Structural and Functional Properties of Porous Corn Starch Obtained by Treating Raw Starch with AmyM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Modification of Native Corn Starch Using AmyM and SEM Observation
2.2.1. AmyM Hydrolysis of Corn Starch Granules
2.2.2. SEM Observations
2.3. Characteristics of the Modified Starch with Porous Morphology
2.3.1. Pore Diameter
2.3.2. Water Solubility and Swelling Power
2.3.3. Gel Consistency and Transparency
2.4. Structural Properties of the Porous Starch
2.4.1. Crystallinity
2.4.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.5. Functional Properties of the Porous Starch
2.5.1. Thermal Properties
2.5.2. Digestion Evaluation and Expected Glycemic Index of the Porous Starch
2.6. Statistical Analysis
3. Results and Discussion
3.1. Modification of Raw Corn Starch with Porous Morphology Using AmyM
3.2. Crystalline Structure of the Porous Corn Starch
3.3. Short-Range Ordered Structure of Porous Corn Starch Detected Using FTIR
3.4. Thermal Properties
3.5. Digestion Evaluation of the Porous Corn Starch
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amiri, E.; Aminzare, M.; Azar, H.H.; Mehrasbi, M.R. Combined antioxidant and sensory effects of corn starch films with nanoemulsion of zataria multiflora essential oil fortified with cinnamaldehyde on fresh ground beef patties. Meat Sci. 2019, 153, 66–74. [Google Scholar] [CrossRef]
- Hj. Latip, D.N.; Samsudin, H.; Utra, U.; Alias, A.K. Modification methods toward the production of porous starch: A review. Crit. Rev. Food Sci. 2021, 61, 2841–2862. [Google Scholar] [CrossRef]
- Zhang, L.; Zhong, L.; Wang, J.; Zhao, Y.; Zhang, Y.; Zheng, Y.; Dong, W.; Ye, X.; Huang, Y.; Li, Z. Efficient hydrolysis of raw starch by a maltohexaose-forming α-amylase from Corallococcus sp. EGB. LWT 2021, 152, 112361. [Google Scholar] [CrossRef]
- Ahmadzadeh, S.; Ubeyitogullari, A. Fabrication of porous spherical beads from corn starch by using a 3d food printing system. Foods 2022, 11, 913. [Google Scholar] [CrossRef]
- Han, X.; Wen, H.; Luo, Y.; Yang, J.; Xiao, W.; Ji, X.; Xie, J. Effects of α-amylase and glucoamylase on the characterization and function of maize porous starches. Food Hydrocoll. 2021, 116, 106661. [Google Scholar] [CrossRef]
- Pokharel, A.; Jaidka, R.K.; Sruthi, N.; Bhattarai, R.R. Effects of incorporation of porous tapioca starch on the quality of white salted (udon) noodles. Foods 2023, 12, 1662. [Google Scholar] [CrossRef]
- Keeratiburana, T.; Hansen, A.R.; Soontaranon, S.; Blennow, A.; Tongta, S. Porous high amylose rice starch modified by amyloglucosidase and maltogenic α-amylase. Carbohyd. Polym. 2020, 230, 115611. [Google Scholar] [CrossRef]
- Guo, L.; Li, J.; Gui, Y.; Zhu, Y.; Yu, B.; Tan, C.; Fang, Y.; Cui, B. Porous starches modified with double enzymes: Structure and adsorption properties. Int. J. Biol. Macromol. 2020, 164, 1758–1765. [Google Scholar] [CrossRef]
- Gui, Y.; Zou, F.; Li, J.; Zhu, Y.; Guo, L.; Cui, B. The structural and functional properties of corn starch treated with endogenous malt amylases. Carbohyd. Polym. 2021, 117, 106722. [Google Scholar] [CrossRef]
