.; Khan, A.; et al. A new HPLC method for the simultaneous determination of ascorbic acid and aminothiols in human plasma and erythrocytes using electrochemical detection. Talanta 2011, 84, 789–801. [Google Scholar] [CrossRef]
- Gazdik, Z.; Zitka, O.; Petrlova, J.; Adam, V.; Zehnalek, J.; Horna, A.; Reznicek, V.; Beklova, M.; Kizek, R. Determination of vitamin C (ascorbic acid) using high performance liquid chromatography coupled with electrochemical detection. Sensors 2008, 8, 7097–7112. [Google Scholar] [CrossRef] [PubMed]
- Haoan, Z. Multi-Omics of the Effect of Apis cerana cerana Honey on Oxidative Stress-Related Inflammatory Response. Ph.D. Thesis, Northwest University, Xi’an, China, 2021. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Da Silva, T.L.; Aguiar-Oliveira, E.; Mazalli, M.R.; Kamimura, E.S.; Maldonado, R.R. Comparison between titrimetric and spectrophotometric methods for quantification of vitamin C. Food Chem. 2017, 224, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, N.; Tsutsumi, K.; Sanceda, N.G.; Kurata, T.; Inagaki, C. A rapid and sensitive method for the determination of ascorbic acid using 4,7-diphenyl-l,10-phenanthroline. Agric. Biol. Chem. 1981, 45, 1289–1290. [Google Scholar] [CrossRef]
- Mazurek, A.; Jamroz, J. Precision of dehydroascorbic acid quantitation with the use of the subtraction method–Validation of HPLC–DAD method for determination of total vitamin C in food. Food Chem. 2015, 173, 543–550. [Google Scholar] [CrossRef]
- Brittain, H.G. Profiles of Drug Substances, Excipients, and Related Methodology. In Analytical Profiles of Drug Substances and Excipients; Brittain, H.G., Ed.; Academic Press: New York, NY, USA, 2002; Volume 29, pp. 1–5. [Google Scholar]
- Bayram, B.; Rimbach, G.; Frank, J.; Esatbeyoglu, T. Rapid method for glutathione quantitation using high-performance liquid chromatography with coulometric electrochemical detection. J. Agric. Food Chem. 2014, 62, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Ostertag, F.; Schmidt, C.M.; Berensmeier, S.; Hinrichs, J. Development and validation of an RP-HPLC DAD method for the simultaneous quantification of minor and major whey proteins. Food Chem. 2021, 342, 128176. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, H.; Zhu, M.; Zhang, J.; Cheng, N.; Cao, W. Method for identifying acacia honey adulterated by resin absorption: HPLC-ECD coupled with chemometrics. LWT-Food Sci. Technol. 2020, 118, 108863. [Google Scholar] [CrossRef]
- García-Rodríguez, M.V.; López-Córcoles, H.; Alonso, G.L.; Pappas, C.S.; Polissiou, M.G.; Tarantilis, P.A. Comparative evaluation of an ISO 3632 method and an HPLC-DAD method for safranal quantity determination in saffron. Food Chem. 2017, 221, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Matei, N.; Radu, G.-L.; Truica, G.; Eremia, S.; Dobrinas, S.; Stanciu, G.; Popescu, A. Rapid HPLC method for the determination of ascorbic acid in grape samples. Anal. Methods 2013, 5, 4675–4679. [Google Scholar] [CrossRef]
- Nováková, L.; Solich, P.; Solichová, D. HPLC methods for simultaneous determination of ascorbic and dehydroascorbic acids. Trends Anal. Chem. 2008, 27, 942–958. [Google Scholar] [CrossRef]
- Gęgotek, A.; Skrzydlewska, E. Antioxidative and anti-inflammatory activity of ascorbic acid. Antioxidants 2022, 11, 1993. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.W.; Gao, Z.J.; Xiao, H.W.; Wang, X.T.; Zhang, Q. Polyphenol oxidase inactivation and vitamin C degradation kinetics of Fuji apple quarters by high humidity air impingement blanching. Int. J. Food Sci. Technol. 2013, 48, 1135–1141. [Google Scholar] [CrossRef]
- Peleg, M.; Normand, M.D.; Dixon, W.R.; Goulette, T.R. Modeling the degradation kinetics of ascorbic acid. Crit. Rev. Food Sci. Nutr. 2018, 58, 1478–1494. [Google Scholar] [CrossRef]
