Analysis of Nutritional Characteristics and Willingness to Pay of Consumers for Dry-Cured Sausages (Salchichón) Made with Textured Seed Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ingredients and Elaboration of Dry-Cured Sausages
2.2. Physical Measurements
2.3. Proximate Analysis
2.4. Fatty Acids
2.5. Sensory Analysis
2.6. Consumer Acceptance of the Dry-Cured Sausages
2.6.1. Choice Set Design
2.6.2. Replies
2.6.3. Econometric Analysis
2.7. Statistical Analysis
3. Results
3.1. Physical Parameters
3.2. Proximate Analysis
3.3. Fatty Acid Pattern
3.4. Sensory Analysis
3.5. Analysis of Consumers’ Acceptance of the Sausages and Willingness to Pay
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pereira, P.M.; Vicente, A.F. Meat nutritional composition and nutritive role in the human diet. Meat Sci. 2013, 93, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Tomovic, V.; Šojić, B.; Jokanović, M.; Škaljac, S.; Ivić, M.; Tomović, M.; Tomasevic, I.; Stajić, S.; Martinovic, A. Mineral contents in pork and edible offal from indigenous pigs. J. Eng. Process. Manag. 2019, 11, 66–72. [Google Scholar] [CrossRef]
- Biesalski, H.-K. Meat as a component of a healthy diet–are there any risks or benefits if meat is avoided in the diet? Meat Sci. 2005, 70, 509–524. [Google Scholar] [CrossRef]
- Boada, L.D.; Henríquez-Hernández, L.A.; Luzardo, O.P. The impact of red and processed meat consumption on cancer and other health outcomes: Epidemiological evidences. Food Chem. Toxicol. 2016, 92, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Fernández-López, J.; Viuda-Martos, M.; Pérez-Alvarez, J.A. Quinoa and chia products as ingredients for healthier processed meat products: Technological strategies for their application and effects on the final product. Curr. Opin. Food Sci. 2021, 40, 26–32. [Google Scholar] [CrossRef]
- Shan, L.C.; De Brún, A.; Henchion, M.; Li, C.; Murrin, C.; Wall, P.G.; Monahan, F.J. Consumer evaluations of processed meat products reformulated to be healthier-A conjoint analysis study. Meat Sci. 2017, 131, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Flores, M. Understanding the implications of current health trends on the aroma of wet and dry cured meat products. Meat Sci. 2018, 144, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, R.; Trejo, A.; Delgado-Adámez, J.; Martín-Mateos, M.J.; García-Parra, J. Effect of High-Hydrostatic-Pressure Processing and Storage Temperature on Sliced Iberian Dry-Cured Sausage (“Salchichón”) from Pigs Reared in Montanera System. Foods 2022, 11, 1338. [Google Scholar]
- Vioque-Amor, M.; Gómez-Díaz, R.; Clemente-López, I.; Sánchez-Giraldo, M.; Avilés-Ramírez, C. Influence of Common Reducing Agents on Technological Parameters of Dry-Fermented Sausages with Low Fat Content. Foods 2022, 11, 2606. [Google Scholar] [CrossRef]
