The Scoop on SCOBY (Symbiotic Culture of Bacteria and Yeast): Exploring Consumer Behaviours towards a Novel Ice Cream
Abstract
:1. Introduction
2. Theoretical Background
2.1. Theory of Planned Behaviour (TPB)
2.1.1. Intention and Willingness
2.1.2. Attitude
2.1.3. Subjective Norm
2.1.4. Perceived Behaviour Control (PBC)
2.2. Additional Constructs
2.2.1. Emotions
2.2.2. Food Neophobia
3. Materials and Methods
3.1. Research Framework
3.2. Experimental Design
3.2.1. Pre-Test
3.2.2. Questionnaire Design
3.2.3. Measurements
3.3. Sample Size and Demographic Composition
3.4. Statistical Analysis
4. Results
4.1. Model Reliability and Validity
4.2. Structural Model and Hypothesis Testing
4.3. Salient Beliefs
4.4. Hierarchical Cluster Analysis
4.5. Change in Attitude and Intention after Tasting Sessions
5. Discussion
6. Limitations and Future Recommendations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aschemann-Witzel, J.; Peschel, A.O. How Circular Will You Eat? The Sustainability Challenge in Food and Consumer Reaction to Either Waste-to-Value or yet Underused Novel Ingredients in Food. Food Qual. Prefer. 2019, 77, 15–20. [Google Scholar] [CrossRef]
- Sun, T.Y.; Li, J.S.; Chen, C. Effects of Blending Wheatgrass Juice on Enhancing Phenolic Compounds and Antioxidant Activities of Traditional Kombucha Beverage. J. Food Drug Anal. 2015, 23, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Priyadharshini, T.; Nageshwari, K.; Vimaladhasan, S.; Parag Prakash, S.; Balasubramanian, P. Machine Learning Prediction of SCOBY Cellulose Yield from Kombucha Tea Fermentation. Bioresour. Technol. Rep. 2022, 18, 101027. [Google Scholar] [CrossRef]
- Teoh, A.L.; Heard, G.; Cox, J. Yeast Ecology of Kombucha Fermentation. Int. J. Food Microbiol. 2004, 95, 119–126. [Google Scholar] [CrossRef] [PubMed]
- De Costa, M.A.; Vilela, D.L.d.S.; Fraiz, G.M.; Lopes, I.L.; Coelho, A.I.M.; Castro, L.C.V.; Martin, J.G.P. Effect of Kombucha Intake on the Gut Microbiota and Obesity-Related Comorbidities: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2021, 63, 3851–3866. [Google Scholar] [CrossRef]
- El-Wakil, N.A.; Hassan, E.A.; Hassan, M.L.; Abd El-Salam, S.S. Bacterial Cellulose/Phytochemical’s Extracts Biocomposites for Potential Active Wound Dressings. Environ. Sci. Pollut. Res. 2019, 26, 26529–26541. [Google Scholar] [CrossRef]
- El-Shall, F.N.; Al-Shemy, M.T.; Dawwam, G.E. Multifunction Smart Nanocomposite Film for Food Packaging Based on Carboxymethyl Cellulose/Kombucha SCOBY/Pomegranate Anthocyanin Pigment. Int. J. Biol. Macromol. 2023, 242, 125101. [Google Scholar] [CrossRef]
- Yang, Z.W.; Ji, B.P.; Zhou, F.; Li, B.; Luo, Y.; Yang, L.; Li, T. Hypocholesterolaemic and Antioxidant Effects of Kombucha Tea in High-Cholesterol Fed Mice. J. Sci. Food Agric. 2009, 89, 150–156. [Google Scholar] [CrossRef]
- Permatasari, H.K.; Firani, N.K.; Prijadi, B.; Irnandi, D.F.; Riawan, W.; Yusuf, M.; Amar, N.; Chandra, L.A.; Yusuf, V.M.; Subali, A.D.; et al. Kombucha Drink Enriched with Sea Grapes (Caulerpa racemosa) as Potential Functional Beverage to Contrast Obesity: An in Vivo and in Vitro Approach. Clin. Nutr. ESPEN 2022, 49, 232–240. [Google Scholar] [CrossRef]
- Spence, C.; Navarra, J.; Youssef, J. Using Ice-Cream as an Effective Vehicle for Energy/Nutrient Delivery in the Elderly. Int. J. Gastron. Food Sci. 2019, 16, 100140. [Google Scholar] [CrossRef]
