Use of Bio-Waste of Ilex paraguariensis A. St. Hil. (Yerba mate) to Obtain an Extract Rich in Phenolic Compounds with Preservative Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Determination of the Individual Phenolic Profile of Bio-Residues and Lyophilized Leaves of Yerba mate
2.2.1. Extraction Procedure
2.2.2. Analytical Method
2.3. Evaluation of Bioactive Properties of Extracts Obtained from Bio-Residues and Lyophilized Leaves of Yerba mate
2.3.1. Antimicrobial Activity
2.3.2. Cytotoxic Activity in Tumor and Non-Tumor Cell Lines and Anti-Inflammatory Activity
2.3.3. Antioxidant Activity
2.4. Incorporation of Phenolic Compound-Rich Extract into Pancakes
2.4.1. Preparation of the Pastry Product—Pancakes
2.4.2. Evaluation of the Color Parameters of Pancake Samples during Storage Time—0 and 3 Days
2.4.3. Evaluation of the Nutritional and Chemical Composition of Pancake Samples at 0 and 3 Days of Storage
2.5. Statistical Analysis
3. Results
3.1. Individual Phenolic Profile of Samples from Ilex paraguariensis A. St. Hil.
3.2. Bioactive Properties of Extracts Obtained from Bio-Residues and Lyophilized Yerba mate Leaves
3.2.1. Antimicrobial Activity
3.2.2. Anti-Proliferative Activity in Tumor and Non-Tumor Cell and Anti-Inflammatory Activity
3.2.3. Antioxidant Activity
3.3. Study of Incorporation of Phenolic Compound-Rich Extract into Pancakes
3.3.1. Evaluation of Color Parameters of Pancakes
3.3.2. Evaluation of the Nutritional Value and Chemical Composition of Pancakes
4. Discussion
4.1. Phenolic Profile of Samples from Ilex paraguariensis A. St. Hil.
4.2. Bioactive Evaluation of Extracts Obtained from Bio-Residues and Lyophilized Yerba Mate Leaves
4.2.1. Antimicrobial Activity
4.2.2. Anti-Proliferative Activity in Tumor and Non-Tumor Cell Lines and Anti-Inflammatory Activity
4.2.3. Antioxidant Activity
4.3. Study of Incorporation of Phenolic Compound-Rich Extract into Pancakes
4.3.1. Evaluation of Color Parameters of Pancakes
4.3.2. Evaluation of the Nutritional Value and Chemical Composition of Pancakes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blasi, A.; Verardi, A.; Sangiorgio, P. The Zero-Waste Economy: From Food Waste to Industry. In Membrane Engineering in the Circular Economy: Renewable Sources Valorization in Energy and Downstream Processing in Agro-Food Industry; Elsevier: Amsterdam, The Netherlands, 2022; pp. 63–100. [Google Scholar] [CrossRef]
- Pinela, J.; Omarini, A.B.; Stojković, D.; Barros, L.; Postemsky, P.D.; Calhelha, R.C.; Breccia, J.; Fernández-Lahore, M.; Soković, M.; Ferreira, I.C.F.R. Biotransformation of Rice and Sunflower Side-Streams by Dikaryotic and Monokaryotic Strains of Pleurotus Sapidus: Impact on Phenolic Profiles and Bioactive Properties. Food Res. Int. 2020, 132, 109094. [Google Scholar] [CrossRef]
- Gullón, P.; Gullón, B.; Romaní, A.; Rocchetti, G.; Lorenzo, J.M. Smart Advanced Solvents for Bioactive Compounds Recovery from Agri-Food by-Products: A Review. Trends Food Sci. Technol. 2020, 101, 182–197. [Google Scholar] [CrossRef]
- Santos Fernandes, S.; Silveira Coelho, M.; de las Mercedes Salas-Mellado, M. Chapter 7—Bioactive Compounds as Ingredients of Functional Foods: Polyphenols, Carotenoids, Peptides from Animal and Plant Sources New. Bioact. Compd. 2019, 129–142. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Pateiro, M.; Domínguez, R.; Nieto, G.; Kumar, M.; Dhama, K.; Lorenzo, J.M. Bioactive Compounds from Fruits as Preservatives. Foods 2023, 12, 343, PMCID:PMC9857965. [Google Scholar] [CrossRef] [PubMed]
