Application of Static Headspace GC-MS Method for Selective 1,4-Dioxane Detection in Food Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Standards, and Reference Materials
2.2. Standard Solution
2.3. Sample Preparation
2.4. GC-MS Analysis
2.5. Method Validation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Establishment of Optimized Conditions for 1,4-Dioxane Detection and Quantification in Polyethylene Glycol 600 (PEG 600)
3.2. Method Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Health Canada. Screening Assessment for the Challenge 1,4-Dioxane. 2010, pp. 4–5. Available online: https://ec.gc.ca/ese-ees/789BC96E-F970-44A7-B306-3E32419255A6/batch7_123-91-1_en.pdf (accessed on 23 August 2023).
- NICNAS (National Industrial Chemicals Notification and Assessment Scheme). 1,4-Dioxane. Priority Existing Chemical No. 7; Full Public Report; Commonwealth of Australia, 1998. Available online: https://www.industrialchemicals.gov.au/sites/default/files/PEC7-1-4-Dioxane.pdf (accessed on 23 August 2023).
- Gi, M.; Fujioka, M.; Kakehashi, A.; Okuno, T.; Masumura, K.; Nohmi, T.; Matsumoto, M.; Omori, M.; Wanibuchi, H.; Fukushima, S. In vivo positive mutagenicity of 1,4-dioxane and quantitative analysis of its mutagenicity and carcinogenicity in rats. Arch. Toxicol. 2018, 92, 3207–3221. [Google Scholar] [CrossRef]
- Kano, H.; Umeda, Y.; Kasai, T.; Sasaki, T.; Matsumoto, M.; Yamazaki, K.; Nagano, K.; Arito, H.; Fukushima, S. Carcinogenicity studies of 1,4-dioxane administered in drinking-water to rats and mice for 2 years. Food Chem. Toxicol. 2009, 47, 2776–2784. [Google Scholar] [CrossRef] [PubMed]
- Kasai, T.; Kano, H.; Umeda, Y.; Sasaki, T.; Ikawa, N.; Nishizawa, T.; Nagano, K.; Arito, H.; Nagashima, H.; Fukushima, S. Two-year inhalation study of carcinogenicity and chronic toxicity of 1,4-dioxane in male rats. Inhal. Toxicol. 2009, 21, 889–897. [Google Scholar] [CrossRef]
- Kitchin, K.; Brown, J. Is 1,4-dioxane a genotoxic carcinogen? Cancer Lett. 1990, 53, 67–71. [Google Scholar] [CrossRef]
- Stickney, J.A.; Sager, S.L.; Clarkson, J.R.; Smith, L.A.; Locey, B.J.; Bock, M.J.; Hartung, R.; Olp, S.F. An updated evaluation of the carcinogenic potential of 1,4-dioxane. Regul. Toxicol. Pharmacol. 2003, 38, 183–195. [Google Scholar] [CrossRef]
- IRIS. Integrated Risk Information System Washington DC, U.S. Environmental Protection Agency; 1,4-Dioxane. 2011. Available online: http://www.epa.gov/iris/subst/0326.htm (accessed on 13 August 2021).
- Zhou, W. The determination of 1,4-dioxane in cosmetic products by gas chromatography with tandem mass spectrometry. J. Chromatogr. A 2019, 1607, 460400. [Google Scholar] [CrossRef] [PubMed]
- NIOSH. Immediately Dangerous to Life or Health Concentrations (IDLH); Dioxane; National Institute for Occupational Safety and Health: Washington, DC, USA, 1994. Available online: https://www.cdc.gov/niosh/idlh/123911.html (accessed on 23 August 2023).
- EPA. Method 1624, Revision C: Volatile Organic Compounds by Isotope Dilution GCMS; Environmental Protection Agency: Washington, DC, USA, 1990. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/method_1624c_1990.pdf (accessed on 23 August 2023).
- EPA. Method 8260B: Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS), Part of Test Methods for Evaluating Solid Waste, Physical/Chemical Methods; Environmental Protection Agency: Washington, DC, USA, 1996. Available online: https://19january2017snapshot.epa.gov/sites/production/files/2015-12/documents/8260b.pdf (accessed on 23 August 2023).
- EPA. Method 8270C, Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS); Environmental Protection Agency: Washington, DC, USA, 1996. Available online: https://archive.epa.gov/epawaste/hazard/testmethods/web/pdf/method%208270c%2C%20revision%203%20-%201996.pdf (accessed on 23 August 2023).
