For a Better Quality of Beef: The Challenge from Growing Livestock on Limited Grasslands with a Production–Consumption Balance Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Research Framework
2.3. Production and Consumption State
2.3.1. Natural Grassland Supply
2.3.2. Livestock Consumption
2.3.3. Grassland Carrying Capacity
2.3.4. Sustainability Trend Analysis
2.3.5. Key Informant Interview
3. Results and Discussion
3.1. Supply and Consumption Status: Changes in Grassland Carrying Capacity of the Whole League
3.2. Supply and Consumption Status: Changes in Grassland Carrying Capacity of Counties
3.3. Supply and Consumption Trends: Sustainability Trend
3.4. From the Perspective of Herdsman: Dependence on Natural Pasture and Ways to Ensure Highly Beneficial Beef Production
3.4.1. Herders’ Dependence on Natural Pastures and Production Improvement Potential
3.4.2. Economic–Ecological Benefit Needs the Co-Work of Different Stakeholders
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henchion, M.M.; McCarthy, M.; Resconi, V.C. Beef quality attributes: A systematic review of consumer perspectives. Meat Sci. 2017, 128, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, F.W.; Charmley, E.; Gardiner, C.P.; Malau-Aduli, B.S.; Kinobe, R.T.; Malau-Aduli, A.E.O. Diet and Genetics Influence Beef Cattle Performance and Meat Quality Characteristics. Foods 2019, 8, 648. [Google Scholar] [CrossRef]
- Gallo, C.B.; Huertas, S.M. Main animal welfare problems in ruminant livestock during preslaughter operations: A South American view. Animal 2016, 10, 357–364. [Google Scholar] [CrossRef]
- Stampa, E.; Zander, K. Backing biodiversity? German consumers’ views on a multi-level biodiversity-labeling scheme for beef from grazing-based production systems. J. Clean. Prod. 2022, 370, 133471. [Google Scholar] [CrossRef]
- Magalhaes, D.R.; Çakmakçı, C.; Campo, M.d.M.; Çakmakçı, Y.; Makishi, F.; Silva, V.L.d.S.; Trindade, M.A. Changes in the Current Patterns of Beef Consumption and Consumer Behavior Trends—Cross-Cultural Study Brazil-Spain-Turkey. Foods 2023, 12, 475. [Google Scholar] [CrossRef]
- Stampa, E.; Schipmann-Schwarze, C.; Hamm, U. Consumer perceptions, preferences, and behavior regarding pasture-raised livestock products: A review. Food Qual. Prefer. 2020, 82, 103872. [Google Scholar] [CrossRef]
- He, P.; Baiocchi, G.; Hubacek, K.; Feng, K.; Yu, Y. The environmental impacts of rapidly changing diets and their nutritional quality in China. Nat. Sustain. 2018, 1, 122–127. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Jin, L.; Wu, F. How Will the Global Food Landscape Accommodate Developing Countries & rsquo; Dietary Change under Urbanization? Foods 2022, 11, 3598. [Google Scholar] [PubMed]
- Hilker, T.; Natsagdorj, E.; Waring, R.H.; Lyapustin, A.; Wang, Y. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob. Chang. Biol. 2014, 20, 418–428. [Google Scholar] [CrossRef]
- Feng, X.; Zhao, Q.; Li, J.; Qiu, H. The impact of political status and social capital on herders’ overgrazing behaviors in the pastoral areas of China. J. Environ. Manag. 2023, 327, 116861. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, E.L.; Johnson, D.; et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, J.; Hou, L. Impacts of the Grassland Ecological Compensation Policy on Household Livestock Production in China: An Empirical Study in Inner Mongolia. Ecol. Econ. 2019, 161, 248–256. [Google Scholar] [CrossRef]