- Winhelmann, M.C.; de Vargas, L.J.; Gastmann, J.; Jaeger, A.P.; de Freitas, E.M.; Fior, C.S. Avaliação Da Qualidade de Sementes de Erva-Mate (Ilex paraguariensis A.St.-Hil.) Oriundas de Diferentes Plantas Matrizes. Ciência Florest. 2022, 32, 247–265. [Google Scholar] [CrossRef]
- Sales, M.J.; Sérgio, M.; Mosele, H. O Futuro Da Investigação Científica Em Erva-Mate. In Série Documentos da Embrapa Florestas, 1st ed.; Embrapa: Brasília, Brazil, 2004; ISSN 1517-526X (impresso)/1679-2599 9CD-ROM. [Google Scholar]
- Vieira, M.A.; Maraschin, M.; Pagliosa, C.M.; Podestá, R.; de Simas, K.N.; Rockenbach, I.I.; Amboni, R.D.d.M.C.; Amante, E.R. Phenolic Acids and Methylxanthines Composition and Antioxidant Properties of Mate (Ilex paraguariensis) Residue. J. Food Sci. 2010, 75, C280–C285. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, R. Avaliação Físico-Química e Sensorial Do Extrato Aquoso Da Erva-Mate (Ilex paraguariensis) Repousada; Universidade Estadual do Rio Grande do Sul (UERGS): Encantado, Brasil, 2022. [Google Scholar]
- Ohtaki, V.M.; Lise, C.C.; Oldoni, T.L.C.; de Lima, V.A.; Junior, H.S.; Mitterer-Daltoé, M.L. Ultra-Refined Yerba Mate (Ilex paraguariensis St. Hil) as a Potential Naturally Colored Food Ingredient. Sci. Agric. 2022, 80, e20220054. [Google Scholar] [CrossRef]
- Pagliosa, C.M. Caracterização Química Do Resíduo de Ervais e Folhas “in Natura” de Erva-Mate (Ilex paraguariensis A. St. Hil.). Master’s Thesis, Universidade Federal de Santa Catarina, Centro de Ciencias Agrarias, Florianópolis, Brazil, 2009. [Google Scholar]
- Jabeur, I.; Tobaldini, F.; Martins, N.; Barros, L.; Martins, I.; Calhelha, R.C.; Henriques, M.; Silva, S.; Achour, L.; Santos-Buelga, C.; et al. Bioactive Properties and Functional Constituents of Hypericum androsaemum L.: A Focus on the Phenolic Profile. Food Res. Int. 2016, 89, 422–431. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Natural Food Additives: Quo Vadis? Trends Food Sci. Technol. 2015, 45, 284–295. [Google Scholar] [CrossRef]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and Chemical Characterization in Hydrophilic and Lipophilic Compounds of Chenopodium ambrosioides L. J. Funct. Foods 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- Evans, B.C.; Nelson, C.E.; Shann, S.Y.; Beavers, K.R.; Kim, A.J.; Li, H.; Nelson, H.M.; Giorgio, T.D.; Duvall, C.L. Ex Vivo Red Blood Cell Hemolysis Assay for the Evaluation of PH-Responsive Endosomolytic Agents for Cytosolic Delivery of Biomacromolecular Drugs. J. Vis. Exp. 2013, 9, e50166. [Google Scholar] [CrossRef]
- Takebayashi, J.; Iwahashi, N.; Ishimi, Y.; Tai, A. Development of a Simple 96-Well Plate Method for Evaluation of Antioxidant Activity Based on the Oxidative Haemolysis Inhibition Assay (OxHLIA). Food Chem. 2012, 134, 606–610. [Google Scholar] [CrossRef]
- Carocho, M.; Barreiro, M.F.; Morales, P.; Ferreira, I.C.F.R. Adding Molecules to Food, Pros and Cons: A Review on Synthetic and Natural Food Additives. Compr. Rev. Food Sci. Food Saf. 2014, 13, 377–399. [Google Scholar] [CrossRef] [PubMed]
- Roriz, C.L.; Barros, L.; Prieto, M.A.; Morales, P.; Ferreira, I.C.F.R. Floral Parts of Gomphrena globosa L. as a Novel Alternative Source of Betacyanins: Optimization of the Extraction Using Response Surface Methodology. Food Chem. 2017, 229, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Official Methods of Analysis of AOAC International—20th Edition. 2016. Available online: https://www.techstreet.com/standards/official-methods-of-analysis-of-aoac-international-20th-edition-2016?product_id=1937367 (accessed on 26 April 2023).