- EPA. Method 8260C, Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS); Environmental Protection Agency: Washington, DC, USA, 2006. Available online: https://archive.epa.gov/epa/sites/production/files/2015-12/documents/8260c.pdf (accessed on 23 August 2023).
- EPA. Method 8270E, Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry; Environmental Protection Agency: Washington, DC, USA, 2018. Available online: https://www.epa.gov/sites/default/files/2020-10/documents/method_8270e_update_vi_06-2018_0.pdf (accessed on 23 August 2023).
- Korean Food and Drug Administration (KFDA). Korean Food Additives Code. Polysorbate 20; Korean Food and Drug Administration: Seoul, Republic of Korea, 2023; pp. 1423–1438.
- Korean Food and Drug Administration (KFDA). Guidelines for Analysis of Prohibited Ingredients in Cosmetics; Korean Food and Drug Administration: Seoul, Republic of Korea, 2022; pp. 2–6. Available online: https://www.mfds.go.kr/brd/m_1060/view.do?seq=15020&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=31 (accessed on 23 August 2023).
- Rastogi. Headspace Analysis of 1,4-Dioxane in Products Containing Polyethoxylated Surfactants by GC-MS. 1990. Available online: file:///C:/Users/%EB%B0%95%EC%88%98%EC%97%B0/Downloads/BF02261391%20(1).pdf (accessed on 23 August 2023).
- Waldman. Analysis of 1,4-Dioxane in Ethoxylated Compounds by Gas Chromatography/Mass Spectrometry Using Selected Ion Monitoring. 1982. Available online: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL82X0214518 (accessed on 23 August 2023).
- Draper, W.M.; Dhoot, J.S.; Remoy, J.W.; Perera, S.K. Trace-level determination of, 1.; 4-dioxane in water by isotopic dilution GC and GC-MS. Analyst 2000, 125, 1403–1408. [Google Scholar] [CrossRef]
- Korean Food and Drug Administration (KFDA). Guideline Guidelines for Validation of Test Methods for Pharmaceuticals, etc. Korean Food and Drug Administration: Seoul, Republic of Korea, 2015; pp. 20–24. Available online: https://www.mfds.go.kr/brd/m_1060/down.do?brd_id=data0011&seq=12697&data_tp=A&file_seq=1 (accessed on 23 August 2023).
- EPA. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2; Environmental Protection Agency: Washington, DC, USA, 2016. Available online: https://www.epa.gov/sites/default/files/2016-12/documents/mdl-procedure_rev2_12-13-2016.pdf (accessed on 23 August 2023).
- Wang, M.; Fang, S.; Liang, X. Natural deep eutectic solvents as eco-friendly and sustainable dilution medium for the determination of residual organic solvents in pharmaceuticals with static headspace-gas chromatography. J. Pharm. Biomed. Anal. 2018, 158, 262–268. [Google Scholar] [CrossRef] [PubMed]
Concentration (mg/L) | Rep. | Sample Weight (g) | |||||
---|---|---|---|---|---|---|---|
1.0 | 3.0 | ||||||
Peak Area | Ratio | Peak Area | Ratio | ||||
1,4-Dioxane-d8 | 1,4-Dioxane | 1,4-Dioxane-d8 | 1,4-Dioxane | ||||
10 | 1 | 6205 | 9638 | 1.553 | 191,005 | 199,685 | 1.045 |
2 | nd | nd | - | 216,076 | 227,540 | 1.053 | |