- Fragnière, Y.; Gremaud, J.; Pesenti, E.; Bétrisey, S.; Petitpierre, B.; Guisan, A.; Kozlowski, G. Mapping habitats sensitive to overgrazing in the Swiss Northern Alps using habitat suitability modeling. Biol. Conserv. 2022, 274, 109742. [Google Scholar] [CrossRef]
- Wiesmair, M.; Otte, A.; Waldhardt, R. Relationships between plant diversity, vegetation cover, and site conditions: Implications for grassland conservation in the Greater Caucasus. Biodivers. Conserv. 2017, 26, 273–291. [Google Scholar] [CrossRef]
- Golluscio, R.A.; Austin, A.T.; García Martínez, G.C.; Gonzalez-Polo, M.; Sala, O.E.; Jackson, R.B. Sheep Grazing Decreases Organic Carbon and Nitrogen Pools in the Patagonian Steppe: Combination of Direct and Indirect Effects. Ecosystems 2009, 12, 686–697. [Google Scholar] [CrossRef]
- Erschbamer, B.; Virtanen, R.; Nagy, R. The Impacts of Vertebrate Grazers on Vegetation in European High Mountains. In Alpine Biodiversity in Europe; Nagy, L., Grabherr, G., Körner, C., Thompson, D.B.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 377–396. [Google Scholar]
- Hao, L.; Pan, C.; Fang, D.; Zhang, X.; Zhou, D.; Liu, P.; Liu, Y.; Sun, G. Quantifying the effects of overgrazing on mountainous watershed vegetation dynamics under a changing climate. Sci. Total Environ. 2018, 639, 1408–1420. [Google Scholar] [CrossRef] [PubMed]
- Cavagnaro, R.A.; Pero, E.; Dudinszky, N.; Golluscio, R.A.; Grimoldi, A.A. Under pressure from above: Overgrazing decreases mycorrhizal colonization of both preferred and unpreferred grasses in the Patagonian steppe. Fungal Ecol. 2019, 40, 92–97. [Google Scholar] [CrossRef]
- Ji, G.; Hu, G.; Liu, G.; Bai, Z.; Li, B.; Li, D.; Li, H.; Cui, G. Response of soil microbes to Carex meyeriana meadow degeneration caused by overgrazing in inner Mongolia. Acta Oecol. 2022, 117, 103860. [Google Scholar] [CrossRef]
- Ji, X.; Su, P.; Liu, Y.; Wu, G.; Wu, X. Mutual complementarity of arable land use in the Sino-Africa trade: Evidence from the global supply chain. Land Use Policy 2023, 128, 106588. [Google Scholar] [CrossRef]
- Jia, Y.; Wu, J.; Cheng, M.; Xia, X. Global transfer of salinization on irrigated land: Complex network and endogenous structure. J. Environ. Manag. 2023, 336, 117592. [Google Scholar] [CrossRef]
- Rowntree, K.; Duma, M.; Kakembo, V.; Thornes, J. Debunking the myth of overgrazing and soil erosion. Land Degrad. Dev. 2004, 15, 203–214. [Google Scholar] [CrossRef]
- Abu Hammad, A.; Tumeizi, A. Land degradation: Socioeconomic and environmental causes and consequences in the eastern Mediterranean. Land Degrad. Dev. 2012, 23, 216–226. [Google Scholar] [CrossRef]
- Lu, X.Y.; Kelsey, K.C.; Yan, Y.; Sun, J.; Wang, X.D.; Cheng, G.W.; Neff, J.C. Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai-Tibetan Plateau: A synthesis. Ecosphere 2017, 8, 16. [Google Scholar] [CrossRef]
- Horn, J.; Isselstein, J. How do we feed grazing livestock in the future? A case for knowledge-driven grazing systems. Grass Forage Sci. 2022, 77, 153–166. [Google Scholar] [CrossRef]
- Läpple, D.; Sirr, G. Dairy Intensification and Quota Abolition: A Comparative Study of Production in Ireland and the Netherlands. EuroChoices 2019, 18, 26–32. [Google Scholar] [CrossRef]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; Food & Agriculture Org.: Rome, Italy, 2006. [Google Scholar]
- Wesche, K.; Ambarli, D.; Kamp, J.; Torok, P.; Treiber, J.; Dengler, J. The Palaearctic steppe biome: A new synthesis. Biodivers. Conserv. 2016, 25, 2197–2231. [Google Scholar] [CrossRef]