- Daniela, F.; Almeida, F.; Ferreira, O.; Ferreira, I.C.F.R.; Barros, L. Extração de Compostos Bioativos de Fontes Vegetais Utilizando Solventes Eutécticos. Ph.D. Thesis, Instituto Politecnico de Braganca, Bragança, Portugal, 2016. [Google Scholar]
- Santetti, G.S. Pão Integral Com Adição de Erva-Mate (Ilex paraguariensis St. Hil): Qualidade Tecnológica, Potencial Fenólico e Bioacessibilidade In Vitro; Universidade Federal de Santa Catarina (UFSC): Florianópolis, Brazil, 2022. [Google Scholar]
- Coutinho, L.A.; Gonçalves, C.P.; Marcucci, M.C. Composição Química, Atividade Biológica e Segurança de Uso de Plantas Do Gênero Mikania. Rev. Fitos 2020, 14, 118–144. [Google Scholar] [CrossRef]
- Rojas-González, A.; Figueroa-Hernández, C.Y.; González-Rios, O.; Suárez-Quiroz, M.L.; González-Amaro, R.M.; Hernández-Estrada, Z.J.; Rayas-Duarte, P. Coffee Chlorogenic Acids Incorporation for Bioactivity Enhancement of Foods: A Review. Molecules 2022, 27, 3400. [Google Scholar] [CrossRef] [PubMed]
- Raheem, K.S.; Botting, N.P.; Williamson, G.; Barron, D. Total Synthesis of 3,5-O-Dicaffeoylquinic Acid and Its Derivatives. Tetrahedron Lett. 2011, 52, 7175–7177. [Google Scholar] [CrossRef]
- Filip, R.; López, P.; Giberti, G.; Coussio, J.; Ferraro, G. Phenolic Compounds in Seven South American Ilex Species. Fitoterapia 2001, 72, 774–778. [Google Scholar] [CrossRef]
- Cardozo, E.L.; Ferrarese-Filho, O.; Filho, L.C.; Ferrarese, M.d.L.L.; Donaduzzi, C.M.; Sturion, J.A. Methylxanthines and Phenolic Compounds in Mate (Ilex paraguariensis St. Hil.) Progenies Grown in Brazil. J. Food Compos. Anal. 2007, 20, 553–558. [Google Scholar] [CrossRef]
- Bravo, L.; Goya, L.; Lecumberri, E. LC/MS Characterization of Phenolic Constituents of Mate (Ilex paraguariensis, St. Hil.) and Its Antioxidant Activity Compared to Commonly Consumed Beverages. Food Res. Int. 2007, 40, 393–405. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Phenolics in Cereals, Fruits and Vegetables: Occurrence, Extraction and Analysis. J. Pharm. Biomed. Anal. 2006, 41, 1523–1542. [Google Scholar] [CrossRef] [PubMed]
- Giulian, R.; Iochims dos Santos, C.E.; de Moraes Shubeita, S.; Manfredi da Silva, L.; Yoneama, M.L.; Dias, J.F. The Study of the Influence of Industrial Processing on the Elemental Composition of Mate Tealeaves (Ilex paraguariensis) Using the PIXE Technique. LWT—Food Sci. Technol. 2009, 42, 74–80. [Google Scholar] [CrossRef]
