Antibacterial Activity and Transcriptomic Analysis of Hesperetin against Alicyclobacillus acidoterrestris Vegetative Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Chemicals
2.2. Bacterial Strain and Cultures
2.3. Antimicrobial Activity Tests
2.3.1. Minimum Inhibitory Concentration (MIC) and Minimum Bacterial Concentration (MBC)
2.3.2. Growth Curves and Kinetic Parameters
2.4. Determination of Morphophysiological Properties
2.4.1. Fluorescence Microscopy
2.4.2. Scanning Electron Microscopy (SEM)
2.5. Leakage of DNA, RNA, and Proteins
2.6. RNA Extraction
2.7. Transcriptomic Data Processing
2.8. Statistical Analyses
3. Results
3.1. Antimicrobial Activity of Hesperetin on A. acidoterrestris
3.1.1. MIC and MBC of Hesperetin against A. acidoterrestris
3.1.2. Effect of Hesperetin on A. acidoterrestris Growth
3.2. Effect of Hesperetin on A. acidoterrestris Morphology
3.2.1. Fluorescent-Based Cell Live/Dead Test
3.2.2. SEM Observation of Hesperetin-Treated Cells
3.3. Leakage of Biomolecules
3.4. Transcriptomic Effects of Hesperetin on A. acidoterrestris
3.4.1. Differentially Expressed Genes (DEGs)
3.4.2. GO and KEGG Annotation Analysis of DEGs
3.4.3. Functional Enrichment of GO and KEGG
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cai, R.; Zhang, M.; Cui, L.; Yuan, Y.; Yang, Y.; Wang, Z.; Yue, T. Antibacterial activity and mechanism of thymol against Alicyclobacillus acidoterrestris vegetative cells and spores. LWT 2019, 105, 377–384. [Google Scholar] [CrossRef]
- Ribeiro, L.R.; Cristianini, M. Effect of high pressure combined with temperature on the death kinetics of Alicyclobacillus acidoterrestris spores and on the quality characteristics of mango pulp. LWT 2021, 152, 112266. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, Y.; Wang, Q.; Guo, T.; Yuan, Y.; Yue, T.; Jia, H.; Ge, Q.; Zhao, Z.; Cai, R. Antimicrobial activity and mechanism of preservatives against Alicyclobacillus acidoterrestris and its application in apple juice. Int. J. Food Microbiol. 2023, 386, 110039. [Google Scholar] [CrossRef]
- Tremarin, A.; Brandão, T.R.S.; Silva, C.L.M. Inactivation kinetics of Alicyclobacillus acidoterrestris in apple juice submitted to ultraviolet radiation. Food Control 2017, 73, 18–23. [Google Scholar] [CrossRef]
- Tremarin, A.; Brandão, T.R.S.; Silva, C.L.M. Application of ultraviolet radiation and ultrasound treatments for Alicyclobacillus acidoterrestris spores inactivation in apple juice. LWT 2017, 78, 138–142. [Google Scholar] [CrossRef]
- Kim, N.; Ryang, J.; Lee, B.; Kim, C.; Rhee, M. Continuous ohmic heating of commercially processed apple juice using five sequential electric fields results in rapid inactivation of Alicyclobacillus acidoterrestris spores. Int. J. Food Microbiol. 2017, 246, 80–84. [Google Scholar] [CrossRef]
- Wang, L.-H.; Chen, L.; Zhao, S.; Huang, Y.; Zeng, X.-A.; Aadil, R.M. Inactivation efficacy and mechanisms of atmospheric cold plasma on Alicyclobacillus acidoterrestris: Insight into the influence of growth temperature on survival. Front. Nutr. 2022, 9, 1012901. [Google Scholar] [CrossRef]
- Hadj Saadoun, J.; Levante, A.; Marrella, M.; Bernini, V.; Neviani, E.; Lazzi, C. Influence of processing parameters and natural antimicrobial on Alicyclobacillus acidoterrestris and Clostridium pasteurianum using response surface methodology. Foods 2022, 11, 1063. [Google Scholar] [CrossRef]