- Zhong, Y.; Keeratiburana, T.; Kirkensgaard, J.J.K.; Khakimov, B.; Blennow, A.; Hansen, A.R. Generation of short-chained granular corn starch by maltogenic α-amylase and transglucosidase treatment. Carbohyd. Polym. 2021, 251, 117056. [Google Scholar] [CrossRef]
- Junejo, S.A.; Flanagan, B.M.; Zhang, B.; Dhital, S. Starch structure and nutritional functionality–past revelations and future prospects. Carbohyd. Polym. 2022, 277, 118837. [Google Scholar] [CrossRef]
- Puspasari, F.; Nurachman, Z.; Noer, A.S.; Radjasa, O.K.; van der Maarel, M.J.; Natalia, D. Characteristics of raw starch degrading α-amylase from Bacillus aquimaris mksc 6.2 associated with soft coral Sinularia sp. Starch-Stärke 2011, 63, 461–467. [Google Scholar] [CrossRef]
- Zhai, Y.; Li, X.; Bai, Y.; Jin, Z.; Svensson, B. Maltogenic α-amylase hydrolysis of wheat starch granules: Mechanism and relation to starch retrogradation. Food Hydrocoll. 2022, 124, 107256. [Google Scholar] [CrossRef]
- Hamaker, B.R. Current and future challenges in starch research. Curr. Opin. Food Sci. 2021, 40, 46–50. [Google Scholar] [CrossRef]
- Li, Z.; Wu, J.; Zhang, B.; Wang, F.; Ye, X.; Huang, Y.; Huang, Q.; Cui, Z. AmyM, a novel maltohexaose-forming α-amylase from Corallococcus sp. strain EGB. Appl. Environ. Microbiol. 2015, 81, 1977–1987. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.; Qiao, Y.; Zhang, Y.; Zheng, W.; Zhao, Y.; Huang, Y.; Cui, Z. Improvement of the quality and shelf life of wheat bread by a maltohexaose producing α-amylase. J. Cereal Sci. 2019, 87, 165–171. [Google Scholar] [CrossRef]
- Yang, T.; Zhong, L.; Jiang, G.; Liu, L.; Wang, P.; Zhong, Y.; Yue, Q.; Ouyang, L.; Zhang, A.; Li, Z. Comparative study on bread quality and starch digestibility of normal and waxy wheat (Triticum aestivum L.) modified by maltohexaose producing α-amylases. Food Res. Int. 2022, 162, 112034. [Google Scholar] [CrossRef]
- Li, Z.; Wu, J.; Wang, T.; Zheng, W.; Qiao, Y.; Huang, Y.; Cui, Z. Efficient production and characterization of maltohexaose-forming α-amylase AmyM secreted from the methylotrophic yeast Pichia pastoris. Starch-Stärke 2018, 70, 1700312. [Google Scholar]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Apinan, S.; Yujiro, I.; Hidefumi, Y.; Takeshi, F.; Myllärinen, P.; Forssell, P.; Poutanen, K. Visual observation of hydrolyzed potato starch granules by α-amylase with confocal laser scanning microscopy. Starch-Stärke 2007, 59, 543–548. [Google Scholar] [CrossRef]
- Zheng, X.; Qiu, C.; Long, J.; Jiao, A.; Xu, X.; Jin, Z.; Wang, J. Preparation and characterization of porous starch/β-cyclodextrin microsphere for loading curcumin: Equilibrium, kinetics and mechanism of adsorption. Food Biosci. 2021, 41, 101081. [Google Scholar] [CrossRef]
- Cagampang, G.B.; Perez, C.M.; Juliano, B.O. A gel consistency test for eating quality of rice. J. Sci. Food Agric. 1973, 24, 1589–1594. [Google Scholar] [CrossRef]
- Nara, S.; Komiya, T. Studies on the relationship between water-satured state and crystallinity by the diffraction method for moistened potato starch. Starch-Stärke 1983, 35, 407–410. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, J.; Yu, J.; Wang, S.; Wang, S. Mechanisms underlying the effect of gluten and its hydrolysates on in vitro enzymatic digestibility of wheat starch. Food Hydrocoll. 2021, 113, 106507. [Google Scholar] [CrossRef]