- López-Pedrouso, M.; Lorenzo, J.M.; Gullón, B.; Campagnol, P.C.B.; Franco, D. Novel strategy for developing healthy meat products replacing saturated fat with oleogels. Curr. Opin. Food Sci. 2021, 40, 40–45. [Google Scholar] [CrossRef]
- Martins, A.J.; Vicente, A.A.; Pastrana, L.M.; Cerqueira, M.A. Oleogels for development of health-promoting food products. Food Sci. Hum. Wellness 2020, 9, 31–39. [Google Scholar] [CrossRef]
- Mazzocchi, A.; De Cosmi, V.; Risé, P.; Milani, G.P.; Turolo, S.; Syrén, M.L.; Sala, A.; Agostoni, C. Bioactive Compounds in Edible Oils and Their Role in Oxidative Stress and Inflammation. Front. Physiol. 2021, 12, 659551. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shen, N.; Xin, H.; Yu, L.; Xu, Q.; Cui, Y. Unsaturated fatty acids in natural edible resources, a systematic review of classification, resources, biosynthesis, biological activities and application. Food Biosci. 2023, 53, 102790. [Google Scholar] [CrossRef]
- Abad, A.; Shahidi, F. Compositional characteristics and oxidative stability of chia seed oil (Salvia hispanica L.). Food Prod. Process. Nutr. 2020, 2, 9. [Google Scholar] [CrossRef]
- Tak, Y.; Kaur, M.; Kumar, R.; Gautam, C.; Singh, P.; Kaur, H.; Kaur, A.; Bhatia, S.; Jha, N.K.; Gupta, P.K.; et al. Repurposing chia seed oil: A versatile novel functional food. J. Food Sci. 2022, 87, 2798–2819. [Google Scholar] [CrossRef]
- Ferreira, D.M.; Nunes, M.A.; Santo, L.E.; Machado, S.; Costa, A.S.G.; Álvarez-Ortí, M.; Pardo, J.E.; Oliveira, M.B.P.P.; Alves, R.C. Characterization of Chia Seeds, Cold-Pressed Oil, and Defatted Cake: An Ancient Grain for Modern Food Production. Molecules 2023, 28, 723. [Google Scholar] [CrossRef] [PubMed]
- Satranský, M.; Fraňková, A.; Kuchtová, P.; Pazderů, K.; Capouchová, I. Oil content and fatty acid profile of selected poppy (Papaver somniferum L.) landraces and modern cultivars. Plant Soil Environ. 2021, 67, 579–587. [Google Scholar] [CrossRef]
- Rabadán, A.; Nunes, M.A.; Bessada, S.M.F.; Pardo, J.E.; Oliveira, M.B.P.P.; Álvarez-Ortí, M. From By-Product to the Food Chain: Melon (Cucumis melo L.) Seeds as Potential Source for Oils. Foods 2020, 9, 1341. [Google Scholar] [CrossRef] [PubMed]
- Rezig, L.; Martine, L.; Nury, T.; Msaada, K.; Mahfoudhi, N.; Ghzaiel, I.; Prost-Camus, E.; Durand, P.; Midaoui, A.E.; Acar, N.; et al. Profiles of Fatty Acids, Polyphenols, Sterols, and Tocopherols and Scavenging Property of Mediterranean Oils: New Sources of Dietary Nutrients for the Prevention of Age-related Diseases. J. Oleo Sci. 2022, 71, 1117–1133. [Google Scholar] [CrossRef]