- Bosch, V.; Cilla, A.; García-Llatas, G.; Gilabert, V.; Boix, R.; Alegría, A. Kinetics of ascorbic acid degradation in fruit-based infant foods during storage. J. Food Eng. 2013, 116, 298–303. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.H.; Mujumdar, A.S.; Fang, X.M.; Zhang, Q.; Zheng, Z.A.; Gao, Z.J.; Xiao, H.W. Effects of high-humidity hot air impingement blanching (HHAIB) pretreatment on the change of antioxidant capacity, the degradation kinetics of red pigment, ascorbic acid in dehydrated red peppers during storage. Food Chem. 2018, 259, 65–72. [Google Scholar] [CrossRef]
- Alshammari, G.M.; Ahmed, M.A.; Alsulami, T.; Hakeem, M.J.; Ibraheem, M.A.; Al-Nouri, D.M. Phenolic compounds, antioxidant activity, ascorbic acid, and sugars in honey from ingenious Hail province of Saudi Arabia. Appl. Sci. 2022, 12, 8334. [Google Scholar] [CrossRef]
- León-Ruiz, V.; Vera, S.; González-Porto, A.V.; Andrés, M.P.S. Vitamin C and sugar levels as simple markers for discriminating Spanish honey sources. J. Food Sci. 2011, 76, C356–C361. [Google Scholar] [CrossRef]
- Perna, A.; Intaglietta, I.; Simonetti, A.; Gambacorta, E. A comparative study on phenolic profile, vitamin C content and antioxidant activity of Italian honeys of different botanical origin. Int. J. Food Sci. Technol. 2013, 48, 1899–1908. [Google Scholar] [CrossRef]
- Tavarini, S.; Degl’Innocenti, E.; Remorini, D.; Massai, R.; Guidi, L. Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chem. 2008, 107, 282–288. [Google Scholar] [CrossRef]
- Sankaranarayanan, C.; Kalaivani, K. Isopulegol mitigates hyperglycemia mediated oxidative and endoplasmic reticulum stress in HFD/STZ induced diabetic rats. Arch. Med. Res. 2020, 51, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Canoy, D.; Wareham, N.; Welch, A.; Bingham, S.; Luben, R.; Day, N.; Khaw, K.T. Plasma ascorbic acid concentrations and fat distribution in 19,068 British men and women in the European Prospective Investigation into Cancer and Nutrition Norfolk cohort study. Am. J. Clin. Nutr. 2005, 82, 1203–1209. [Google Scholar] [CrossRef]
- Yamato, M.; Shiba, T.; Yoshida, M.; Ide, T.; Seri, N.; Kudou, W.; Kinugawa, S.; Tsutsui, H. Fatty acids increase the circulating levels of oxidative stress factors in mice with diet-induced obesity via redox changes of albumin. FEBS J. 2007, 274, 3855–3863. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Ahn, J.; Shin, S.S.; Yoon, M. Ascorbic acid inhibits visceral obesity and nonalcoholic fatty liver disease by activating peroxisome proliferator-activated receptor α in high-fat-diet-fed C57BL/6J mice. Int. J. Obes. 2019, 43, 1620–1630. [Google Scholar] [CrossRef]
Methodologies | Linearity | LOD a (μg mL−1) | LOQ a (μg mL−1) | ||
---|---|---|---|---|---|
Regression Equation | R2 | Linear Range (mg mL−1) | |||
BP b | Y = 30.0670x + 2.1160 | 0.9979 | 5.0 × 10−3–4.0 × 10−1 | 2.4167 (A = 0.01) c | / |
HPLC-DAD | Y = 3.0722x + 0.1259 | 0.9990 | 5.0 × 10−3–2.0 × 10−2 | 0.9375 | 3.1250 |
HPLC-ECD | Y = 0.0014x + 0.0423 | 0.9999 | 1.0 × 10−4–2.0 × 10−2 | 0.0043 | 0.0142 |
Methodologies | Accuracy (%) | Recovery (%) | Repeatability (n = 6) | Precision | |||||
---|---|---|---|---|---|---|---|---|---|
Spiked Concentrations (μg mL−1) | Spiked Concentrations (μg mL−1) | RSD (%) | Intra-Day (n = 6) | Inter-Day (n = 3 Replicates × 3 Days) | |||||
1.00 | 2.00 | 4.00 | 10.00 | 2.00 | 4.00 | RSD (%) | RSD (%) | ||
BP | / | / | 94.45 | 96.73 | / | 97.55 | 5.17 | 6.53 | 8.19 |
HPLC-DAD | / | / | 98.17 | 98.15 | 94.90 | 95.63 | 0.88 | 3.18 | 4.49 |
HPLC-ECD | 102.00 | 97.55 | 96.90 | 98.59 | 94.20 | 93.30 | 1.36 | 2.51 | 5.15 |
Code | Samples | 2,6-DCPIP | BP | HPLC-DAD | HPLC-ECD |
---|---|---|---|---|---|
H1 | Multifloral honey | 0.20 ± 0.03 | 0.18 ± 0.01 | 0.19 ± 0.00 | 0.18 ± 0.00 |
H2 | Multifloral honey | 0.20 ± 0.05 | 0.19 ± 0.03 | 0.19 ± 0.00 | 0.19 ± 0.00 |