- Bogdan, M.; Justine, S.; Camelia Filofteia, D.; Călina Petruța, C.; Gabriela, L.; Elena Roxana, U.; Florentina, M. Lactic Acid Bacteria Strains Isolated from Kombucha with Potential Probiotic Effect. Rom. Biotechnol. Lett. 2018, 23, 13592–13598. [Google Scholar]
- Kruk, M.; Trząskowska, M.; Ścibisz, I.; Pokorski, P. Application of the “Scoby” and Kombucha Tea for the Production of Fermented Milk Drinks. Microorganisms 2021, 9, 123. [Google Scholar] [CrossRef] [PubMed]
- Kozłowicz, K.; Góral, M.; Góral, D.; Pankiewicz, U.; Bronowicka-Mielniczuk, U. Effect of Ice Cream Storage on the Physicochemical Properties and Survival of Probiotic Bacteria Supplemented with Zinc Ions. LWT 2019, 116, 108562. [Google Scholar] [CrossRef]
- Cruz, A.G.; Antunes, A.E.C.; Sousa, A.L.O.P.; Faria, J.A.F.; Saad, S.M.I. Ice-Cream as a Probiotic Food Carrier. Food Res. Int. 2009, 42, 1233–1239. [Google Scholar] [CrossRef]
- Chanadang, S.; Chambers, E. Determination of the Sensory Characteristics of Traditional and Novel Fortified Blended Foods Used in Supplementary Feeding Programs. Foods 2019, 8, 261. [Google Scholar] [CrossRef] [PubMed]
- Patinho, I.; Saldaña, E.; Selani, M.M.; Teixeira, A.C.B.; Menegali, B.S.; Merlo, T.C.; Rios-Mera, J.D.; Dargelio, M.D.B.; Rodrigues, H.; Contreras-Castillo, C.J. Original Burger (Traditional) or Burger with Mushroom Addition? A Social Representation Approach to Novel Foods. Food Res. Int. 2021, 147, 110551. [Google Scholar] [CrossRef]
- Stolzenbach, S.; Bredie, W.L.P.; Byrne, D.V. Consumer Concepts in New Product Development of Local Foods: Traditional versus Novel Honeys. Food Res. Int. 2013, 52, 144–152. [Google Scholar] [CrossRef]
- Coderoni, S.; Perito, M.A. Sustainable Consumption in the Circular Economy. An Analysis of Consumers’ Purchase Intentions for Waste-to-Value Food. J. Clean. Prod. 2020, 252, 119870. [Google Scholar] [CrossRef]
- Mancini, S.; Sogari, G.; Menozzi, D.; Nuvoloni, R.; Torracca, B.; Moruzzo, R.; Paci, G. Factors Predicting the Intention of Eating an Insect-Based Product. Foods 2019, 8, 270. [Google Scholar] [CrossRef]
- Hartmann, C.; Shi, J.; Giusto, A.; Siegrist, M. The Psychology of Eating Insects: A Cross-Cultural Comparison between Germany and China. Food Qual. Prefer. 2015, 44, 148–156. [Google Scholar] [CrossRef]
- Sogari, G.; Menozzi, D.; Mora, C. The Food Neophobia Scale and Young Adults’ Intention to Eat Insect Products. Int. J. Consum. Stud. 2019, 43, 68–76. [Google Scholar] [CrossRef]
- Arvola, A.; Vassallo, M.; Dean, M.; Lampila, P.; Saba, A.; Lähteenmäki, L.; Shepherd, R. Predicting Intentions to Purchase Organic Food: The Role of Affective and Moral Attitudes in the Theory of Planned Behaviour. Appetite 2008, 50, 443–454. [Google Scholar] [CrossRef]
- Al-Swidi, A.; Huque, S.M.R.; Hafeez, M.H.; Shariff, M.N.M. The Role of Subjective Norms in Theory of Planned Behavior in the Context of Organic Food Consumption. Br. Food J. 2014, 116, 1561–1580. [Google Scholar] [CrossRef]
- Ting, H.; De Run, E.C.; Cheah, J.-H.; Chuah, F. Food Neophobia and Ethnic Food Consumption Intention: An Extension of the Theory of Planned Behaviour. Br. Food J. 2016, 118, 2781–2797. [Google Scholar] [CrossRef]
- Heddy, B.C.; Danielson, R.W.; Sinatra, G.M.; Graham, J. Modifying Knowledge, Emotions, and Attitudes Regarding Genetically Modified Foods. J. Exp. Educ. 2017, 85, 513–533. [Google Scholar] [CrossRef]