- Heck, C.I.; Schmalko, M.; De Mejia, E.G. Effect of Growing and Drying Conditions on the Phenolic Composition of Mate Teas (Ilex paraguariensis). J. Agric. Food Chem. 2008, 56, 8394–8403. [Google Scholar] [CrossRef]
- Dartora, N. Caracterização Estrutural de Polissacarídeos de Folhas de Erva-Mate (Ilex paraguariensis) e Suas Propriedades Biológicas. Doctoral Thesis, Universidade Federal do Paraná, Curitiba, Brazil, 2014. [Google Scholar]
- Riachi, L.G.; De Maria, C.A.B. Yerba Mate: An Overview of Physiological Effects in Humans. J. Funct. Foods 2017, 38, 308–320. [Google Scholar] [CrossRef]
- Guilherme, J.; Martin, P. Atividade Antimicrobiana de Produtos Naturais: Erva-Mate e Resíduos Agroindustriais. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2011. [Google Scholar] [CrossRef]
- De Biasi, B.; Grazziotin, N.A.; Hofmann, A.E. Atividade Antimicrobiana Dos Extratos de Folhas e Ramos Da Ilex Paraguariensis A. St.-Hil., Aquifoliaceae. Rev. Bras. Farmacogn. 2009, 19, 582–585. [Google Scholar] [CrossRef]
- Tonet, A.; Zara, R.F.; Tiuman, T.S. Biological Activity and Quantification of Bioative Compounds in Yerba Mate Extract and Its Application in Fish Hamburger. Braz. J. Food Technol. 2019, 22. [Google Scholar] [CrossRef]
- Prado Martin, J.G.; Porto, E.; de Alencar, S.M.; da Glória, E.M.; Corrêa, C.B.; Ribeiro Cabral, I.S. Antimicrobial Activity of Yerba Mate (Ilex paraguariensis St. Hil.) against Food Pathogens. Rev. Argent Microbiol. 2013, 45, 93–98. [Google Scholar] [CrossRef]
- Da, S.S.; Nascimento, C. Mecanismos de Ação de Agentes anti-Inflamatórios No Tecido Adiposo. Master’s Thesis, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil, 2021. [Google Scholar]
- Souza, A.H.P.; Corrêa, R.C.G.; Barros, L.; Calhelha, R.C.; Santos-Buelga, C.; Peralta, R.M.; Bracht, A.; Matsushita, M.; Ferreira, I.C.F.R. Phytochemicals and Bioactive Properties of Ilex paraguariensis: An in-Vitro Comparative Study between the Whole Plant, Leaves and Stems. Food Res. Int. 2015, 78, 286–294. [Google Scholar] [CrossRef]
- Tamura, A.; Sasaki, M.; Yamashita, H.; Matsui-Yuasa, I.; Saku, T.; Hikima, T.; Tabuchi, M.; Munakata, H.; Kojima-Yuasa, A. Yerba-Mate (Ilex paraguariensis) Extract Prevents Ethanol-Induced Liver Injury in Rats. J. Funct. Foods 2013, 5, 1714–1723. [Google Scholar] [CrossRef]
- Tsai, T.H.; Tsai, T.H.; Wu, W.H.; Tseng, J.T.P.; Tsai, P.J. In Vitro Antimicrobial and Anti-Inflammatory Effects of Herbs against Propionibacterium Acnes. Food Chem. 2010, 119, 964–968. [Google Scholar] [CrossRef]