H3 | Multifloral honey | 0.23 ± 0.05 | 0.22 ± 0.01 | 0.22 ± 0.00 | 0.21 ± 0.00 |
H4 | Medlar honey | 0.12 ± 0.05 | 0.11 ± 0.01 | 0.12 ± 0.00 | 0.12 ± 0.00 |
H5 | Medlar honey | 0.14 ± 0.01 | 0.13 ± 0.01 | 0.13 ± 0.00 | 0.14 ± 0.00 |
H6 | Medlar honey | 0.15 ± 0.05 | 0.15 ± 0.01 | 0.15 ± 0.00 | 0.15 ± 0.00 |
H7 | Acacia honey | ND | ND | ND | 0.01 ± 0.00 |
H8 | Acacia honey | ND | ND | ND | 0.04 ± 0.00 |
H9 | Acacia honey | ND | ND | ND | 0.05 ± 0.00 |
Samples | Geographical Origin | Harvest Date | Mean ± SD | Minimum Value | Maximum Value |
---|---|---|---|---|---|
Honey (mg g−1) | |||||
Multifloral honey (n = 10) | Shaanxi | August 2017 | 0.18 ± 0.03 | 0.13 | 0.23 |
Multifloral honey (n = 10) | Shaanxi | August 2019 | 0.21 ± 0.03 | 0.18 | 0.25 |
Multifloral honey (n = 9) | Shaanxi | September 2020 | 0.23 ± 0.04 | 0.19 | 0.31 |
Medlar honey (n = 10) | Qinghai | November 2017 | 0.13 ± 0.01 | 0.11 | 0.14 |
Medlar honey (n = 4) | Ningxia | November 2017 | 0.13 ± 0.01 | 0.13 | 0.14 |
Medlar honey (n = 7) | Qinghai | November 2019 | 0.15 ± 0.00 | 0.15 | 0.16 |
Acacia honey (n = 9) | Yanan, Shaanxi | April 2017 | 0.02 ± 0.01 | 0.01 | 0.03 |
Acacia honey (n = 9) | Yanan, Shaanxi | May 2019 | 0.04 ± 0.00 | 0.03 | 0.05 |
Acacia honey (n = 9) | Yanan, Shaanxi | April 2020 | 0.05 ± 0.01 | 0.04 | 0.07 |
Fruit (mg g−1) | |||||
Kiwifruit (n = 8) | Meixian, Shaanxi | October 2020 | 1.88 ± 0.13 | 1.75 | 2.05 |
Kiwifruit (n = 8) | Zhouzhi, Shaanxi | October 2020 | 1.14 ± 0.11 | 0.94 | 1.32 |
Durian (n = 5) | Guangdong | July 2020 | 0.11 ± 0.01 | 0.10 | 0.12 |
Durian (n = 5) | Hainan | June 2020 | 0.12 ± 0.01 | 0.10 | 0.13 |
Banana (n = 3) | Guangdong | December 2020 | 0.14 ± 0.00 | 0.14 | 0.14 |
Banana (n = 6) | Guangxi | December 2020 | 0.16 ± 0.01 | 0.15 | 0.18 |
Serum (mg L−1) | |||||
Control (n = 8) | / | / | 4.37 ± 1.22 | 2.43 | 6.65 |
HFD (n = 8) | / | / | 2.42 ± 1.27 | 1.29 | 5.25 |
Liver (mg g−1) | |||||
Control (n = 8) | / | / | 0.12 ± 0.01 | 0.10 | 0.14 |
HFD (n = 8) | / | / | 0.10 ± 0.02 | 0.07 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Xu, F.; Liu, W.; Chen, S.; Luo, H.; Cheng, N.; Zhao, H.; Cao, W. A High-Performance Liquid Chromatography with Electrochemical Detection Method Developed for the Sensitive Determination of Ascorbic Acid: Validation, Application, and Comparison with Titration, Spectrophotometric, and High-Performance Liquid Chromatography with Diode-Array Detection Methods. Foods 2023, 12, 3100. https://doi.org/10.3390/foods12163100
Wu F, Xu F, Liu W, Chen S, Luo H, Cheng N, Zhao H, Cao W. A High-Performance Liquid Chromatography with Electrochemical Detection Method Developed for the Sensitive Determination of Ascorbic Acid: Validation, Application, and Comparison with Titration, Spectrophotometric, and High-Performance Liquid Chromatography with Diode-Array Detection Methods. Foods. 2023; 12(16):3100. https://doi.org/10.3390/foods12163100
Chicago/Turabian StyleWu, Fanhua, Fangrui Xu, Wen Liu, Sinan Chen, Haojie Luo, Ni Cheng, Haoan Zhao, and Wei Cao. 2023. "A High-Performance Liquid Chromatography with Electrochemical Detection Method Developed for the Sensitive Determination of Ascorbic Acid: Validation, Application, and Comparison with Titration, Spectrophotometric, and High-Performance Liquid Chromatography with Diode-Array Detection Methods" Foods 12, no. 16: 3100. https://doi.org/10.3390/foods12163100
APA StyleWu, F., Xu, F., Liu, W., Chen, S., Luo, H., Cheng, N., Zhao, H., & Cao, W. (2023). A High-Performance Liquid Chromatography with Electrochemical Detection Method Developed for the Sensitive Determination of Ascorbic Acid: Validation, Application, and Comparison with Titration, Spectrophotometric, and High-Performance Liquid Chromatography with Diode-Array Detection Methods. Foods, 12(16), 3100. https://doi.org/10.3390/foods12163100