- Akbari, M.; Fozouni Ardekani, Z.; Pino, G.; Maleksaeidi, H. An Extended Model of Theory of Planned Behavior to Investigate Highly-Educated Iranian Consumers’ Intentions towards Consuming Genetically Modified Foods. J. Clean. Prod. 2019, 227, 784–793. [Google Scholar] [CrossRef]
- Hamlin, R.P.; McNeill, L.S.; Sim, J. Food Neophobia, Food Choice and the Details of Cultured Meat Acceptance. Meat Sci. 2022, 194, 108964. [Google Scholar] [CrossRef] [PubMed]
- Blikra, M.J.; Altintzoglou, T.; Løvdal, T.; Rognså, G.; Skipnes, D.; Skåra, T.; Sivertsvik, M.; Noriega Fernández, E. Seaweed Products for the Future: Using Current Tools to Develop a Sustainable Food Industry. Trends Food Sci. Technol. 2021, 118, 765–776. [Google Scholar] [CrossRef]
- Mehta, A.; Sharma, C.; Kanala, M.; Thakur, M.; Harrison, R.; Torrico, D.D. Self-Reported Emotions and Facial Expressions on Consumer Acceptability: A Study Using Energy Drinks. Foods 2021, 10, 330. [Google Scholar] [CrossRef]
- Pfister, H.-R.; Böhm, G. The Multiplicity of Emotions: A Framework of Emotional Functions in Decision Making. Judgm. Decis. Mak. 2008, 3, 5. [Google Scholar] [CrossRef]
- Schouteten, J.J.; de Steur, H.; de Pelsmaeker, S.; Lagast, S.; de Bourdeaudhuij, I.; Gellynck, X. An Integrated Method for the Emotional Conceptualization and Sensory Characterization of Food Products: The EmoSensory® Wheel. Food Res. Int. 2015, 78, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, S.; Masi, C.; Dinnella, C.; Zoboli, G.P.; Monteleone, E. How Does It Make You Feel? A New Approach to Measuring Emotions in Food Product Experience. Food Qual. Prefer. 2014, 37, 109–122. [Google Scholar] [CrossRef]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Ajzen, I. Perceived Behavioral Control, Self-efficacy, Locus of Control, and the Theory of Planned Behavior. J. Appl. Soc. Psychol. 2002, 32, 665–683. [Google Scholar] [CrossRef]
- Xie, X.; Huang, L.; Li, J.; Zhu, H. Generational Differences in Perceptions of Food Health/Risk and Attitudes toward Organic Food and Game Meat: The Case of the COVID-19 Crisis in China. Int. J. Env. Res. Public Health 2020, 17, 3148. [Google Scholar] [CrossRef]
- Dunn, K.I.; Mohr, P.; Wilson, C.J.; Wittert, G.A. Determinants of Fast-Food Consumption. An Application of the Theory of Planned Behaviour. Appetite 2011, 57, 349–357. [Google Scholar] [CrossRef]
- Manstan, T.; Chandler, S.L.; McSweeney, M.B. Consumers’ Attitudes towards 3D Printed Foods after a Positive Experience: An Exploratory Study. J. Sens. Stud. 2021, 36, e12619. [Google Scholar] [CrossRef]
- Michel, F.; Hartmann, C.; Siegrist, M. Consumers’ Associations, Perceptions and Acceptance of Meat and Plant-Based Meat Alternatives. Food Qual. Prefer. 2021, 87, 104063. [Google Scholar] [CrossRef]
- Ali, A.; Xiaoling, G.; Sherwani, M.; Ali, A. Factors Affecting Halal Meat Purchase Intention: Evidence from International Muslim Students in China. Br. Food J. 2017, 119, 527–541. [Google Scholar] [CrossRef]
- Fishbein, M.; Ajzen, I. Predicting and Changing Behavior: The Reasoned Action Approach; Psychology Press: New York, NY, USA, 2011; ISBN 0203838025. [Google Scholar]
- D’Souza, C. Game Meats: Consumption Values, Theory of Planned Behaviour, and the Moderating Role of Food Neophobia/Neophiliac Behaviour. J. Retail. Consum. Serv. 2022, 66, 102953. [Google Scholar] [CrossRef]