- Cao, J.; Yeh, E.T.; Holden, N.M.; Yang, Y.; Du, G. The effects of enclosures and land-use contracts on rangeland degradation on the Qinghai–Tibetan plateau. J. Arid. Environ. 2013, 97, 3–8. [Google Scholar] [CrossRef]
- Kemp, D.R.; Guodong, H.; Xiangyang, H.; Michalk, D.L.; Fujiang, H.; Jianping, W.; Yingjun, Z. Innovative grassland management systems for environmental and livelihood benefits. Proc. Natl. Acad. Sci. USA 2013, 110, 8369–8374. [Google Scholar] [CrossRef]
- Grainger, A. Is Land Degradation Neutrality feasible in dry areas? J. Arid. Environ. 2015, 112, 14–24. [Google Scholar] [CrossRef]
- Umuhoza, J.; Jiapaer, G.; Yin, H.; Mind’je, R.; Gasirabo, A.; Nzabarinda, V.; Umwali, E.D. The analysis of grassland carrying capacity and its impact factors in typical mountain areas in Central Asia—A case of Kyrgyzstan and Tajikistan. Ecol. Indic. 2021, 131, 108129. [Google Scholar] [CrossRef]
- Curran, J.; Delaby, L.; Kennedy, E.; Murphy, J.P.; Boland, T.M.; O’Donovan, M. Sward characteristics, grass dry matter intake and milk production performance are affected by pre-grazing herbage mass and pasture allowance. Livest. Sci. 2010, 127, 144–154. [Google Scholar] [CrossRef]
- Kleijn, D.; Bommarco, R.; Fijen, T.P.M.; Garibaldi, L.A.; Potts, S.G.; van der Putten, W.H. Ecological Intensification: Bridging the Gap between Science and Practice. Trends Ecol. Evol. 2019, 34, 154–166. [Google Scholar] [CrossRef]
- Thomson, G.M. Acclimatization in New Zealand. Science 1887, ns-10, 170–171. [Google Scholar] [CrossRef] [PubMed]
- Chapman, E.J.; Byron, C.J. The flexible application of carrying capacity in ecology. Glob. Ecol. Conserv. 2018, 13, e00365. [Google Scholar] [CrossRef]
- Piipponen, J.; Jalava, M.; de Leeuw, J.; Rizayeva, A.; Godde, C.; Cramer, G.; Herrero, M.; Kummu, M. Global trends in grassland carrying capacity and relative stocking density of livestock. Glob. Chang. Biol. 2022, 28, 3902–3919. [Google Scholar] [CrossRef]
- Council, B.C.R. Interactive Tools & Calculators. Available online: https://www.beefresearch.ca/tools/interactive-calculators/ (accessed on 18 August 2023).
- Wolf, J.; Chen, M.; Asrar, G.R. Global Rangeland Primary Production and Its Consumption by Livestock in 2000–2010. Remote Sens. 2021, 13, 3430. [Google Scholar] [CrossRef]
- Petz, K.; Alkemade, R.; Bakkenes, M.; Schulp, C.J.E.; van der Velde, M.; Leemans, R. Mapping and modelling trade-offs and synergies between grazing intensity and ecosystem services in rangelands using global-scale datasets and models. Glob. Environ. Chang. 2014, 29, 223–234. [Google Scholar] [CrossRef]
- de Leeuw, J.; Rizayeva, A.; Namazov, E.; Bayramov, E.; Marshall, M.T.; Etzold, J.; Neudert, R. Application of the MODIS MOD 17 Net Primary Production product in grassland carrying capacity assessment. IJAEO 2019, 78, 66–76. [Google Scholar] [CrossRef]
- Statistics Bureau of Inner Mongolia Autonomous Region. Inner Mongolia Statistical Yearbook; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- Chen, J.; John, R.; Shao, C.; Fan, Y.; Zhang, Y.; Amarjargal, A.; Brown, D.G.; Qi, J.; Han, J.; Lafortezza, R. Policy shifts influence the functional changes of the CNH systems on the Mongolian plateau. Environ. Res. Lett. 2015, 10, 085003. [Google Scholar] [CrossRef]
- Jiang, G.M.; Han, X.G.; Wu, J.G. Restoration and management of the inner Mongolia grassland require a sustainable strategy. Ambio 2006, 35, 269–270. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Nan, Z.; Tang, Z. Influencing factors of the grassland ecological compensation policy to herdsmen’s behavioral response: An empirical study in Hexi corridor. Acta Ecol. Sin. 2022, 42, 74–79. [Google Scholar] [CrossRef]