- Botella-Martínez, C.; Sayas-Barberá, E.; Pérez-Álvarez, J.Á.; Viuda-Martos, M.; Fernández-López, J. Chia and hemp oils-based gelled emulsions as replacers of pork backfat in burgers: Effect on lipid profile, technological attributes and oxidation stability during frozen storage. Int. J. Food Sci. Technol. 2023, 58, 3234–3243. [Google Scholar] [CrossRef]
- Domínguez, R.; Munekata, P.E.S.; Pateiro, M.; López-Fernández, O.; Lorenzo, J.M. Immobilization of oils using hydrogels as strategy to replace animal fats and improve the healthiness of meat products. Curr. Opin. Food Sci. 2021, 37, 135–144. [Google Scholar] [CrossRef]
- Siegrist, M.; Hartmann, C. Consumer acceptance of novel food technologies. Nat. Food 2020, 1, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Rabadán, A.; Bernabéu, R. A systematic review of studies using the Food Neophobia Scale: Conclusions from thirty years of studies. Food Qual. Prefer. 2021, 93, 104241. [Google Scholar] [CrossRef]
- Henriques, A.S.; King, S.C.; Meiselman, H.L. Consumer segmentation based on food neophobia and its application to product development. Food Qual. Prefer. 2009, 20, 83–91. [Google Scholar] [CrossRef]
- Bernués, A.; Olaizola, A.; Corcoran, K. Extrinsic attributes of red meat as indicators of quality in Europe: An application for market segmentation. Food Qual. Prefer. 2003, 14, 265–276. [Google Scholar] [CrossRef]
- Bernués, A.; Olaizola, A.; Corcoran, K. Labelling information demanded by European consumers and relationships with purchasing motives, quality and safety of meat. Meat Sci. 2003, 65, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- Lizin, S.; Rousseau, S.; Kessels, R.; Meulders, M.; Pepermans, G.; Speelman, S.; Vandebroek, M.; Van Den Broeck, G.; Van Loo, E.J.; Verbeke, W. The state of the art of discrete choice experiments in food research. Food Qual. Prefer. 2022, 102, 104678. [Google Scholar] [CrossRef]
- Sena-Moreno, E.; Pardo, J.E.; Pardo-Giménez, A.; Gómez, R.; Alvarez-Ortí, M. Differences in Oils from Nuts Extracted by Means of Two Pressure Systems. Int. J. Food Prop. 2016, 19, 2750–2760. [Google Scholar] [CrossRef]
- MAPA. Métodos Oficiales de Análisis en la Unión Europea; Secretaría General Técnica Madrid: Madrid, Spain, 1998; p. 495. [Google Scholar]
- ANKOM. Crude Fiber Analysis in Feeds by Filter Bag Technique; ANKOM Technology: Macedon, NY, USA, 2008. [Google Scholar]
- FAO. Food Analysis: General Techniques, Additives, Contaminants and Composition; Manuals of Food Quality Control 7; Food and Agriculture Organization of the United Nations: Rome, Italy, 1986. [Google Scholar]
- Sullivan, D.M. Proximate and mineral analysis. In Methods of Analysis for Nutrition Labeling; Sullivan, D.M., Carpenter, D.E., Eds.; AOAC International: Arlington, VA, USA, 1993. [Google Scholar]