- Menozzi, D.; Sogari, G.; Veneziani, M.; Simoni, E.; Mora, C. Eating Novel Foods: An Application of the Theory of Planned Behaviour to Predict the Consumption of an Insect-Based Product. Food Qual. Prefer. 2017, 59, 27–34. [Google Scholar] [CrossRef]
- Metcalf, D.A.; Wiener, K.K.K.; Saliba, A.; Sugden, N. Evaluating the Acceptance of Hemp Food in Australian Adults Using the Theory of Planned Behavior and Structural Equation Modelling. Foods 2021, 10, 2071. [Google Scholar] [CrossRef]
- Wang, O.; Scrimgeour, F. Willingness to Adopt a More Plant-Based Diet in China and New Zealand: Applying the Theories of Planned Behaviour, Meat Attachment and Food Choice Motives. Food Qual. Prefer. 2021, 93, 104294. [Google Scholar] [CrossRef]
- Salmivaara, L.; Lombardini, C.; Lankoski, L. Examining Social Norms among Other Motives for Sustainable Food Choice: The Promise of Descriptive Norms. J. Clean. Prod. 2021, 311, 127508. [Google Scholar] [CrossRef]
- Wilks, M.; Phillips, C.J.C. Attitudes to in Vitro Meat: A Survey of Potential Consumers in the United States. PLoS ONE 2017, 12, e0171904. [Google Scholar] [CrossRef] [PubMed]
- Gunaratne, N.M.; Fuentes, S.; Gunaratne, T.M.; Torrico, D.D.; Ashman, H.; Francis, C.; Viejo, C.G.; Dunshea, F.R. Consumer Acceptability, Eye Fixation, and Physiological Responses: A Study of Novel and Familiar Chocolate Packaging Designs Using Eye-Tracking Devices. Foods 2019, 8, 253. [Google Scholar] [CrossRef]
- Torrico, D.D.; Fuentes, S.; Gonzalez Viejo, C.; Ashman, H.; Gunaratne, N.M.; Gunaratne, T.M.; Dunshea, F.R. Images and Chocolate Stimuli Affect Physiological and Affective Responses of Consumers: A Cross-Cultural Study. Food Qual. Prefer. 2018, 65, 60–71. [Google Scholar] [CrossRef]
- Crist, C.A.; Duncan, S.E.; Arnade, E.A.; Leitch, K.A.; O’Keefe, S.F.; Gallagher, D.L. Automated Facial Expression Analysis for Emotional Responsivity Using an Aqueous Bitter Model. Food Qual. Prefer. 2018, 68, 349–359. [Google Scholar] [CrossRef]
- Leitch, K.A.; Duncan, S.E.; O’Keefe, S.; Rudd, R.; Gallagher, D.L. Characterizing Consumer Emotional Response to Sweeteners Using an Emotion Terminology Questionnaire and Facial Expression Analysis. Food Res. Int. 2015, 76, 283–292. [Google Scholar] [CrossRef]
- Mehta, A.; Serventi, L.; Kumar, L.; Viejo, C.G.; Fuentes, S.; Torrico, D.D. Influence of Expectations and Emotions Raised by Packaging Characteristics on Orange Juice Acceptability and Choice. Food Packag. Shelf Life 2022, 33, 100926. [Google Scholar] [CrossRef]
- Motoki, K.; Ishikawa, S.I.; Spence, C.; Velasco, C. Contextual Acceptance of Insect-Based Foods. Food Qual. Prefer. 2020, 85, 103982. [Google Scholar] [CrossRef]
- Manstan, T.; McSweeney, M.B. Consumers’ Attitudes towards and Acceptance of 3D Printed Foods in Comparison with Conventional Food Products. Int. J. Food Sci. Technol. 2020, 55, 323–331. [Google Scholar] [CrossRef]
- Bryant, C.; Szejda, K.; Parekh, N.; Deshpande, V.; Tse, B. A Survey of Consumer Perceptions of Plant-Based and Clean Meat in the USA, India, and China. Front. Sustain. Food Syst. 2019, 3, 11. [Google Scholar] [CrossRef]
- Laros, F.J.M.; Steenkamp, J.E.M. Importance of Fear in the Case of Genetically Modified Food. Psychol. Mark. 2004, 21, 889–908. [Google Scholar] [CrossRef]
- Goetzke, B.; Nitzko, S.; Spiller, A. Consumption of Organic and Functional Food. A Matter of Well-Being and Health? Appetite 2014, 77, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Perugini, M.; Bagozzi, R.P. The Role of Desires and Anticipated Emotions in Goal-directed Behaviours: Broadening and Deepening the Theory of Planned Behaviour. Br. J. Soc. Psychol. 2001, 40, 79–98. [Google Scholar] [CrossRef]