- Wanni, Y.; Lin, Z.; Qi, L. Land Resource Carrying Capacity in Xilin Gol Grassland Transects: A Perspective on Food Nutritional Demand. J. Resour. Ecol. 2019, 10, 614. [Google Scholar] [CrossRef]
- Zhen, L.; Liu, J.; Liu, X.; Wang, l.; Batkhishig, O.; Wang, Q. Structural Change of Agriculture-Livestock System and Affecting Factors in Mongolian Plateau. J. Arid. Land Resour. Environ. 2008, 8, 144–151. [Google Scholar]
- Dong, Y.; Yan, H.; Du, W.; Hu, Y. Spatio-temporal analysis of grassland carrying capacity in Mongolian Plateau based on supply-consumption relationship. J. Nat. Resour. 2019, 34, 15. [Google Scholar] [CrossRef]
- Zhuang, Q.; Wu, S.; Huang, X.; Kong, L.; Yan, Y.; Xiao, H.; Li, Y.; Cai, P. Monitoring the impacts of cultivated land quality on crop production capacity in arid regions. CATENA 2022, 214, 106263. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Q.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Moore, B.; Ojima, D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 2004, 91, 256–270. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, X.M.; Wu, X.C. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci. Data 2017, 4, 170165. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Huimin, Y.; Fengxue, G.; Zhongen, N.; Mei, H. Net Primary Productivity Increased on the Loess Plateau Following Implementation of the Grain to Green Program. J. Resour. Ecol. 2017, 8, 413–421. [Google Scholar] [CrossRef]
- Chen, J.; Yan, H.; Wang, S.; Gao, Y.; Huang, M.; Wang, J. Estimation of Gross Primary Productivity in Chinese Terrestrial Ecosystems by Using VPM Model. Quat. Sci. 2014, 34, 732–742. [Google Scholar] [CrossRef]
- Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.A.; Zhang, Q.; Moore, B. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 2004, 89, 519–534. [Google Scholar] [CrossRef]
- Jin, C.; Xiao, X.M.; Merbold, L.; Arneth, A.; Veenendaal, E.; Kutsch, W.L. Phenology and gross primary production of two dominant savanna woodland ecosystems in Southern Africa. Remote Sens. Environ. 2013, 135, 189–201. [Google Scholar] [CrossRef]
- Li, Z.Q.; Yu, G.R.; Xiao, X.M.; Li, Y.N.; Zhao, X.Q.; Ren, C.Y.; Zhang, L.M.; Fu, Y.L. Modeling gross primary production of alpine ecosystems in the Tibetan Plateau using MODIS images and climate data. Remote Sens. Environ. 2007, 107, 510–519. [Google Scholar] [CrossRef]
- He, H.L.; Liu, M.; Xiao, X.M.; Ren, X.L.; Zhang, L.; Sun, X.M.; Yang, Y.H.; Li, Y.N.; Zhao, L.; Shi, P.L.; et al. Large-scale estimation and uncertainty analysis of gross primary production in Tibetan alpine grasslands. J. Geophys. Res. Biogeosciences 2014, 119, 466–486. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; vanLeeuwen, W. A comparison of vegetation indices global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Frolking, S.; Salas, W.; Moore, B.; Li, C.; He, L.; Zhao, R. Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data. Int. J. Remote Sens. 2002, 23, 3009–3022. [Google Scholar] [CrossRef]
- Statistics Bureau of Inner Mongolia Autonomous Region. Inner Mongolia Yearbook; China Statistics Press: Beijing, China, 2017. [Google Scholar]
- NY/T 635-2015; The Ministry of Agriculture of the People’s Republic of China. Calculation of Reasonable Carrying Capacity of Natural Grassland. China Standards Press: Beijing, China, 2015.