- Nabavi, S.M.; Šamec, D.; Tomczyk, M.; Milella, L.; Russo, D.; Habtemariam, S.; Suntar, I.; Rastrelli, L.; Daglia, M.; Xiao, J.; et al. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol. Adv. 2020, 38, 107316. [Google Scholar] [CrossRef]
- He, M.; Wu, T.; Pan, S.; Xu, X. Antimicrobial mechanism of flavonoids against Escherichia coli ATCC 25922 by model membrane study. Appl. Surf. Sci. 2014, 305, 515–521. [Google Scholar] [CrossRef]
- Kumar, M.; Dahiya, V.; Kasala, E.R.; Bodduluru, L.N.; Lahkar, M. The renoprotective activity of hesperetin in cisplatin induced nephrotoxicity in rats: Molecular and biochemical evidence. Biomed. Pharmacother. 2017, 89, 1207–1215. [Google Scholar] [CrossRef]
- Garg, A.; Garg, S.; Zaneveld, L.; Singla, A. Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother. Res. 2001, 15, 655–669. [Google Scholar] [CrossRef]
- Sa’Ayinzat, F.; Bawa, E.; Ogwu, D.; Ayo, J. Hesperidin-Sources, chemistry, extraction, measurement and biologic effects on reproduction in animals: A review. Int. J. Vet. Sci. Anim. Husb. 2021, 6, 1–8. [Google Scholar]
- Majo, D.D.; Giammanco, M.; Guardia, M.L.; Tripoli, E.; Giammanco, S.; Finotti, E. Flavanones in Citrus fruit: Structure–antioxidant activity relationships. Food Res. Int. 2005, 38, 1161–1166. [Google Scholar] [CrossRef]
- Ren, H.; Hao, J.; Liu, T.; Zhang, D.; Lv, H.; Song, E.; Zhu, C. Hesperetin Suppresses Inflammatory Responses in Lipopolysaccharide-Induced RAW 264.7 Cells via the Inhibition of NF-κB and Activation of Nrf2/HO-1 Pathways. Inflammation 2016, 39, 964–973. [Google Scholar] [CrossRef]
- Choi, S.-S.; Lee, S.-H.; Lee, K.-A. A Comparative Study of Hesperetin, Hesperidin and Hesperidin Glucoside: Antioxidant, Anti-Inflammatory, and Antibacterial Activities In Vitro. Antioxidants 2022, 11, 1618. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhang, L.; Lai, C.; Ouyang, Z.; Zhang, J. Evaluation of antibacterial activity of compounds isolated from the peel of Newhall navel orange. Nat. Prod. Res. 2023, 37, 2060–2064. [Google Scholar] [CrossRef]
- Wang, Y. Study on antimicrobial activity and stability of citrus peel pigment. Food Mach. 2011, 27, 163–165+185. [Google Scholar]
- Cai, R.; Miao, M.; Yue, T.; Zhang, Y.; Cui, L.; Wang, Z.; Yuan, Y. Antibacterial activity and mechanism of cinnamic acid and chlorogenic acid against Alicyclobacillus acidoterrestris vegetative cells in apple juice. Int. J. Food Sci. Technol. 2019, 54, 1697–1705. [Google Scholar] [CrossRef]
- Li, J.; Zhao, N.; Xu, R.; Li, G.; Dong, H.; Wang, B.; Li, Z.; Fan, M.; Wei, X. Deciphering the antibacterial activity and mechanism of p-coumaric acid against Alicyclobacillus acidoterrestris and its application in apple juice. Int. J. Food Microbiol. 2022, 378, 109822. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Zhang, J.; Qi, Y.; Xu, J.; Wei, X.; Fan, M. New insights into thermo-acidophilic properties of Alicyclobacillus acidoterrestris after acid adaptation. Food Microbiol. 2021, 94, 103657. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhong, Q. Physical and antimicrobial properties of self-emulsified nanoemulsions containing three synergistic essential oils. Int. J. Food Microbiol. 2022, 365, 109557. [Google Scholar] [CrossRef]