- Melo, D.; Álvarez-Ortí, M.; Nunes, M.A.; Espírito Santo, L.; Machado, S.; Pardo, J.E.; Oliveira, M. Nutritional and Chemical Characterization of Poppy Seeds, Cold-Pressed Oil, and Cake: Poppy Cake as a High-Fibre and High-Protein Ingredient for Novel Food Production. Foods 2022, 11, 3027. [Google Scholar] [CrossRef]
- Jones, L.V.; Peryam, D.R.; Thurstone, L.L. Development of a scale for measuring soldiers’ food preferences. Food Res. 1955, 20, 512–520. [Google Scholar] [CrossRef]
- Lusk, J.L.; Briggeman, B.C. Food Values. Am. J. Agric. Econ. 2009, 91, 184–196. [Google Scholar] [CrossRef]
- García-Gudiño, J.; Blanco-Penedo, I.; Gispert, M.; Brun, A.; Perea, J.; Font-i-Furnols, M. Understanding consumers’ perceptions towards Iberian pig production and animal welfare. Meat Sci. 2021, 172, 108317. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Nayga, R.M. Green identity labeling, environmental information, and pro-environmental food choices. Food Policy 2022, 106, 102187. [Google Scholar] [CrossRef]
- Orsi, L.; Voege, L.L.; Stranieri, S. Eating edible insects as sustainable food? Exploring the determinants of consumer acceptance in Germany. Food Res. Int. 2019, 125, 108573. [Google Scholar] [CrossRef]
- McFadden, D.; Train, K. Mixed MNL models for discrete response. J. Appl. Econom. 2000, 15, 447–470. [Google Scholar] [CrossRef]
- Hole, A.R. Fitting mixed logit models by using maximum simulated likelihood. Stata J. 2007, 7, 388–401. [Google Scholar] [CrossRef]
- Ibrahim, M.; Salama, M.; Hussein, A. Production of Functional Low-Fat Chicken Burger. Aust. J. Basic Appl. Sci. 2011, 5, 3149–3154. [Google Scholar]
- Tarjuelo, L.; Pardo, J.E.; Álvarez-Ortí, M.; Pardo-Giménez, A.; Millán, C.; Rabadán, A. Development of Seed-Oil Based Dried Sausages, Considering Physicochemical and Nutritional Quality and the Role of Food Neophobia. Nutrients 2022, 14, 3106. [Google Scholar] [CrossRef]
- Ninčević Grassino, A.; Rimac Brnčić, S.; Badanjak Sabolović, M.; Šic Žlabur, J.; Marović, R.; Brnčić, M. Carotenoid Content and Profiles of Pumpkin Products and By-Products. Molecules 2023, 28, 858. [Google Scholar] [CrossRef]
- Lanfer-Marquez, U.M.; Barros, R.M.C.; Sinnecker, P. Antioxidant activity of chlorophylls and their derivatives. Food Res. Int. 2005, 38, 885–891. [Google Scholar] [CrossRef]
- Romero, M.P.; Tovar, M.J.; Girona, J.; Motilva, M.J. Changes in the HPLC phenolic profile of virgin olive oil from young trees (Olea europaea L. Cv. Arbequina) grown under different deficit irrigation strategies. J. Agric. Food Chem. 2002, 50, 5349–5354. [Google Scholar] [CrossRef] [PubMed]