- Xin, L.; Wang, J.; Kang, H.; Han, X. Balance Analysis between Forage and Livestock Based on Grassland Production Estimation by Remote Sensing in Golog and Yushu Region, Qinghai, China during 2006–2015. J. Nat. Resour. 2018, 33, 12. [Google Scholar]
- Xin, Y.; Du, T.; Xin, Y.; Wu, A.; Lu, F. The evaluation of carring capacity of grassland in Qinghai. Qinghai Prataculture 2011, 20, 10. [Google Scholar]
- Zhang, P.; Liu, H.; Jia, Y.; Ge, G. Effect of herbage with different water content on quality of hay bales. Inn. Mong. Prataculture 2008, 3, 29–31. [Google Scholar]
- Long, S.; Bao, Y.; Li, Z.; Gao, W.; Hong, G. The caobon contents and the relationship with the calorific values of 67 plant species in Inner Mongolia grasslands. Acta Prataculturae Sin. 2013, 8, 112. [Google Scholar]
- Feng, Z.; Yang, Y.; You, Z. Research on land resources restriction on population distribution in China, 2000-2010. Geogr. Res. 2014, 11, 1395–1405. [Google Scholar]
- Xue, Z.; Zhen, L. Impact of Rural Land Transfer on Land Use Functions in Western China’s Guyuan Based on a Multi-Level Stakeholder Assessment Framework. Sustainability 2018, 10, 1376. [Google Scholar] [CrossRef]
- Jiang, L.; Bao, A.; Jiapaer, G.; Liu, R.; Yuan, Y.; Yu, T. Monitoring land degradation and assessing its drivers to support sustainable development goal 15.3 in Central Asia. Sci. Total Environ. 2022, 807, 150868. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Kappas, M.; Wyss, D. Spatio-Temporal Grassland Development in Inner Mongolia after Implementation of the First Comprehensive Nation-Wide Grassland Conservation Program. Land 2021, 10, 38. [Google Scholar] [CrossRef]
- Yan, H.; Xue, Z.; Niu, Z. Ecological restoration policy should pay more attention to the high productivity grasslands. Ecol. Indic. 2021, 129, 107938. [Google Scholar] [CrossRef]
- Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X.; et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef]
- Delang, C.O.; Yuan, Z. China’s Grain for Green Program: A Review of the Largest Ecological Restoration and Rural Development Program in the World; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Li, S.; Verburg, P.H.; Lv, S.; Wu, J.; Li, X. Spatial analysis of the driving factors of grassland degradation under conditions of climate change and intensive use in Inner Mongolia, China. Reg. Environ. Chang. 2012, 12, 461–474. [Google Scholar] [CrossRef]
- Chen, H.; Shao, L.; Zhao, M.; Zhang, X.; Zhang, D. Grassland conservation programs, vegetation rehabilitation and spatial dependency in Inner Mongolia, China. Land Use Policy 2017, 64, 429–439. [Google Scholar] [CrossRef]
- Liu, M.; Dries, L.; Heijman, W.; Huang, J.; Zhu, X.; Hu, Y.; Chen, H. The Impact of Ecological Construction Programs on Grassland Conservation in Inner Mongolia, China. Land Degrad. Dev. 2018, 29, 326–336. [Google Scholar] [CrossRef]
- Gu, R.; Zhou, W.; Bai, M.; Li, X.; Di, R.; Yang, J. Impacts of climate change on phenological phase of herb in the main grassland in Inner Mongolia. Acta Ecol. Sin. 2012, 32, 767–776. [Google Scholar]
- Zhang, S.W.; Zhang, R.; Liu, T.X.; Song, X.; Adams, M.A. Empirical and model-based estimates of spatial and temporal variations in net primary productivity in semi-arid grasslands of Northern China. PLoS ONE 2017, 12, 18. [Google Scholar] [CrossRef]
- Yun, W.; Hou, Q. Impacts of Climate Change over last 50 Years on Net Primary Productivity in Typical Steppe of Inner Mongolia. Chin. J. Agrometeorol. 2008, 29, 294–297. [Google Scholar]
- Baltenweck, I.; Cherney, D.; Duncan, A.; Eldermire, E.; Lwoga, E.T.; Labarta, R.; Rao, E.J.O.; Staal, S.; Teufel, N. A scoping review of feed interventions and livelihoods of small-scale livestock keepers. Nat. Plants 2020, 6, 1242–1249. [Google Scholar] [CrossRef]