3 | 10,698 | 16,289 | 1.523 | 210,731 | 220,572 | 1.047 | |
4 | nd | nd | - | 295,323 | 302,288 | 1.024 | |
5 | 34,880 | 53,249 | 1.527 | 192,687 | 204,178 | 1.060 | |
Average ± SD | 1.53 ± 0.02 a | 1.05 ± 0.01 b |
Capping Type | Average ± SD (Ratio of 1,4-Dioxane/1,4-Dioxane-d8) |
---|---|
Crimp-top Screw | 1.23 ± 0.02 a |
1.21 ± 0.03 a |
Base (Phase) | Average Values of Peak Area Ratio of 1,4-Dioxane/1,4-Dioxane-d8 | |
---|---|---|
Anhydrous Sodium Sulfate Solid Phase | 20% Sodium Sulfate Solution | |
PEG 600 (VL) | 2.01 ± 0.11 b | 2.18 ± 0.02 b |
Bitartrate (S) | 1.30 ± 0.01 b | 1.86 ± 0.08 b |
Polysorbate 20 (VL) | 5.39 ± 1.64 a | 7.47 ± 1.26 a |
Polysorbate 60 (VL) | 2.73 ± 0.37 b | 1.81 ± 0.04 b |
Total average ± SD | 2.01 ± 0.71 A | 1.95 ± 0.20 A |
Temperature (°C) | Average Values of Peak Area Ratio of 1,4-Dioxane/1,4-Dioxane-d8 |
---|---|
20 | 3.59 ± 0.21 c |
30 | 3.89 ± 0.04 bc |
40 | 3.97 ± 0.14 b |
50 | 4.98 ± 0.01 a |
70 | 4.18 ± 0.14 b |
90 | 2.18 ± 0.02 f |
Injection Volume (μL) | Average Values of Peak Area Ratio of 1,4-Dioxane/1,4-Dioxane-d8 |
---|---|
100 | 1.41 ± 0.01 b |
200 | 1.56 ± 0.03 a |
1000 | 1.53 ± 0.05 a |
1,4-Dioxane Concentration (mg/L) | Replication (n = 3) | Average ± SD | RSD (%) | ||
---|---|---|---|---|---|
n = 1 | n = 2 | n = 3 | |||
0.25 | 0.054 | 0.047 | 0.065 | 0.06 ± 0.01 | 16.40 |
0.5 | 0.093 | 0.084 | 0.099 | 0.09 ± 0.01 | 8.21 |
1 | 0.15 | 0.151 | 0.127 | 0.14 ± 0.01 | 9.52 |
5 | 0.633 | 0.631 | 0.602 | 0.62 ± 0.02 | 2.79 |
10 | 1.287 | 1.295 | 1.266 | 1.28 ± 0.01 | 1.17 |
20 | 2.505 | 2.531 | 2.497 | 2.51 ± 0.02 | 0.71 |
50 | 6.393 | 6.405 | 6.279 | 6.36 ± 0.07 | 1.09 |
100 | 12.742 | 12.747 | 12.571 | 12.69 ± 0.10 | 0.79 |
Slope | 0.127 | 0.127 | 0.126 | 0.127 ± 0.001 | - |
Intercept | 0.011 | 0.012 | 0.007 | 0.010 ± 0.003 | |
R2 | 1 | 1 | 1 | - |
No. | Ratio of 1,4-Dioxane Peak Area/1,4-Dioxane-d8 Peak Area | S/N |
---|---|---|
1 | 0.093 | 13.54 |
2 | 0.089 | 13.68 |
3 | 0.099 | 13.28 |
4 | 0.090 | 13.41 |
5 | 0.098 | 13.95 |
Average ± SD | 0.094 ± 0.005 | 13.57 ± 0.26 |
RSD (%) | 4.85 | 1.90 |
1,4-Dioxane | |||
---|---|---|---|
Spike Concentration | 0.5 mg/L | ||
Experimental Run | Ratio * | Detection Amount (mg/L) | Recovery (%) |
1 | 0.093 | 0.633 | 127 |
2 | 0.089 | 0.601 | 120 |
3 | 0.099 | 0.680 | 136 |
4 | 0.090 | 0.609 | 122 |
5 | 0.098 | 0.672 | 134 |
6 | 0.088 | 0.593 | 119 |
7 | 0.085 | 0.570 | 114 |
Average ± SD | - | 0.623 ± 0.041 | 124.51 ± 8.19 |
Degree of freedom (=n − 1) | - | 6 | - |
t (n − 1, 1 − α = 0.99) | - | 3.143 | - |
MDLs (=t × SD) | - | 0.129(=3.143 × 0.041) | - |
1,4-Dioxane Concentration (mg/L) | Intra-Day | Detection Amount (mg/L) | Recovery Yield (%) | Average ± SD | RSD (%) |
---|---|---|---|---|---|
5 | Day 0 | 4.874 | 97.5 | 95.8 ± 2.7 | 2.8 |
4.859 | 97.2 | ||||
4.631 | 92.6 | ||||
10 | Day 0 | 10.003 | 100.0 | 99.7 ± 1.2 | 1.2 |
10.068 | 100.7 | ||||
9.843 | 98.4 | ||||
50 | Day 0 | 50.085 | 100.2 | 99.6 ± 1.1 | 1.1 |
50.175 | 100.3 | ||||