- Keenan, D.F.; Resconi, V.C.; Kerry, J.P.; Hamill, R.M. Modelling the influence of inulin as a fat substitute in comminuted meat products on their physico-chemical characteristics and eating quality using a mixture design approach. Meat Sci. 2014, 96, 1384–1394. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, F.A.L.; Munekata, P.E.S.; Pateiro, M.; Campagnol, P.C.B.; Domínguez, R.; Trindade, M.A.; Lorenzo, J.M. Effect of replacing backfat with vegetable oils during the shelf-life of cooked lamb sausages. LWT 2020, 122, 109052. [Google Scholar] [CrossRef]
- Peng, L.; Xiang, L.; Xu, Z.; Gu, H.; Zhu, Z.; Tang, Y.; Jiang, Y.; He, H.; Wang, Y.; Zhao, X. Association between low-fat diet and liver cancer risk in 98,455 participants: Results from a prospective study. Front Nutr 2022, 9, 1013643. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Khan, I.; Li, A.; Chen, X.; Yang, P.; Song, P.; Jing, Y.; Wei, J.; Che, T.; Zhang, C. Alpha-linolenic acid given as an anti-inflammatory agent in a mouse model of colonic inflammation. Food Sci. Nutr. 2019, 7, 3873–3882. [Google Scholar] [CrossRef] [PubMed]
- Froyen, E.; Burns-Whitmore, B. The Effects of Linoleic Acid Consumption on Lipid Risk Markers for Cardiovascular Disease in Healthy Individuals: A Review of Human Intervention Trials. Nutrients 2020, 12, 2329. [Google Scholar] [CrossRef] [PubMed]
- Marklund, M.; Wu, J.H.Y.; Imamura, F.; Del Gobbo, L.C.; Fretts, A.; de Goede, J.; Shi, P.; Tintle, N.; Wennberg, M.; Aslibekyan, S.; et al. Biomarkers of Dietary Omega-6 Fatty Acids and Incident Cardiovascular Disease and Mortality. Circulation 2019, 139, 2422–2436. [Google Scholar] [CrossRef]
- Sosa, M.D.; Magallanes, L.M.; Grosso, N.R.; Pramparo, M.d.C.; Gayol, M.F. Optimisation of omega-3 concentration and sensory analysis of chia oil. Ind. Crops Prod. 2020, 154, 112635. [Google Scholar] [CrossRef]
- Kalschne, D.L.; Detoni, E.; Dos Santos, M.R.; Colla, E.; De Souza, A.H.P. Gluten-free cheese bread enriched with essential fatty acids: Characterization and acceptance. In Gluten-Free Diets and Health; Castillo, H., Ed.; Nova Science Publishers: New York, NY, USA, 2021; pp. 89–130. [Google Scholar]
- Font i Furnols, M.; Realini, C.; Montossi, F.; Sañudo, C.; Campo, M.M.; Oliver, M.A.; Nute, G.R.; Guerrero, L. Consumer’s purchasing intention for lamb meat affected by country of origin, feeding system and meat price: A conjoint study in Spain, France and United Kingdom. Food Qual. Prefer. 2011, 22, 443–451. [Google Scholar] [CrossRef]
- Eurobarometer, S. Attitudes of EU citizens towards Animal Welfare; European Commission: Brussels, Belgium, 2007. [Google Scholar]
- Alonso, M.E.; González-Montaña, J.R.; Lomillos, J.M. Consumers’ Concerns and Perceptions of Farm Animal Welfare. Animals 2020, 10, 385. [Google Scholar] [CrossRef]