- Briske, D.D. Rangeland Systems: Processes, Management and Challenges; Springer Nature: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Reid, R.S.; Thornton, P.K.; Kruska, R.L. Loss and fragmentation of habitat for pastoral people and wildlife in East Africa: Concepts and issues. Afr. J. Range Forage Sci. 2004, 21, 171–181. [Google Scholar] [CrossRef]
- Megersa, B.; Markemann, A.; Angassa, A.; Ogutu, J.O.; Piepho, H.-P.; Valle Zárate, A. Livestock Diversification: An Adaptive Strategy to Climate and Rangeland Ecosystem Changes in Southern Ethiopia. Hum. Ecol. 2014, 42, 509–520. [Google Scholar] [CrossRef]
- Morton, J.F. The impact of climate change on smallholder and subsistence agriculture. Proc. Natl. Acad. Sci. USA 2007, 104, 19680–19685. [Google Scholar] [CrossRef] [PubMed]
- Godde, C.M.; Boone, R.B.; Ash, A.J.; Waha, K.; Sloat, L.L.; Thornton, P.K.; Herrero, M. Global rangeland production systems and livelihoods at threat under climate change and variability. Environ. Res. Lett. 2020, 15, 044021. [Google Scholar] [CrossRef]
- Senda, T.S.; Kiker, G.A.; Masikati, P.; Chirima, A.; van Niekerk, J. Modeling Climate Change Impacts on Rangeland Productivity and Livestock Population Dynamics in Nkayi District, Zimbabwe. Appl. Sci. 2020, 10, 2330. [Google Scholar] [CrossRef]
- Hou, L.; Xia, F.; Chen, Q.; Huang, J.; He, Y.; Rose, N.; Rozelle, S. Grassland ecological compensation policy in China improves grassland quality and increases herders’ income. Nat. Commun. 2021, 12, 4683. [Google Scholar] [CrossRef]
- Yin, Y.; Hou, Y.; Langford, C.; Bai, H.; Hou, X. Herder stocking rate and household income under the Grassland Ecological Protection Award Policy in northern China. Land Use Policy 2019, 82, 120–129. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, J.; Zhang, J.; Guo, Y. Simultaneously tackling ecological degradation and poverty challenges: Evidence from desertified areas in northern China. Sci. Total Environ. 2022, 815, 152927. [Google Scholar] [CrossRef]
- Klootwijk, C.W.; Holshof, G.; de Boer, I.J.M.; Van den Pol-Van Dasselaar, A.; Engel, B.; Van Middelaar, C.E. Correcting fresh grass allowance for rejected patches due to excreta in intensive grazing systems for dairy cows. J. Dairy Sci. 2019, 102, 10451–10459. [Google Scholar] [CrossRef]
- Bahlo, C.; Dahlhaus, P.; Thompson, H.; Trotter, M. The role of interoperable data standards in precision livestock farming in extensive livestock systems: A review. Comput. Electron. Agric. 2019, 156, 459–466. [Google Scholar] [CrossRef]
- Delgado, C. Rising demand for meat and milk in developing countries: Implications for grasslands-based livestock production. Grassl. Glob. Resour. 2005, 2939, 432. [Google Scholar]
- Food Agriculture Organization. Ethiopia: Report on Feed Inventory and Feed Balance; Food Agriculture Organization: Rome, Italy, 2018. [Google Scholar]
- Balehegn, M.; Duncan, A.; Tolera, A.; Ayantunde, A.A.; Issa, S.; Karimou, M.; Zampaligré, N.; André, K.; Gnanda, I.; Varijakshapanicker, P.; et al. Improving adoption of technologies and interventions for increasing supply of quality livestock feed in low- and middle-income countries. Glob. Food Secur. 2020, 26, 100372. [Google Scholar] [CrossRef] [PubMed]
- Belay, A.; Oludhe, C.; Mirzabaev, A.; Recha, J.W.; Berhane, Z.; Osano, P.M.; Demissie, T.; Olaka, L.A.; Solomon, D. Knowledge of climate change and adaptation by smallholder farmers: Evidence from southern Ethiopia. Heliyon 2022, 8, e12089. [Google Scholar] [CrossRef]
- Ibeagha-Awemu, E.M.; Peters, S.O.; Bemji, M.N.; Adeleke, M.A.; Do, D.N. Leveraging Available Resources and Stakeholder Involvement for Improved Productivity of African Livestock in the Era of Genomic Breeding. Front. Genet. 2019, 10, 357. [Google Scholar] [CrossRef]
- Dobes, L.; Crane, M.; Higgins, T.; Van Dijk, A.I.J.M.; Lindenmayer, D.B. Increased livestock weight gain from improved water quality in farm dams: A cost-benefit analysis. PLoS ONE 2021, 16, e0256089. [Google Scholar] [CrossRef] [PubMed]