49.185 | 98.4 |
1,4-Dioxane Concentration (mg/L) | Inter-Day | Detection Amount (mg/L) | Recovery Yield (%) | Average ± SD | RSD (%) |
---|---|---|---|---|---|
5 | Day 1 | 4.895 | 97.9 | 96.8 ± 1.3 | 1.3 |
4.859 | 97.2 | ||||
4.769 | 95.4 | ||||
10 | Day 2 | 10.069 | 100.7 | 101.0 ± 0.6 | 0.6 |
10.068 | 100.7 | ||||
10.172 | 101.7 | ||||
50 | Day 3 | 48.865 | 97.7 | 98.2 ± 2.0 | 2.0 |
50.175 | 100.3 | ||||
48.253 | 96.5 |
1,4-Dioxane Concentration (mg/L) | Choline Bitartrate | Choline Chloride | Polysorbate 20 | Polysorbate 60 | PEG 1000 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Detection Amount (mg/L) | Recovery Yield (%) | RSD (%) | Detection Amount (mg/L) | Recovery Yield (%) | RSD (%) | Detection Amount (mg/L) | Recovery Yield (%) | RSD (%) | Detection Amount (mg/L) | Recovery Yield (%) | RSD (%) | Detection Amount (mg/L) | Recovery Yield (%) | RSD (%) | |
5 | 4.860 | 97.2 | 1.64 | 4.616 | 92.3 | 3.22 | 4.922 | 98.4 | 1.22 | 4.647 | 92.9 | 1.07 | 4.599 | 92.0 | 3.16 |
4.814 | 96.3 | 4.737 | 94.7 | 5.001 | 100.0 | 4.634 | 92.7 | 4.773 | 95.5 | ||||||
4.706 | 94.1 | 4.920 | 98.4 | 4.883 | 97.7 | 4.556 | 91.1 | 4.899 | 98.0 | ||||||
10 | 9.411 | 94.1 | 0.72 | 9.641 | 96.4 | 1.01 | 9.365 | 93.6 | 2.90 | 8.545 | 85.4 | 4.99 | 9.971 | 99.7 | 2.95 |
9.431 | 94.3 | 9.462 | 94.6 | 9.924 | 99.2 | 9.442 | 94.4 | 9.718 | 97.2 | ||||||
9.537 | 95.4 | 9.492 | 94.9 | 9.679 | 96.8 | 9.050 | 90.5 | 10.306 | 103.1 | ||||||
50 | 52.037 | 104.1 | 3.19 | 49.440 | 98.9 | 0.44 | 54.841 | 109.7 | 6.39 | 38.981 | 78.0 | 11.22 | 49.424 | 98.8 | 1.08 |
50.815 | 101.6 | 49.819 | 99.6 | 50.848 | 101.7 | 47.160 | 94.3 | 48.432 | 96.9 | ||||||
48.843 | 97.7 | 49.451 | 98.9 | 48.340 | 96.7 | 48.114 | 96.2 | 49.244 | 98.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-C.; Park, S.-Y.; Kwon, S.-Y.; Kim, Y.-K.; Kim, Y.-I.; Seo, Y.-S.; Cho, S.-M.; Shin, E.-C.; Mok, J.H.; Lee, Y.-B. Application of Static Headspace GC-MS Method for Selective 1,4-Dioxane Detection in Food Additives. Foods 2023, 12, 3299. https://doi.org/10.3390/foods12173299
Kim M-C, Park S-Y, Kwon S-Y, Kim Y-K, Kim Y-I, Seo Y-S, Cho S-M, Shin E-C, Mok JH, Lee Y-B. Application of Static Headspace GC-MS Method for Selective 1,4-Dioxane Detection in Food Additives. Foods. 2023; 12(17):3299. https://doi.org/10.3390/foods12173299
Chicago/Turabian StyleKim, Myung-Chan, Su-Yeon Park, Seo-Yeon Kwon, Yu-Kyeong Kim, Yeong-In Kim, Yong-Soo Seo, Sueng-Mok Cho, Eui-Cheol Shin, Jin Hong Mok, and Yang-Bong Lee. 2023. "Application of Static Headspace GC-MS Method for Selective 1,4-Dioxane Detection in Food Additives" Foods 12, no. 17: 3299. https://doi.org/10.3390/foods12173299
APA StyleKim, M. -C., Park, S. -Y., Kwon, S. -Y., Kim, Y. -K., Kim, Y. -I., Seo, Y. -S., Cho, S. -M., Shin, E. -C., Mok, J. H., & Lee, Y. -B. (2023). Application of Static Headspace GC-MS Method for Selective 1,4-Dioxane Detection in Food Additives. Foods, 12(17), 3299. https://doi.org/10.3390/foods12173299