- Arçari, D.P.; Bartchewsky, W.; dos Santos, T.W.; Oliveira, K.A.; DeOliveira, C.C.; Gotardo, É.M.; Pedrazzoli, J.; Gambero, A.; Ferraz, L.F.C.; Carvalho, P.d.O.; et al. Anti-Inflammatory Effects of Yerba Maté Extract (Ilex paraguariensis) Ameliorate Insulin Resistance in Mice with High Fat Diet-Induced Obesity. Mol. Cell. Endocrinol. 2011, 335, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Dzabijeva, D.; Boroduske, A.; Ramata-Stunda, A.; Mazarova, N.; Nikolajeva, V.; Boroduskis, M.; Nakurte, I. Anti-Bacterial Activity and Online HPLC-DPPH Based Antiradical Kinetics of Medicinal Plant Extracts of High Relevance for Cosmetics Production. Key Eng. Mater. 2018, 762, 8–13. [Google Scholar] [CrossRef]
Peak | Tr (min) | λmax | [M-H]− | Main Snippet | Attempted Identification | Quantification | ||
---|---|---|---|---|---|---|---|---|
(nm) | ESI-MSn | (mg/g Extract) | ||||||
[Intensity (%)] | EMP | EMNP | p-Value | |||||
1 | 6.05 | 324 | 353 | 191 (20), 179 (50), 173 (100), 135 (5) | 4-O-caffeoylquinic acid 1 | 1.02 ± 0.05 | 0.40 ± 0.01 | <0.01 |
2 | 6.92 | 325 | 353 | 191 (100), 179 (12), 173 (59), 135 (6) | 5-O-caffeoylquinic acid 1 | 2.60 ± 0.16 | 1.18 ± 0.05 | <0.01 |
3 | 10.41 | 325 | 367 | 191 (20), 173 (100), 135 (5) | 4-O-p-coumaroylquinic acid 2 | 1.06 ± 0.03 | 1.92 ± 0.04 | 0.239 |
4 | 17.35 | 334 | 609 | 301 (100) | Quercetin-3-O-rutinoside 3 | 0.32 ± 0.01 | 0.656 ± 0.004 | <0.01 |
5 | 18.57 | 326 | 515 | 353 (10), 191 (45), 179 (62), 173 (100), 135 (5) | 3,4-O-dicaffeoylquinic acid 1 | 0.576 ± 0.001 | 0.24 ± 0.01 | <0.01 |
6 | 19.94 | 326 | 515 | 353 (12), 191 (100), 179 (53), 173 (12), 135 (5) | 3,5-O-dicaffeoylquinic acid 1 | 2.12 ± 0.03 | 1.97 ± 0.14 | <0.01 |
7 | 22.47 | 326 | 515 | 353 (10), 191 (24), 179 (60), 173 (100), 135 (5) | 4,5-O-dicaffeoylquinic acid 1 | 1.61 ± 0.02 | 0.38 ± 0.01 | <0.01 |
Total phenolic compounds | 9.31 ± 0.19 | 6.75 ± 0.24 | 0.599 | |||||
Total phenolic acids | 8.99 ± 0.18 | 6.09 ± 0.23 | 0.492 | |||||
Total flavonoids | 0.32 ± 0.01 | 0.656 ± 0.004 | <0.01 |
Antibacterial Activity | ||||||||
Extracts | S.a. | B.c. | L.m. | E.c. | S.t. | En.cl. | ||
EMP | MIC | 1 | 0.5 | 2 | 0.25 | 2 | 2 | |
MBC | 2 | 2 | 2 | 0.5 | 2 | 4 | ||
EMNP | MIC | 1 | 1 | 1 | 0.25 | 1 | 1 | |
MBC | 2 | 2 | 2 | 0.5 | 2 | 2 | ||
Ampicillin | MIC | 0.012 | 0.25 | 0.40 | 0.40 | 0.75 | 0.006 | |
MBC | 0.025 | 0.40 | 0.50 | 0.50 | 1.20 | 0.012 | ||
Antifungal Activity | ||||||||
Extracts | A.o. | A.n. | A.v. | P.f. | P.v.c. | P.o. | ||
EMP | MIC | 0.5 | 0.5 | 0.25 | 0.5 | 0.5 | 0.25 | |