- Köster, E.P. Diversity in the Determinants of Food Choice: A Psychological Perspective. Food Qual. Prefer. 2009, 20, 70–82. [Google Scholar] [CrossRef]
- Martins, Y.; Pliner, P. Human Food Choices: An Examination of the Factors Underlying Acceptance/Rejection of Novel and Familiar Animal and Nonanimal Foods. Appetite 2005, 45, 214–224. [Google Scholar] [CrossRef]
- Pliner, P.; Hobden, K. Development of a Scale to Measure the Trait of Food Neophobia in Humans. Appetite 1992, 19, 105–120. [Google Scholar] [CrossRef]
- Frank, R.A.; Van Der Klaauw, N.J. The Contribution of Chemosensory Factors to Individual Differences in Reported Food Preferences. Appetite 1994, 22, 101–123. [Google Scholar] [CrossRef]
- Cox, D.N.; Evans, G. Construction and Validation of a Psychometric Scale to Measure Consumers’ Fears of Novel Food Technologies: The Food Technology Neophobia Scale. Food Qual. Prefer. 2008, 19, 704–710. [Google Scholar] [CrossRef]
- Deegan, K.C.; Palmujoki, I.; Isotalo, J.; Tuorila, H. Effective Communication of Novelty: The Case of Ripened Cheese. Food Qual. Prefer. 2015, 40, 68–76. [Google Scholar] [CrossRef]
- Losada-Lopez, C.; Dopico, D.C.; Faína-Medín, J.A. Neophobia and Seaweed Consumption: Effects on Consumer Attitude and Willingness to Consume Seaweed. Int. J. Gastron. Food Sci. 2021, 24, 100338. [Google Scholar] [CrossRef]
- Çınar, Ç.; Karinen, A.K.; Tybur, J.M. The Multidimensional Nature of Food Neophobia. Appetite 2021, 162, 105177. [Google Scholar] [CrossRef] [PubMed]
- Erhard, A.L.; Águas Silva, M.; Damsbo-Svendsen, M.; el Menadeva, K.B.; Sørensen, H.; Bom Frøst, M. Acceptance of Insect Foods among Danish Children: Effects of Information Provision, Food Neophobia, Disgust Sensitivity, and Species on Willingness to Try. Food Qual. Prefer. 2023, 104, 104713. [Google Scholar] [CrossRef]
- Embling, R.; Neilson, L.; Randall, T.; Mellor, C.; Lee, M.D.; Wilkinson, L.L. ‘Edible Seaweeds’ as an Alternative to Animal-Based Proteins in the UK: Identifying Product Beliefs and Consumer Traits as Drivers of Consumer Acceptability for Macroalgae. Food Qual. Prefer. 2022, 100, 104613. [Google Scholar] [CrossRef]
- Choe, J.Y.; Cho, M.S. Food Neophobia and Willingness to Try Non-Traditional Foods for Koreans. Food Qual. Prefer. 2011, 22, 671–677. [Google Scholar] [CrossRef]
- Perneger, T.V.; Courvoisier, D.S.; Hudelson, P.M.; Gayet-Ageron, A. Sample Size for Pre-Tests of Questionnaires. Qual. Life Res. 2015, 24, 147–151. [Google Scholar] [CrossRef]
- Bruner, G.C.; Hensel, P.J.; James, K.E. Marketing Scales Handbook. American Marketing Association: Chicago, IL, USA, 2005. [Google Scholar]
- Nicolau, J.L.; Mellinas, J.P.; Martín-Fuentes, E. The Halo Effect: A Longitudinal Approach. Ann. Tour. Res. 2020, 83, 102938. [Google Scholar] [CrossRef]
- Sama, R. Impact of Media Advertisements on Consumer Behaviour. J. Creat. Commun. 2019, 14, 54–68. [Google Scholar] [CrossRef]
- Berki-Kiss, D.; Menrad, K. The Role Emotions Play in Consumer Intentions to Make Pro-Social Purchases in Germany—An Augmented Theory of Planned Behavior Model. Sustain. Prod. Consum. 2022, 29, 79–89. [Google Scholar] [CrossRef]