- Van Luong, T.S.; Moir, C.; Chandry, P.S.; Pinfold, T.; Olivier, S.; Broussolle, V.; Bowman, J.P. Combined high pressure and heat treatment effectively disintegrates spore membranes and inactivates Alicyclobacillus acidoterrestris spores in acidic fruit juice beverage. Innov. Food Sci. Emerg. Technol. 2020, 66, 102523. [Google Scholar] [CrossRef]
- Song, Z.; Niu, C.; Wu, H.; Wei, J.; Zhang, Y.; Yue, T. Transcriptomic analysis of the molecular mechanisms underlying the antibacterial activity of IONPs@ pDA-Nisin composites toward Alicyclobacillus acidoterrestris. ACS Appl. Mater. Interfaces 2019, 11, 21874–21886. [Google Scholar] [CrossRef]
- Jia, H.; Zeng, X.; Cai, R.; Wang, Z.; Yuan, Y.; Yue, T. Fabrication of epsilon-polylysine-based magnetic nanoflowers with effective antibacterial activity against Alicyclobacillus acidoterrestris. J. Agric. Food Chem. 2022, 70, 857–868. [Google Scholar] [CrossRef]
- Molva, C.; Baysal, A.H. Antimicrobial activity of grape seed extract on Alicyclobacillus acidoterrestris DSM 3922 vegetative cells and spores in apple juice. LWT-Food Sci. Technol. 2015, 60, 238–245. [Google Scholar] [CrossRef]
- Tian, F.; Li, B.; Ji, B.; Zhang, G.; Luo, Y. Identification and structure–activity relationship of gallotannins separated from Galla chinensis. LWT-Food Sci. Technol. 2009, 42, 1289–1295. [Google Scholar] [CrossRef]
- Peng, H.; Zhou, G.; Yang, X.-M.; Chen, G.-J.; Chen, H.-B.; Liao, Z.-L.; Zhong, Q.-P.; Wang, L.; Fang, X.; Wang, J. Transcriptomic Analysis Revealed Antimicrobial Mechanisms of Lactobacillus rhamnosus SCB0119 against Escherichia coli and Staphylococcus aureus. Int. J. Mol. Sci. 2022, 23, 15159. [Google Scholar] [CrossRef]
- Dutra, T.V.; de Menezes, J.L.; Mizuta, A.G.; de Oliveira, A.; Moreira, T.F.M.; Barros, L.; Mandim, F.; Pereira, C.; Gonçalves, O.H.; Leimann, F.V. Use of nanoencapsulated curcumin against vegetative cells and spores of Alicyclobacillus spp. in industrialized orange juice. Int. J. Food Microbiol. 2021, 360, 109442. [Google Scholar] [CrossRef]
- Cushnie, T.T.; Lamb, A.J. Errata for “Antimicrobial activity of flavonoids” [Int. J. Antimicrob. Agents 26 (2005) 343–356]. Int. J. Antimicrob. Agents 2006, 2, 181. [Google Scholar] [CrossRef]
- Wu, Y.; Bai, J.; Zhong, K.; Huang, Y.; Gao, H. A dual antibacterial mechanism involved in membrane disruption and DNA binding of 2R, 3R-dihydromyricetin from pine needles of Cedrus deodara against Staphylococcus aureus. Food Chem. 2017, 218, 463–470. [Google Scholar] [CrossRef]
- Wu, T.; He, M.; Zang, X.; Zhou, Y.; Qiu, T.; Pan, S.; Xu, X. A structure–activity relationship study of flavonoids as inhibitors of E. coli by membrane interaction effect. Biochim. Biophys. Acta (BBA)-Biomembr. 2013, 1828, 2751–2756. [Google Scholar] [CrossRef]
- Liaqat, I.; Mirza, S.A.; Sajjad, S.; Ali, S.; Qamar, M.F.; Ul Haq, I. FliI Role in Flagellar Assembly of Salmonella ΔfliI Mutant Strain Determines Motility and Biofilm Formation. Pak. J. Zool. 2021, 53, 1–7. [Google Scholar] [CrossRef]
- Antani, J.D.; Gupta, R.; Lee, A.H.; Rhee, K.Y.; Manson, M.D.; Lele, P.P. Mechanosensitive recruitment of stator units promotes binding of the response regulator CheY-P to the flagellar motor. Nat. Commun. 2021, 12, 5442. [Google Scholar] [CrossRef]