MFC | 1 | 1 | 0.5 | 1 | 1 | 0.25 | ||
EMNP | MIC | 0.5 | 0.5 | 0.25 | 0.5 | 0.5 | 0.125 | |
MFC | 1 | 1 | 0.5 | 1 | 1 | 0.125 | ||
Ketoconazole | MIC | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | |
MFC | 0.50 | 0.50 | 0.50 | 0.50 | 0.30 | 0.50 |
Cytotoxic Activity | |||
GI50 values (µg/mL) | EMP | EMNP | p-Value |
HeLa | >400 | >400 | - |
NCI-H460 | >400 | >400 | - |
MCF-7 | 196 ± 3 | 159.5 ± 0.1 | <0.01 |
CaCo | 162 ± 2 | 85.3 ± 0.2 | <0.01 |
AGS | 201 ± 7 | 238 ± 5 | <0.01 |
VERO | >400 | >400 | - |
Anti-Inflammatory Activity | |||
RAW 264.7 | 302 ± 10 | 258 ± 8 | <0.01 |
Concentration | |||
---|---|---|---|
Antioxidant Activity | EMP | EMNP | p-Value |
TBARS | 6.0 ± 0.3 | 5.8 ± 0.2 | 0.679 |
(EC50 values, µg/mL) | |||
OxHLIA (Δt = 60 min) | 17.2 ± 0.8 | 23 ± 1 | <0.01 |
(IC50 values, µg/mL) | |||
OxHLIA (Δt = 120 min) | 41 ± 2 | 66 ± 2 | <0.01 |
(IC50 values, µg/mL) |
Time 0 Days | Time 3 Days | ∆E | ||||||
---|---|---|---|---|---|---|---|---|
AC | AEO | ASP | AC | AEO | ASP | |||
L* | 76.7 ± 1.1 a | 69.0 ± 2.3 c | 72.0 ± 2.3 b | 72.4 ± 1.6 a | 69.5 ± 0.9 b | 71.7 ± 2.1 a | AC | 5.4 |
a* | 2.4 ± 0.1 b | 4.9 ± 0.2 a | 4.9 ± 0.2 a | 2.0 ± 0.1 b | 4.6 ± 0.2 a | 4.8 ± 0.2 a | AEO | 4.2 |
b* | 32.0 ± 1.1 a | 32.3 ± 0.4 a | 32.3 ± 0.5 a | 28.8 ± 1.4 a | 28.1 ± 0.5 a | 28.1 ± 1.1 a | ASP | 4.2 |
Time 0 Days | Time 3 Days | ∆AEO | p-Value | |||||
---|---|---|---|---|---|---|---|---|
AC | AEO | ASP | AC | AEO | ASP | |||
Humidity (g/100 g fw) | 51.1 ± 0.1 a | 51.9 ± 0.1 a | 50.7 ± 0.1 a | 53 ± 0.1 a | 51.2 ± 0.1 b | 51.8 ± 0.1 b | 0.7 | 0.312 |
Proteins (g/100 g fw) | 7.1 ± 0.2 a | 7.14 ± 0.01 a | 7.2 ± 0.1 a | 7.2 ± 0.3 a | 7.23 ± 0.01 a | 7.13 ± 0.03 a | 0.09 | 0.158 |
Ashes (g/100 g fw) | 2.5 ± 0.1 a | 2.5 ± 0.1 a | 2.490 ± 0.003 a | 2.48 ± 0.05 a | 2.49 ± 0.04 a | 2.5 ± 0.1 a | 0.01 | 0.978 |
Fat (g/100 g fw) | 3.17 ± 0.04 a | 3.2 ± 0.1 a | 3.2 ± 0.2 a | 3.2 ± 0.1 a | 3.230 ± 0.003 a | 3.2 ± 0.1 a | 0.03 | 0.323 |
Carbohydrates (g/100 g fw) | 36.1 ± 0.2 a | 35.35 ± 0.03 a | 36.4 ± 0.1 a | 34.2 ± 0.3 a | 35.82 ± 0.03 a | 35.45 ± 0.03 a | 0.47 | 0.523 |
Energy (Kcal/100 g) | 201.5 ± 0.5 a | 198.4 ± 1.1 a | 203.1 ± 1.1 a | 194.1 ± 0.8 a | 201.3 ± 0.2 a | 199.0 ± 0.3 a | 2.9 | 0.065 |
Energy (Kj/100 g) | 844.4 ± 2.2 a | 831.3 ± 4.4 a | 851.1 ± 4.7 a | 813.3 ± 3.4 a | 843.4 ± 0.8 a | 833.9 ± 1.1 a | 12.1 | 0.065 |
Sugars (g/100 g fw) | ||||||||
Sucrose | 21.3 ± 0.9 a | 25.0 ± 0.5 c | 22.8 ± 0.9 b | 20.1 ± 0.7 a | 24.0 ± 0.6 c | 22.5 ± 0.2 b | 1.0 | 0.061 |