- Ji, H.; Bai, Y.; Li, X.; Zheng, D.; Shen, Y.; Jin, Z. Structural and property characterization of corn starch modified by cyclodextrin glycosyltransferase and specific cyclodextrinase. Carbohyd. Polym. 2020, 237, 116137. [Google Scholar] [CrossRef]
- Gularte, M.A.; Rosell, C.M. Physicochemical properties and enzymatic hydrolysis of different starches in the presence of hydrocolloids. Carbohyd. Polym. 2011, 85, 237–244. [Google Scholar] [CrossRef]
- Englyst, H.N.; Kingman, S.; Cummings, J. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33-50. [Google Scholar]
- Chen, G.; Zhang, B. Hydrolysis of granular corn starch with controlled pore size. J. Cereal Sci. 2012, 56, 316–320. [Google Scholar] [CrossRef]
- Zhang, G.; Venkatachalam, M.; Hamaker, B.R. Structural basis for the slow digestion property of native cereal starches. Biomacromolecules 2006, 7, 3259–3266. [Google Scholar] [CrossRef]
- Cripwell, R.A.; Favaro, L.; Viljoen-Bloom, M.; van Zyl, W.H. Consolidated bioprocessing of raw starch to ethanol by Saccharomyces cerevisiae: Achievements and challenges. Biotechnol. Adv. 2020, 42, 107579. [Google Scholar] [CrossRef]
- Li, H.-T.; Li, Z.; Fox, G.P.; Gidley, M.J.; Dhital, S. Protein-starch matrix plays a key role in enzymic digestion of high-amylose wheat noodle. Food Chem. 2021, 336, 127719. [Google Scholar] [CrossRef] [PubMed]
- Sarikaya, E.; Higasa, T.; Adachi, M.; Mikami, B. Comparison of degradation abilities of α-and β-amylases on raw starch granules. Process Biochem. 2000, 35, 711–715. [Google Scholar] [CrossRef]
- Zhao, A.-Q.; Yu, L.; Yang, M.; Wang, C.-J.; Wang, M.-M.; Bai, X. Effects of the combination of freeze-thawing and enzymatic hydrolysis on the microstructure and physicochemical properties of porous corn starch. Food Hydrocoll. 2018, 83, 465–472. [Google Scholar] [CrossRef]
- Singh, M.; Adedeji, A.A. Characterization of hydrothermal and acid modified proso millet starch. LWT-Food Sci. Technol. 2017, 79, 21–26. [Google Scholar] [CrossRef]
- Bao, J.; Cai, Y.; Corke, H. Prediction of rice starch quality parameters by near-infrared reflectance spectroscopy. J. Food Sci. 2001, 66, 936–939. [Google Scholar] [CrossRef]
- Tester, R.F.; Morrison, W.R. Swelling and gelatinization of cereal starches. II. Waxy rice starches. Cereal Chem. 1990, 67, 558–563. [Google Scholar]
- Tester, R.F.; Karkalas, J.; Qi, X. Starch—Composition, fine structure and architecture. J. Cereal Sci. 2004, 39, 151–165. [Google Scholar] [CrossRef]
- Gérard, C.; Planchot, V.; Colonna, P.; Bertoft, E. Relationship between branching density and crystalline structure of A- and B-type maize mutant starches. Carbohyd. Res. 2000, 326, 130–144. [Google Scholar] [CrossRef]
- Dura, A.; Błaszczak, W.; Rosell, C.M. Functionality of porous starch obtained by amylase or amyloglucosidase treatments. Carbohyd. Polym. 2014, 101, 837–845. [Google Scholar] [CrossRef]
- Pérez, S.; Bertoft, E. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch-Stärke 2010, 62, 389–420. [Google Scholar] [CrossRef]