- Byrne, B.M. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming (Multivariate Applications Series); New York Taylor and Francis Group: New York, NY, USA, 2010; Volume 396, p. 7384. [Google Scholar]
- Fornell, C.; Larcker, D.F. Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. J. Mark. Res. 1981, 18, 382–388. [Google Scholar] [CrossRef]
- Bacon, D.R.; Sauer, P.L.; Young, M. Composite Reliability in Structural Equations Modeling. Educ. Psychol. Meas. 1995, 55, 394–406. [Google Scholar] [CrossRef]
- Hair, J.F. Multivariate Data Analysis; Kennesaw State University: Kennesaw, GA, USA, 2009. [Google Scholar]
- Xia, Y.; Yang, Y. RMSEA, CFI, and TLI in Structural Equation Modeling with Ordered Categorical Data: The Story They Tell Depends on the Estimation Methods. Behav. Res. Methods 2019, 51, 409–428. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, M.; Ajzen, I. Changing Behavior: Theoretical Considerations. In Predicting and Changing Behavior: The Reasoned Action Approach; Psychology Press: New York, NY, USA, 2010. [Google Scholar]
- Nichols, M.A.; Arnett, S.J.; Fa, B.; Marchionda, R.A.; Cutting, M.C.; McDonald, M.R.; Miller, M.L. National Survey Identifying Community Pharmacist Preceptors’ Experience, Knowledge, Attitudes, and Behaviors Influencing Intent to Recommend Cannabidiol Products. J. Am. Pharm. Assoc. 2021, 61, S91–S104. [Google Scholar] [CrossRef]
- Zhang, Y.; Jing, L.; Bai, Q.; Shao, W.; Feng, Y.; Yin, S.; Zhang, M. Application of an Integrated Framework to Examine Chinese Consumers’ Purchase Intention toward Genetically Modified Food. Food Qual. Prefer. 2018, 65, 118–128. [Google Scholar] [CrossRef]
- Yazdanpanah, M.; Forouzani, M. Application of the Theory of Planned Behaviour to Predict Iranian Students’ Intention to Purchase Organic Food. J. Clean Prod. 2015, 107, 342–352. [Google Scholar] [CrossRef]
- Göckeritz, S.; Schultz, P.W.; Rendón, T.; Cialdini, R.B.; Goldstein, N.J.; Griskevicius, V. Descriptive Normative Beliefs and Conservation Behavior: The Moderating Roles of Personal Involvement and Injunctive Normative Beliefs. Eur. J. Soc. Psychol. 2010, 40, 514–523. [Google Scholar] [CrossRef]
- Hartmann, C.; Siegrist, M. Becoming an Insectivore: Results of an Experiment. Food Qual. Prefer. 2016, 51, 118–122. [Google Scholar] [CrossRef]
- Da Silva, V.M.; Minim, V.P.R.; Ferreira, M.A.M.; de Souza, P.P.H.; da Silva, L.E.; Minim, L.A.Ô. Study of the Perception of Consumers in Relation to Different Ice Cream Concepts. Food Qual. Prefer. 2014, 36, 161–168. [Google Scholar] [CrossRef]
- Bullock, K.; Lahne, J.; Pope, L. Investigating the Role of Health Halos and Reactance in Ice Cream Choice. Food Qual. Prefer. 2020, 80, 103826. [Google Scholar] [CrossRef]
- Jezewska-Zychowicz, M.; Królak, M. Do Consumers’ Attitudes Towards Food Technologies and Motives of Food Choice Influence Willingness to Eat Cereal Products Fortified with Fibre? Pol. J. Food Nutr. Sci. 2015, 65, 281–291. [Google Scholar] [CrossRef]
- Furno, M.; Verneau, F.; Sannino, G. Assessing Hypothetical Bias: An Analysis beyond the Mean of Functional Food. Food Qual. Prefer. 2016, 50, 15–26. [Google Scholar] [CrossRef]
- Vidigal, M.C.T.R.; Minim, V.P.R.; Simiqueli, A.A.; Souza, P.H.P.; Balbino, D.F.; Minim, L.A. Food Technology Neophobia and Consumer Attitudes toward Foods Produced by New and Conventional Technologies: A Case Study in Brazil. LWT 2015, 60, 832–840. [Google Scholar] [CrossRef]