Total sugars | 21.3 ± 0.9 a | 25.0 ± 0.5 c | 22.8 ± 0.9 b | 20.1 ± 0.7 a | 24.0 ± 0.6 c | 22.5 ± 0.2 b | 1.0 | 0.061 |
Fat acids (relative %) | ||||||||
C16:0 | 26.1 ± 0.3 a | 26.9 ± 0.1 a | 26.5 ± 0.4 a | 26.2 ± 0.4 b | 27.2 ± 1.0 a | 26.9 ± 0.8 ab | 0.3 | 0.682 |
C18:0 | 7.4 ± 0.2 b | 8.1 ± 0.3 a | 8.2 ± 0.3 a | 7.2 ± 0.2 b | 8.1 ± 0.1 a | 8.1 ± 0.4 a | 0.0 | 0.964 |
C18:1n9 | 34.4 ± 0.3 b | 35.7 ± 0.1 a | 34.6 ± 0.5 b | 34.5 ± 0.7 b | 35.2 ± 0.6 a | 35.4 ± 0.6 a | 0.5 | 0.932 |
C18:2n6 | 19.7 ± 0.1 a | 19.1 ± 0.4 a | 20.6 ± 0.3 a | 19.4 ± 0.3 a | 18.9 ± 0.3 a | 18.9 ± 0.3 a | 0.2 | 0.734 |
SFA | 41.8 ± 0.5 a | 42.6 ± 0.5 a | 42.5 ± 0.7 a | 41.7 ± 0.4 b | 43.4 ± 1.0 a | 43.0 ± 0.4 a | 0.8 | 0.695 |
MUFA | 36.8 ± 0.3 b | 38.1 ± 0.1 a | 36.7 ± 0.4 b | 37.0 ± 0.7 a | 37.5 ± 0.7 a | 37.7 ± 0.6 ª | 0.6 | 0.671 |
PUFA | 21.4 ± 0.1 a | 19.3 ± 0.4 c | 20.7 ± 0.3 b | 21.3 ± 0.3 a | 19.1 ± 0.3 b | 19.3 ± 0.3 b | 0.2 | 0.889 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menezes, B.; Caleja, C.; Calhelha, R.C.; Pinela, J.; Dias, M.I.; Stojković, D.; Soković, M.; Gonçalves, O.H.; Leimann, F.V.; Pereira, E.; et al. Use of Bio-Waste of Ilex paraguariensis A. St. Hil. (Yerba mate) to Obtain an Extract Rich in Phenolic Compounds with Preservative Potential. Foods 2023, 12, 3241. https://doi.org/10.3390/foods12173241
Menezes B, Caleja C, Calhelha RC, Pinela J, Dias MI, Stojković D, Soković M, Gonçalves OH, Leimann FV, Pereira E, et al. Use of Bio-Waste of Ilex paraguariensis A. St. Hil. (Yerba mate) to Obtain an Extract Rich in Phenolic Compounds with Preservative Potential. Foods. 2023; 12(17):3241. https://doi.org/10.3390/foods12173241
Chicago/Turabian StyleMenezes, Bárbara, Cristina Caleja, Ricardo C. Calhelha, José Pinela, Maria Inês Dias, Dejan Stojković, Marina Soković, Odinei Hess Gonçalves, Fernanda Vitória Leimann, Eliana Pereira, and et al. 2023. "Use of Bio-Waste of Ilex paraguariensis A. St. Hil. (Yerba mate) to Obtain an Extract Rich in Phenolic Compounds with Preservative Potential" Foods 12, no. 17: 3241. https://doi.org/10.3390/foods12173241
APA StyleMenezes, B., Caleja, C., Calhelha, R. C., Pinela, J., Dias, M. I., Stojković, D., Soković, M., Gonçalves, O. H., Leimann, F. V., Pereira, E., & Barros, L. (2023). Use of Bio-Waste of Ilex paraguariensis A. St. Hil. (Yerba mate) to Obtain an Extract Rich in Phenolic Compounds with Preservative Potential. Foods, 12(17), 3241. https://doi.org/10.3390/foods12173241