- De Graaf, S.; Van Loo, E.J.; Bijttebier, J.; Vanhonacker, F.; Lauwers, L.; Tuyttens, F.A.M.; Verbeke, W. Determinants of consumer intention to purchase animal-friendly milk. J. Dairy Sci. 2016, 99, 8304–8313. [Google Scholar] [CrossRef] [PubMed]
- Tarjuelo, L.; Rabadán, A.; Álvarez-Ortí, M.; Pardo-Giménez, A.; Pardo, I.; Pardo, J.E. Nutritional characteristics and consumer attitudes towards burgers produced by replacing animal fat with oils obtained from food by-products. J. Funct. Foods 2023, 104, 105500. [Google Scholar] [CrossRef]
- Sánchez-Zapata, E.; Muñoz, C.M.; Fuentes, E.; Fernández-López, J.; Sendra, E.; Sayas, E.; Navarro, C.; Pérez-Alvarez, J.A. Effect of tiger nut fibre on quality characteristics of pork burger. Meat Sci. 2010, 85, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Schultz, C.J.; Lim, W.L.; Khor, S.F.; Neumann, K.A.; Schulz, J.M.; Ansari, O.; Skewes, M.A.; Burton, R.A. Consumer and health-related traits of seed from selected commercial and breeding lines of industrial hemp, Cannabis sativa L. J. Agric. Food Res. 2020, 2, 100025. [Google Scholar] [CrossRef]
Attributes | Levels |
---|---|
Animal welfare | No information |
Animal welfare label | |
Breed | 50% Iberian pig |
100% Iberian pig | |
Price | 5.50 €/500 g |
8.00 €/500 g | |
10.50 €/500 g | |
Pumpkin seed oil | No information |
“With pumpkin seed oil” label |
Sample | L* | a* | b* | C* |
---|---|---|---|---|
Control | 50.93 a ± 2.86 | 17.51 a ± 1.47 | 8.24 b ± 1.07 | 19.35 a ± 1.68 |
Poppy 50% | 40.48 b ± 3.84 | 14.98 b ± 1.99 | 8.05 b ± 0.88 | 17.00 b ± 2.01 |
Poppy 75% | 35.21 c ± 3.91 | 14.12 b ± 1.62 | 8.66 b ± 1.91 | 16.56 b ± 2.32 |
Poppy 100% | 33.12 c ± 2.92 | 14.10 b ± 1.40 | 8.46 b ± 1.09 | 16.44 b ± 1.92 |
Pumpkin 50% | 40.23 b ± 1.86 | 10.46 c ± 1.41 | 8.50 b ± 1.50 | 13.48 c ± 1.74 |
Pumpkin 75% | 40.09 b ± 3.55 | 9.82 c ± 0.56 | 10.56 a ± 1.65 | 14.42 c ± 1.20 |
Pumpkin 100% | 40.84 b ± 1.98 | 9.79 c ± 1.52 | 9.16 ab ± 1.13 | 13.40 c ± 1.44 |
Chia 50% | 38.22 bc ± 3.47 | 14.03 b ± 1.70 | 6.17 c ± 1.19 | 14.42 c ± 1.98 |
Chia 75% | 40.12 b ± 3.73 | 13.94 b ± 1.73 | 6.60 c ± 1.56 | 15.32 bc ± 2.17 |
Chia 100% | 35.97 c ± 3.40 | 13.66 b ± 1.50 | 7.61 bc ± 1.14 | 15.60 bc ± 1.74 |
Melon 50% | 38.76 bc ± 2.52 | 14.39 b ± 1.70 | 8.28 b ± 1.37 | 16.36 b ± 2.08 |
Melon 75% | 38.62 bc ± 2.30 | 14.12 b ± 1.73 | 8.89 b ± 1.36 | 16.68 b ± 2.04 |
Melon 100% | 36.78 bc ± 3.40 | 13.54 b ± 1.22 | 8.36 b ± 1.75 | 15.91 bc ± 1.51 |
Sample | Hardness (N) | Springiness | Cohesiveness | Chewiness (N) |
---|---|---|---|---|
Control | 497.13 a ± 70.99 | 0.71 a ± 0.04 | 0.85 a ± 0.05 | 316.62 bc ± 220.97 |
Poppy 50% | 507.75 a ± 60.30 | 0.67 ab ± 0.03 | 0.68 b ± 0.03 | 342.35 a ± 33.88 |