- Chang, Y.; Zhang, K.; Carroll, B.L.; Zhao, X.; Charon, N.W.; Norris, S.J.; Motaleb, M.A.; Li, C.; Liu, J. Molecular mechanism for rotational switching of the bacterial flagellar motor. Nat. Struct. Mol. Biol. 2020, 27, 1041–1047. [Google Scholar] [CrossRef]
Hesperetin | Growth Parameters | Gompertz Equations | R2 | |||
---|---|---|---|---|---|---|
λ | μ | ODmax | Tg | |||
0 MIC (Control) | 3.7965 | 0.1868 | 1.193 | 1.0296 | ODt = 0.0379 + 1.169 ∗ exp [−exp (−0.4329 ∗ (t − 6.1063))] | 0.9980 |
1/8 MIC | 4.1608 | 0.1647 | 1.101 | 1.0843 | ODt = 0.0424 + 1.0882 ∗ exp [−exp (−0.4102 ∗ (t − 6.5987))] | 0.9985 |
1/4 MIC | 4.4206 | 0.1025 | 0.811 | 1.2905 | ODt = 0.0269 + 0.8013 ∗ exp [−exp (−0.3465 ∗ (t − 6.1263))] | 0.9974 |
3/8 MIC | 5.2948 | 0.0718 | 0.64 | 1.4448 | ODt = 0.0294 + 0.5972 ∗ exp [−exp (−0.3259 ∗ (t − 6.3629))] | 0.9983 |
Sample | Total Raw Reads (M) | Total Clean Reads (M) | Clean Reads Q20 (%) | Clean Reads Q30 (%) | Total Mapping (%) |
---|---|---|---|---|---|
Control-1 | 62.47 | 61.81 | 96.89 | 92.14 | 95.84 |
Control-2 | 62.47 | 61.7 | 96.79 | 91.91 | 95.64 |
Control-3 | 67.32 | 66.41 | 98.44 | 94.89 | 97.28 |
1/2 MIC-1 | 64.69 | 63.84 | 98.81 | 95.75 | 97.49 |
1/2 MIC-2 | 64.69 | 63.2 | 98.94 | 96.2 | 97.31 |
1/2 MIC-3 | 69.78 | 68.9 | 98.6 | 95.31 | 97.03 |
1 MIC-1 | 64.69 | 63.72 | 98.72 | 95.49 | 96.83 |
1 MIC-2 | 64.69 | 63.63 | 98.79 | 95.7 | 96.41 |
1 MIC-3 | 64.69 | 63.38 | 98.78 | 95.69 | 96.82 |
Gene ID | Gene Name | Description |
---|---|---|
N007_RS31875 | flhA | Flagellar assembly |
N007_RS31880 | fliR | Flagellar type III secretion system protein FliR |
N007_RS31885 | fliQ | Flagellar biosynthesis protein FliQ |
N007_RS31890 | fliP | Flagellar assembly |
N007_RS31910 | fliY | Bacterial chemotaxis; flagellar assembly |
N007_RS31915 | fliM | Flagellar motor switch protein FliM |
N007_RS31920 | fliG | Flagellar motor switch protein FliG |
N007_RS31930 | FliF | Flagellar M-ring protein FliF |
N007_RS31935 | flgC | Flagellar basal body rod protein FlgC |
N007_RS31985 | flgB | Flagellar basal body rod protein FlgB |
N007_RS33715 | fliS | Flagellar export chaperone FliS |
N007_RS33720 | fliD | Flagellar hook assembly protein FlgD |
N007_RS34120 | flgL | Flagellar assembly |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Nan, Y.; Yao, R.; Wang, L.; Zeng, X.; Aadil, R.M.; Shabbir, M.A. Antibacterial Activity and Transcriptomic Analysis of Hesperetin against Alicyclobacillus acidoterrestris Vegetative Cells. Foods 2023, 12, 3276. https://doi.org/10.3390/foods12173276
Zhao S, Nan Y, Yao R, Wang L, Zeng X, Aadil RM, Shabbir MA. Antibacterial Activity and Transcriptomic Analysis of Hesperetin against Alicyclobacillus acidoterrestris Vegetative Cells. Foods. 2023; 12(17):3276. https://doi.org/10.3390/foods12173276
Chicago/Turabian StyleZhao, Siqi, Yanzi Nan, Runyu Yao, Langhong Wang, Xinan Zeng, Rana Muhammad Aadil, and Muhammad Asim Shabbir. 2023. "Antibacterial Activity and Transcriptomic Analysis of Hesperetin against Alicyclobacillus acidoterrestris Vegetative Cells" Foods 12, no. 17: 3276. https://doi.org/10.3390/foods12173276
APA StyleZhao, S., Nan, Y., Yao, R., Wang, L., Zeng, X., Aadil, R. M., & Shabbir, M. A. (2023). Antibacterial Activity and Transcriptomic Analysis of Hesperetin against Alicyclobacillus acidoterrestris Vegetative Cells. Foods, 12(17), 3276. https://doi.org/10.3390/foods12173276