- Lie, H.; Rich, K.M.; van der Hoek, R.; Dizyee, K. An empirical evaluation of policy options for inclusive dairy value chain development in Nicaragua: A system dynamics approach. Agric. Syst. 2018, 164, 193–222. [Google Scholar] [CrossRef]
- Reis, G.G.; Heidemann, M.S.; Borini, F.M.; Molento, C.F.M. Livestock value chain in transition: Cultivated (cell-based) meat and the need for breakthrough capabilities. Technol. Soc. 2020, 62, 101286. [Google Scholar] [CrossRef]
- Swaans, K.; Boogaard, B.; Bendapudi, R.; Taye, H.; Hendrickx, S.; Klerkx, L. Operationalizing inclusive innovation: Lessons from innovation platforms in livestock value chains in India and Mozambique. Innov. Dev. 2014, 4, 239–257. [Google Scholar] [CrossRef]
- Hocquette, J.F.; Botreau, R.; Legrand, I.; Polkinghorne, R.; Pethick, D.W.; Lherm, M.; Picard, B.; Doreau, M.; Terlouw, E.M.C. Win–win strategies for high beef quality, consumer satisfaction, and farm efficiency, low environmental impacts and improved animal welfare. Anim. Prod. Sci. 2013, 54, 1537. [Google Scholar] [CrossRef]
- García-Torres, S.; López-Gajardo, A.; Mesías, F.J. Intensive vs. free-range organic beef. A preference study through consumer liking and conjoint analysis. Meat Sci. 2016, 114, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Tobias, S.; Stefan, L.; Felix, H. Summer Farms in Switzerland: Profitability and Public Financial Support. Mt. Res. Dev. 2018, 38, 14–23. [Google Scholar] [CrossRef]
- Böni, R.; Seidl, I. Alpprodukte und Alpdienstleistungen–Angebot in ausgewählten Regionen der Schweiz. Agrar. Schweiz 2012, 3, 124–131. [Google Scholar]
- Liverpool-Tasie, L.S.O.; Wineman, A.; Young, S.; Tambo, J.; Vargas, C.; Reardon, T.; Adjognon, G.S.; Porciello, J.; Gathoni, N.; Bizikova, L.; et al. A scoping review of market links between value chain actors and small-scale producers in developing regions. Nat. Sustain. 2020, 3, 799–808. [Google Scholar] [CrossRef]
- Govoeyi, B.; Ahounou, S.G.; Agbokounou, A.M.; Salifou, C.F.A.; Dotche, I.O.; Kiki, P.S.; Youssao Abdou Karim, I.; Antoine-Moussiaux, N. Participatory innovation analysis along livestock value chains: Case of swine value chain in Benin. Agric. Syst. 2019, 174, 11–22. [Google Scholar] [CrossRef]
- Herrmann, R.; Nkonya, E.; Faße, A. Food value chain linkages and household food security in Tanzania. Food Secur. 2018, 10, 827–839. [Google Scholar] [CrossRef]
- Wang, B.; Yan, H.; Xue, Z.; Batunacun; Liu, G. Nature-Based Solutions Benefit the Economic-Ecological Coordination of Pastoral Areas: An Outstanding Herdsman’s Experience in Xilin Gol, China. Land 2022, 11, 107. [Google Scholar] [CrossRef]
Livestock | Sheep | Goat | Cattle | Horse | Donkey | Mule | Camel |
---|---|---|---|---|---|---|---|
Conversion coefficient | 1 | 0.8 | 6 | 5.5 | 3 | 5 | 8.5 |
Classification | <0.6 | 0.6~0.8 | 0.8~1.0 | 1.0~1.2 | 1.2~1.4 | >1.4 |
---|---|---|---|---|---|---|
Grassland Carrying Capacity | rich and surplus | surplus | balance surplus | critical overload | overload | severe overload |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Z.; Yan, H.; Zhen, L. For a Better Quality of Beef: The Challenge from Growing Livestock on Limited Grasslands with a Production–Consumption Balance Perspective. Foods 2023, 12, 3231. https://doi.org/10.3390/foods12173231
Xue Z, Yan H, Zhen L. For a Better Quality of Beef: The Challenge from Growing Livestock on Limited Grasslands with a Production–Consumption Balance Perspective. Foods. 2023; 12(17):3231. https://doi.org/10.3390/foods12173231
Chicago/Turabian StyleXue, Zhichao, Huimin Yan, and Lin Zhen. 2023. "For a Better Quality of Beef: The Challenge from Growing Livestock on Limited Grasslands with a Production–Consumption Balance Perspective" Foods 12, no. 17: 3231. https://doi.org/10.3390/foods12173231
APA StyleXue, Z., Yan, H., & Zhen, L. (2023). For a Better Quality of Beef: The Challenge from Growing Livestock on Limited Grasslands with a Production–Consumption Balance Perspective. Foods, 12(17), 3231. https://doi.org/10.3390/foods12173231