Poppy 75% | 472.87 a ± 31.72 | 0.66 ab ± 0.11 | 0.59 c ± 0.03 | 278.43 c ± 30.44 |
Poppy 100% | 462.80 a ± 31.72 | 0.66 ab ± 0.16 | 0.52 c ± 0.01 | 258.44 c ± 30.66 |
Pumpkin 50% | 513.84 a ± 38.87 | 0.60 b ± 0.06 | 0.68 b ± 0.07 | 351.67 a ± 53.72 |
Pumpkin 75% | 492.72 a ± 62.87 | 0.61 b ± 0.06 | 0.65 b ± 0.02 | 321.62 bc ± 36.17 |
Pumpkin 100% | 477.67 a ± 99.70 | 0.68 ab ± 0.15 | 0.66 b ± 0.04 | 318.86 bc ± 77.73 |
Chia 50% | 521.67 a ± 31.26 | 0.65 ab ± 0.12 | 0.66 b ± 0.01 | 343.51 a ± 14.22 |
Chia 75% | 336.44 b ± 13.51 | 0.65 ab ± 0.06 | 0.64 bc ± 0.02 | 217.99 c ± 93.69 |
Chia 100% | 395.21 ab ± 82.42 | 0.65 ab ± 0.05 | 0.59 c ± 0.02 | 233.07 c ± 51.41 |
Melon 50% | 478.40 a ± 43.68 | 0.68 ab ± 0.06 | 0.71 b ± 0.05 | 341.37 a ± 36.30 |
Melon 75% | 527.63 a ± 12.14 | 0.62 b ± 0.05 | 0.62 bc ± 0.01 | 328.29 bc ± 14.80 |
Melon 100% | 444.77 a ± 95.60 | 0.65 ab ± 0.07 | 0.59 c ± 0.02 | 261.25 c ± 53.90 |
Sample | Ashes (%) | Protein (%) | Fat (%) | Total Carbohydrates (%) | Energy Value (Kcal) |
---|---|---|---|---|---|
Control | 6.92 c ± 0.24 | 41.50 c ± 1.72 | 46.31 a ± 1.35 | 5.27 b ± 0.32 | 604 a ± 2.60 |
Poppy 50% | 7.57 c ± 0.37 | 47.06 b ± 2.04 | 43.32 a ± 2.19 | 2.05 c ± 0.21 | 586 a ± 3.41 |
Poppy 75% | 9.17 b ± 0.75 | 54.38 a ± 2.46 | 31.24 bc ± 1.27 | 5.22 b ± 0.24 | 520 c ± 2.70 |
Poppy 100% | 9.21 b ± 0.81 | 55.25 a ± 1.87 | 30.43 c ± 1.09 | 5.11 b ± 0.43 | 515 c ± 1.80 |
Pumpkin 50% | 8.74 b ± 0.62 | 52.88 ab ± 1.12 | 34.86 b ± 1.56 | 3.52 c ± 0.32 | 539 b ± 4.23 |
Pumpkin 75% | 9.15 b ± 0.42 | 49.63 b ± 1.63 | 34.52 b ± 1.78 | 6.71 ab ± 0.40 | 536 b ± 2.81 |
Pumpkin 100% | 9.96 a ± 0.65 | 52.81 ab ± 1.35 | 31.50 bc ± 1.63 | 5.73 b ± 0.33 | 518 c ± 1.96 |
Chia 50% | 9.07 b ± 1.02 | 49.50 b ± 1.88 | 37.15 b ± 1.25 | 4.28 b ± 0.20 | 549 b ± 2.04 |
Chia 75% | 9.13 b ± 1.15 | 51.38 b ± 2.01 | 33.67 b ± 1.17 | 5.82 b ± 0.38 | 532 bc ± 2.74 |
Chia 100% | 9.65 ab ± 0.96 | 55.00 a ± 2.46 | 27.15 c ± 1.06 | 8.20 a ± 0.51 | 497 c ± 3.16 |
Melon 50% | 8.97 b ± 0.85 | 49.69 b ± 1.23 | 35.41 b ± 1.91 | 5.93 b ± 0.17 | 541 b ± 2.92 |
Melon 75% | 8.49 b ± 0.79 | 51.19 b ± 1.52 | 37.46 b ± 1.85 | 2.86 c ± 0.12 | 553 b ± 3.40 |
Melon 100% | 8.99 b ± 0.98 | 56.19 a ± 2.23 | 28.04 c ± 1.36 | 6.78 ab ± 0.36 | 504 c ± 2.60 |
Sample | Palmitic Acid C16:0 | Stearic Acid C18:0 | Oleic Acid C18:1 | Linoleic Acid C18:2 | Linolenic Acid C18:3 |
---|---|---|---|---|---|
Control | 25.1 a ± 0.85 | 13.7 a ± 0.73 | 46.9 a ± 0.44 | 8.0 c ± 0.44 | 0.55 c ± 0.12 |
Poppy 50% | 23.1 b ± 1.41 | 12.3 ab ± 0.04 | 40.9 ab ± 0.37 | 17.7 b ± 0.19 | 0.74 c ± 0.11 |
Poppy 75% | 20.0 c ± 1.38 | 9.2 c ± 0.49 | 36.1 b ± 0.65 | 29.0 a ± 1.01 | 0.79 c ± 0.20 |
Poppy 100% | 20.9 c ± 1.62 | 9.3 c ± 0.87 | 33.6 bc ± 1.81 | 31.2 a ± 1.02 | 0.83 c ± 0.33 |