- Gidley, M.J.; Bulpin, P.V. Crystallisation of malto-oligosaccharides as models of the crystalline forms of starch: Minimum chain-length requirement for the formation of double helices. Carbohyd. Res. 1987, 161, 291–300. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Zhang, W.; Li, C.; Yu, J.; Wang, S. Molecular order and functional properties of starches from three waxy wheat varieties grown in china. Food Chem. 2015, 181, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Likhitkar, S.; Bajpai, A. Magnetically controlled release of cisplatin from superparamagnetic starch nanoparticles. Carbohyd. Polym. 2012, 87, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Wang, W.; Ma, Q.; Wang, J.; Sun, J. Microwave-assisted enzymatic hydrolysis as a novel efficient way to prepare porous starch. Carbohyd. Polym. 2023, 301, 120306. [Google Scholar] [CrossRef]
- Shingel, K.I. Determination of structural peculiarities of dexran, pullulan and γ-irradiated pullulan by fourier-transform ir spectroscopy. Carbohyd. Res. 2002, 337, 1445–1451. [Google Scholar] [CrossRef]
- Chan, C.-H.; Wu, R.-G.; Shao, Y.-Y. The effects of ultrasonic treatment on physicochemical properties and in vitro digestibility of semigelatinized high amylose maize starch. Food Hydrocoll. 2021, 119, 106831. [Google Scholar] [CrossRef]
- Tester, R.F.; Debon, S.J. Annealing of starch—A review. Int. J. Biol. Macromol. 2000, 27, 1–12. [Google Scholar] [CrossRef]
- Jayakody, L.; Hoover, R. Effect of annealing on the molecular structure and physicochemical properties of starches from different botanical origins–a review. Carbohyd. Polym. 2008, 74, 691–703. [Google Scholar] [CrossRef]
- Guo, L.; Tao, H.; Cui, B.; Janaswamy, S. The effects of sequential enzyme modifications on structural and physicochemical properties of sweet potato starch granules. Food Chem. 2019, 277, 504–514. [Google Scholar] [CrossRef]
- Dura, A.; Rose, D.J.; Rosell, C.M. Enzymatic modification of corn starch influences human fecal fermentation profiles. J. Agric. Food Chem. 2017, 65, 4651–4657. [Google Scholar] [CrossRef]
- Benavent-Gil, Y.; Rosell, C.M. Performance of granular starch with controlled pore size during hydrolysis with digestive enzymes. Plant Food Hum. Nutr. 2017, 72, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Xu, T.; Peng, J.; Zhou, K.; Zhu, Y.; Zhou, W.; Cheng, H.; Zhou, H. Overexpression of an endogenous raw starch digesting mesophilic α-amylase gene in Bacillus amyloliquefaciens z3 by in vitro methylation protocol. J. Sci. Food Agric. 2020, 100, 3013–3023. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Xue, S.; Deng, P.; Zhang, X.; Wang, X.; Xiao, Y.; Fang, Z. Amyz1: A novel α-amylase from marine bacterium Pontibacillus sp. Zy with high activity toward raw starches. Biotechnol. Biofuels 2019, 12, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.-S.; Yan, Y.-S.; Feng, J.-X. Efficient hydrolysis of raw starch and ethanol fermentation: A novel raw starch-digesting glucoamylase from penicillium oxalicum. Biotechnol. Biofuels 2016, 9, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Cai, M.; Huang, M.; He, H.; Lu, J.; Zhou, X.; Zhang, Y. Characterization of a thermostable raw-starch hydrolyzing α-amylase from deep-sea thermophile Geobacillus sp. Protein Expres. Purif. 2015, 114, 15–22. [Google Scholar] [CrossRef]