- Roseman, I.J.; Smith, C.A. Appraisal Theory. In Appraisal Processes in Emotion: Theory, Methods, Research; Cambridge University Press: Cambridge, MA, USA, 2001; pp. 3–19. [Google Scholar]
- Cheng, E.W.L. Choosing between the Theory of Planned Behavior (TPB) and the Technology Acceptance Model (TAM). Educ. Technol. Res. Dev. 2019, 67, 21–37. [Google Scholar] [CrossRef]
- Sultan, P.; Tarafder, T.; Pearson, D.; Henryks, J. Intention-Behaviour Gap and Perceived Behavioural Control-Behaviour Gap in Theory of Planned Behaviour: Moderating Roles of Communication, Satisfaction and Trust in Organic Food Consumption. Food Qual. Prefer. 2020, 81, 103838. [Google Scholar] [CrossRef]
- McEachan, R.R.C.; Conner, M.; Taylor, N.J.; Lawton, R.J. Prospective Prediction of Health-Related Behaviours with the Theory of Planned Behaviour: A Meta-Analysis. Health Psychol. Rev. 2011, 5, 97–144. [Google Scholar] [CrossRef]
- Bäckström, A.; Pirttilä-Backman, A.M.; Tuorila, H. Dimensions of Novelty: A Social Representation Approach to New Foods. Appetite 2003, 40, 299–307. [Google Scholar] [CrossRef]
- Sogari, G.; Pucci, T.; Caputo, V.; Van Loo, E.J. The Theory of Planned Behaviour and Healthy Diet: Examining the Mediating Effect of Traditional Food. Food Qual. Prefer. 2023, 104, 104709. [Google Scholar] [CrossRef]
- Nagaraj, S. Role of Consumer Health Consciousness, Food Safety & Attitude on Organic Food Purchase in Emerging Market: A Serial Mediation Model. J. Retail. Consum. Serv. 2021, 59, 102423. [Google Scholar] [CrossRef]
- Laavanya, D.; Shirkole, S.; Balasubramanian, P. Current Challenges, Applications and Future Perspectives of SCOBY Cellulose of Kombucha Fermentation. J. Clean Prod. 2021, 295, 126454. [Google Scholar] [CrossRef]
- de Miranda, J.F.; Ruiz, L.F.; Silva, C.B.; Uekane, T.M.; Silva, K.A.; Gonzalez, A.G.M.; Fernandes, F.F.; Lima, A.R. Kombucha: A Review of Substrates, Regulations, Composition, and Biological Properties. J. Food Sci. 2022, 87, 503–527. [Google Scholar] [CrossRef] [PubMed]
- Flight, I.; Leppard, P.; Cox, D.N. Food Neophobia and Associations with Cultural Diversity and Socio-Economic Status amongst Rural and Urban Australian Adolescents. Appetite 2003, 41, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Laureati, M.; Bergamaschi, V.; Pagliarini, E. School-Based Intervention with Children. Peer-Modeling, Reward and Repeated Exposure Reduce Food Neophobia and Increase Liking of Fruits and Vegetables. Appetite 2014, 83, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Go, J.E.; Kim, M.R.; Chung, S.J. Acquired (Dis)Liking of Natural Cheese in Different Repeated Exposure Environment. Food Res. Int. 2017, 99, 403–412. [Google Scholar] [CrossRef]
- Rozin, P.; Schiller, D. The Nature and Acquisition of a Preference for Chili Pepper by Humans. Motiv. Emot. 1980, 4, 77–101. [Google Scholar] [CrossRef]
(A) Constructs | Cronbach’s α | CR | AVE | ||||
---|---|---|---|---|---|---|---|
Attitude | 0.89 | 0.84 | 0.57 | ||||
Subjective norm | 0.84 | 0.86 | 0.68 | ||||
Perceived behaviour control | 0.76 | 0.73 | 0.50 | ||||
Intention | 0.95 | 0.75 | 0.60 | ||||
Food neophobia | 0.77 | 0.84 | 0.72 | ||||
Emotions | 0.90 | 0.88 | 0.65 | ||||
(B) Constructs | Intention | ||||||
Intention | 1.00 | Attitude | |||||
Attitude | 0.71 * | 1.00 | PBC | ||||
PBC | 0.10 | 0.10 | 1.00 | Subjective norm | |||
Subjective norm | 0.47 * | 0.44 * | 0.12 | 1.00 | Food neophobia | ||
Food neophobia | −0.05 | −0.09 | 0.02 | −0.10 | 1.00 | Emotions | |