Pumpkin 50% | 23.2 b ± 1.29 | 11.8 b ± 0.92 | 41.1 ab ± 1.63 | 17.8 b ± 0.52 | 0.82 c ± 0.21 |
Pumpkin 75% | 22.2 bc ± 1.33 | 11.3 b ± 0.65 | 39.4 b ± 1.22 | 21.4 b ± 1.45 | 1.26 c ± 0.30 |
Pumpkin 100% | 21.0 c ± 0.99 | 10.1 c ± 0.88 | 37.9 b ± 1.34 | 25.6 b ± 1.20 | 1.22 c ± 0.36 |
Chia 50% | 19.7 c ± 1.37 | 10.1 c ± 0.72 | 35.1 b ± 1.32 | 16.4 b ± 0.88 | 14.28 b ± 0.11 |
Chia 75% | 19.1 c ± 1.45 | 10.0 c ± 1.01 | 34.0 bc ± 1.45 | 16.6 b ± 0.66 | 15.21 b ± 0.62 |
Chia 100% | 17.5 c ± 1.37 | 8.5 c ± 1.55 | 29.0 c ± 0.99 | 18.0 b ± 1.07 | 23.36 a ± 0.23 |
Melon 50% | 22.2 bc ± 0.99 | 12.1 ab ± 1.27 | 38.4 b ± 0.97 | 21.9 b ± 1.01 | 0.78 c ± 0.31 |
Melon 75% | 20.0 c ± 1.14 | 10.1 c ± 1.10 | 35.9 b ± 1.22 | 27.9 a ± 1.01 | 0.86 c ± 0.21 |
Melon 100% | 18.1 c ± 1.70 | 9.3 c ± 0.22 | 34.3 bc ± 1.67 | 33.7 a ± 1.22 | 0.85 c ± 0.36 |
Attribute | Group Average | Individual Variation | ||
---|---|---|---|---|
Estimate (S.E.) | p-Value | Std. Dev. | p-Value | |
Price | −0.322 (0.044) | 0.000 *** | 0.242 | 0.000 *** |
Animal welfare | 0.655 (0.134) | 0.000 *** | 0.579 | 0.016 * |
Pumpkin seed oil | −0.963 (0.274) | 0.000 *** | 2.278 | 0.000 *** |
Breed | 1.244 (0.225) | 0.000 *** | 1.548 | 0.000 *** |
N. obs | 2496 | |||
Wald chi2 | 248.81 | |||
Prob > chi2 | 0.0000 | |||
logL | −657.37 | |||
df | 9 | |||
AIC | 1332.74 | |||
BIC | 1385.14 |
Attribute | WTP (€/500 g) |
---|---|
Animal welfare | 2.00494 |
Pumpkin seed oil | −2.99528 |
Breed | 3.86924 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarjuelo, L.; Rabadán, A.; Álvarez-Ortí, M.; Pardo-Giménez, A.; Pardo, J.E. Analysis of Nutritional Characteristics and Willingness to Pay of Consumers for Dry-Cured Sausages (Salchichón) Made with Textured Seed Oils. Foods 2023, 12, 3118. https://doi.org/10.3390/foods12163118
Tarjuelo L, Rabadán A, Álvarez-Ortí M, Pardo-Giménez A, Pardo JE. Analysis of Nutritional Characteristics and Willingness to Pay of Consumers for Dry-Cured Sausages (Salchichón) Made with Textured Seed Oils. Foods. 2023; 12(16):3118. https://doi.org/10.3390/foods12163118
Chicago/Turabian StyleTarjuelo, Laura, Adrián Rabadán, Manuel Álvarez-Ortí, Arturo Pardo-Giménez, and José E. Pardo. 2023. "Analysis of Nutritional Characteristics and Willingness to Pay of Consumers for Dry-Cured Sausages (Salchichón) Made with Textured Seed Oils" Foods 12, no. 16: 3118. https://doi.org/10.3390/foods12163118
APA StyleTarjuelo, L., Rabadán, A., Álvarez-Ortí, M., Pardo-Giménez, A., & Pardo, J. E. (2023). Analysis of Nutritional Characteristics and Willingness to Pay of Consumers for Dry-Cured Sausages (Salchichón) Made with Textured Seed Oils. Foods, 12(16), 3118. https://doi.org/10.3390/foods12163118