- Tawil, G.; Viksø-Nielsen, A.; Rolland-Sabaté, A.; Colonna, P.; Buléon, A. In depth study of a new highly efficient raw starch hydrolyzing α-amylase from Rhizomucor sp. Biomacromolecules 2011, 12, 34–42. [Google Scholar] [CrossRef]
Sample | Native Corn Starch | DH-15 | DH-25 | DH-45 |
---|---|---|---|---|
Total peak area | 398,946 ± 2177 a | 387,184 ± 4574 b | 299,730 ± 2889 c | 385,044 ± 6982 b |
crystalline area | 103,986 ± 1092 a | 93,239 ± 291 b | 66,106 ± 239 d | 72,578 ± 539 c |
Amorphous area | 294,960 ± 686 b | 293,945 ± 3444 b | 233,625 ± 2598 c | 312,466 ± 5161 a |
Relative crystallinity (%) | 26.07 ± 0.19 a | 24.08 ± 0.19 b | 22.06 ± 0.31 c | 18.85 ± 0.17 d |
Sample | Native Corn Starch | DH-15 | DH-25 | DH-45 |
---|---|---|---|---|
Relative amylose content (%) | 38.52 ± 0.17 b | 34.96 ± 0.08 d | 36.44 ± 0.18 c | 39.2 ± 0.33 a |
d (nm) | 9.40 ± 0.02 a | 9.18 ± 0.03 b | 9.07 ± 0.02 c | 8.55 ± 0.01 d |
da (nm) | 3.73 ± 0 b | 3.67 ± 0.02 c | 3.64 ± 0.03 c | 3.83 ± 0.01 a |
dc (nm) | 5.67 ± 0.01 a | 5.51 ± 0.01 b | 5.43 ± 0.04 c | 4.72 ± 0.02 d |
Apeak (a.u.) | 0.27 ± 0.00 a | 0.28 ± 0.02 a | 0.24 ± 0.01 b | 0.22 ± 0.01 c |
1047 cm−1/1022 cm−1 | 0.725 ± 0.001 a | 0.715 ± 0.003 b | 0.604 ± 0.001 c | 0.683 ± 0.007 d |
1022 cm−1/995 cm−1 | 0.866 ± 0.008 b | 0.872 ± 0.004 b | 0.820 ± 0.005 c | 0.943 ± 0.008 a |
Sample | Native Corn Starch | DH-15 | DH-25 | DH-45 |
---|---|---|---|---|
Tc-To (°C) | 11.0 ± 0.2 a | 7.0 ± 0.2 b | 6.7 ± 0.3 b | 9.6 ± 0.2 c |
ΔHg (J/g) | 11.0 ± 0.3 b | 10.5 ± 0.2 b | 11.0 ± 0.2 b | 12.1 ± 0.1 a |
Sample | C∞ | k | AUC 180 | HI | eGI | RS (%) |
---|---|---|---|---|---|---|
Native starch | 25.16 ± 0.76 a | 0.013 ± 0.001 c | 2732 ± 2 a | 100.00 ± 0.09 a | 94.40 ± 0.08 a | 14.04 ± 0.05 b |
DH-15 | 21.44 ± 0.47 b | 0.018 ± 0.001 ab | 2673 ± 24 b | 97.84 ± 0.90 b | 92.54 ± 0.77 b | 14.41 ± 0.24 b |
DH-25 | 21.17 ± 0.48 bc | 0.017 ± 0.001 b | 2615 ± 7 c | 95.72 ± 0.27 c | 90.71 ± 0.23 c | 15.93 ± 0.07 a |
DH-45 | 20.39 ± 0.30 c | 0.019 ± 0.001 a | 2620 ± 3 c | 95.90 ± 0.12 c | 90.86 ± 0.10 c | 16.02 ± 0.27 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhong, L.; Wang, P.; Zhan, L.; Yangzong, Y.; He, T.; Liu, Y.; Mao, D.; Ye, X.; Cui, Z.; et al. Structural and Functional Properties of Porous Corn Starch Obtained by Treating Raw Starch with AmyM. Foods 2023, 12, 3157. https://doi.org/10.3390/foods12173157
Zhang L, Zhong L, Wang P, Zhan L, Yangzong Y, He T, Liu Y, Mao D, Ye X, Cui Z, et al. Structural and Functional Properties of Porous Corn Starch Obtained by Treating Raw Starch with AmyM. Foods. 2023; 12(17):3157. https://doi.org/10.3390/foods12173157
Chicago/Turabian StyleZhang, Lei, Lingli Zhong, Peiwen Wang, Lei Zhan, Yunzhen Yangzong, Tianqi He, Yi Liu, Dongmei Mao, Xianfeng Ye, Zhongli Cui, and et al. 2023. "Structural and Functional Properties of Porous Corn Starch Obtained by Treating Raw Starch with AmyM" Foods 12, no. 17: 3157. https://doi.org/10.3390/foods12173157
APA StyleZhang, L., Zhong, L., Wang, P., Zhan, L., Yangzong, Y., He, T., Liu, Y., Mao, D., Ye, X., Cui, Z., Huang, Y., & Li, Z. (2023). Structural and Functional Properties of Porous Corn Starch Obtained by Treating Raw Starch with AmyM. Foods, 12(17), 3157. https://doi.org/10.3390/foods12173157