Emotions | 0.62 * | 0.65 * | 0.03 | 0.38 * | −0.11 | 1.00 | Behaviour |
Behaviour | 0.39 * | 0.23 * | 0.24 * | 0.23 * | 0.09 | 0.29 * | 1.00 |
Predictors | R2 | |
---|---|---|
Behaviour | 0.23 | |
Intention | 0.33 ** | |
PBC | 0.17 * | |
Emotions | 0.10 | |
Food neophobia | 0.13 | |
Intention | 0.57 | |
Attitude | 0.54 ** | |
Subjective Norm | 0.15 ** | |
PBC | −0.01 | |
Emotions | 0.19 ** | |
Food neophobia | 0.05 |
(A) Behavioural Beliefs | Belief Strength (b) | Outcome Evaluation (e) | |||
---|---|---|---|---|---|
Healthy | 0.81 (1.30) b | −0.17 (1.93) d | |||
Safe | 1.18 (1.12) a | 1.67 (1.47) b | |||
Tasty | 0.11 (1.30) c | 2.43 (0.75) a | |||
Expensive | 0.81 (1.27) b | 1.03 (1.15) c | |||
Normative beliefs | Belief strength (n) | Motivation to comply (m) | |||
Friends | 0.59 (1.45) b | 4.02 (1.62) ab | |||
Family | 0.71 (1.45) b | 3.75 (1.50) b | |||
Nutritionists/dietitian | 1.18 (1.34) a | 4.31 (1.79) a | |||
Advertisements | −0.38 (1.56) c | 2.52 (1.45) c | |||
Control Beliefs | Belief strength (c) | Power (p) | |||
Available in the market | 1.61 (1.00) a | 1.06 (1.84) a | |||
Compatible with food habits | 1.59 (0.95) a | 1.14 (1.36) a | |||
(B) Parameters | Beliefs | Correlation of Beliefs with | |||
Parameters | Intention | ||||
r | p | r | p | ||
Attitude | Health | 0.17 | * | 0.09 | ns |
Safe | 0.23 | ** | 0.24 | ** | |
Taste | 0.58 | ** | 0.57 | ** | |
Price | −0.03 | ns | −0.11 | ns | |
Subjective norm | Friends | 0.47 | ** | 0.41 | ** |
Family | 0.50 | ** | 0.45 | ** | |
Nutritionists/dietitian | 0.27 | ** | 0.41 | ** | |
Advertisements | 0.32 | ** | 0.36 | ** | |
PBC | Available in the market | 0.12 | ns | 0.17 | * |
Compatible with food habits | 0.19 | * | 0.26 | ** |
Class Group 1 | Age 2 | Rel. Freq. (%) | Statistical Grouping |
---|---|---|---|
Class 1 | 18–24 | 11.64 | A |
25–34 | 18.60 | A | |
35–44 | 41.86 | B | |
45–54 | 13.95 | A | |
55–64 | 13.95 | A | |
Class 2 | 18–24 | 6.30 | A |
25–34 | 24.41 | BC | |
35–44 | 23.62 | BC | |
45–54 | 27.56 | C | |
55–64 | 11.81 | AB | |
65+ | 6.30 | A | |
Ethnicity | |||
Class 1 | White/Caucasian | 25.57 | A |
Asian | 48.84 | B | |
Latin American | 6.98 | A | |
NZ European | 6.98 | A | |
Other 3 | 11.63 | A | |
Class 2 | White/Caucasian | 48.04 | C |
Asian | 25.20 | B | |
Latin American | 1.57 | A | |
NZ European | 17.32 | AB | |
Other 3 | 7.87 | A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehta, A.; Serventi, L.; Kumar, L.; Torrico, D.D. The Scoop on SCOBY (Symbiotic Culture of Bacteria and Yeast): Exploring Consumer Behaviours towards a Novel Ice Cream. Foods 2023, 12, 3152. https://doi.org/10.3390/foods12173152
Mehta A, Serventi L, Kumar L, Torrico DD. The Scoop on SCOBY (Symbiotic Culture of Bacteria and Yeast): Exploring Consumer Behaviours towards a Novel Ice Cream. Foods. 2023; 12(17):3152. https://doi.org/10.3390/foods12173152
Chicago/Turabian StyleMehta, Annu, Luca Serventi, Lokesh Kumar, and Damir Dennis Torrico. 2023. "The Scoop on SCOBY (Symbiotic Culture of Bacteria and Yeast): Exploring Consumer Behaviours towards a Novel Ice Cream" Foods 12, no. 17: 3152. https://doi.org/10.3390/foods12173152
APA StyleMehta, A., Serventi, L., Kumar, L., & Torrico, D. D. (2023). The Scoop on SCOBY (Symbiotic Culture of Bacteria and Yeast): Exploring Consumer Behaviours towards a Novel Ice Cream. Foods, 12(17), 3152. https://doi.org/10.3390/foods12173152