Effects of Co-Fermentation of Lactiplantibacillus plantarum and Saccharomyces cerevisiae on Digestive and Quality Properties of Steamed Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Different Types of Steamed Bread
2.3. pH and TTA
- V1—sample solution consumes NaOH standard solution volume/mL.
- V2—blank consumption NaOH standard solution volume/mL.
- 0.090—conversion factor for lactic acid.
2.4. Determination of Specific Volume
- λ—the specific volume of steamed bread in mL/g.
- V—the volume of steamed bread volume in mL; m is the mass of steamed bread (g)
2.5. Free Glucose Mass Fraction and Total Starch Determination
2.6. Determination of Digested Starch Types
2.7. In Vitro Gastrointestinal Digestion of Steamed Bread Prepared with Different Starter Cultures
2.8. Amino Acid Analysis
2.9. Sensory Evaluation of Steamed Bread
2.10. Statistical Analysis
3. Results and Discussion
3.1. pH and TTA
3.2. Comparison of Starch Types
3.3. Amino Acid Analysis
3.4. Changes in Specific Volume of Steamed Bread
3.5. Sensory Evaluation
3.6. In Vitro Protein and Starch Digestion
3.6.1. Starch Digestion
3.6.2. Protein Digestion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, P.; He, Z.; Chen, D.; Zhang, Y.; Larroque, O.R.; Xia, X. Contribution of common wheat protein fractions to dough properties and quality of northern-style Chinese steamed bread. J. Cereal Sci. 2007, 46, 1–10. [Google Scholar] [CrossRef]
- Peng, Y.; Yun Zhao, Y.; Jin, X.; Xiong, Y.; Dong, J.; Ma, W. Empirical and Theoretical Bases of Good Steamed Bread Production. Foods 2023, 12, 433. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Bian, K. Microbiological characterization of traditional dough fermentation starter (Jiaozi) for steamed bread making by culture-dependent and culture-independent methods. Int. J. Food Microbiol. 2016, 234, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Sadiq, F.-A.; Zhu, L.; Liu, T.; Yang, H.; Xin Wang, X.; He, G. Investigation of Microbial Communities of Chinese Sourdoughs Using Culture-Dependent and DGGE Approaches. J. Food Sci. 2015, 80, M2535–M2542. [Google Scholar] [CrossRef] [PubMed]
- Michel, E.; Monfort, C.; Deffrasnes, M.; Guezenec, S.; Lhomme, E.; Barret, M.; Sicard, D.; Dousset, X.; Onno, B. Characterization of relative abundance of lactic acid bacteria species in French organic sourdough by cultural, qPCR and MiSeq high-throughput sequencing methods. Int. J. Food Microbiol. 2016, 239, 35–43. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, B.; Liu, Y.; Li, X.; Tian, X.; Wang, L. Effect of Different Types Lactic Acid Bacteria on the Fermentation Characteristics of Whole Wheat Sourdough. Zhongguo Shipin Xuebao 2022, 22, 247–255. [Google Scholar]
- De Vuyst, L.; Harth, H.; Van Kerrebroeck, S.; Leroy, F. Yeast diversity of sourdoughs and associated metabolic properties and functionalities. Int. J. Food Microbiol. 2016, 239, 26–34. [Google Scholar] [CrossRef] [PubMed]
- De Vuyst, L.; Neysens, P. The sourdough microflora: Biodiversity and metabolic interactions. Trends Food Sci. Technol. 2005, 16, 43–56. [Google Scholar] [CrossRef]
- Ehrmann, M.A.; Vogel, R.F. Molecular taxonomy and genetics of sourdough lactic acid bacteria. Trends Food Sci. Technol. 2005, 16, 31–42. [Google Scholar] [CrossRef]
- De Vuyst, L.; Van Kerrebroeck, S.; Harth, H.; Huys, G.; Daniel, H.-M.; Weckx, S. Microbial ecology of sourdough fermentations: Diverse or uniform? Food Microbiol. 2014, 37, 11–29. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Micr. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Wu, C.; Liu, R.; Huang, W.; Rayas-Duarte, P.; Wang, F.; Yao, Y. Effect of sourdough fermentation on the quality of Chinese Northern-style steamed breads. J. Cereal Sci. 2012, 56, 127–133. [Google Scholar] [CrossRef]
- Yan, B.; Sadiq, F.A.; Cai, Y.; Fan, D.; Chen, W.; Zhang, H.; Zhao, J. Microbial diversity in traditional type I sourdough and jiaozi and its influence on volatiles in Chinese steamed bread. LWT 2019, 101, 764–773. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, M.; Jiaxin, C.; Luo, Y.; Ye, F.; Jiao, S.; Hu, X.; Zhang, J.; Lü, X. Bacterial diversity in traditional sourdough from different regions in China. LWT 2018, 96, 251–259. [Google Scholar] [CrossRef]
- Yan, B.; Yang, H.; Wu, Y.; Lian, H.; Zhang, H.; Chen, W.; Fan, D.; Zhao, J. Quality Enhancement Mechanism of Alkali-Free Chinese Northern Steamed Bread by Sourdough Acidification. Molecules 2020, 25, 726. [Google Scholar] [CrossRef] [PubMed]
- De Vuyst, L.; Vrancken, G.; Ravyts, F.; Rimaux, T.; Weckx, S. Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol. 2009, 26, 666–675. [Google Scholar] [CrossRef]
- Gobbetti, M. The sourdough microflora: Interactions of lactic acid bacteria and yeasts. Trends Food Sci. Technol. 1998, 9, 267–274. [Google Scholar] [CrossRef]
- Gobbetti, M.; Rizzello, C.G.; Di Cagno, R.; De Angelis, M. How the sourdough may affect the functional features of leavened baked goods. Food Microbiol. 2014, 37, 30–40. [Google Scholar] [CrossRef]
- Hur, S.J.; Lim, B.O.; Decker, E.A.; McClements, D.J. In vitro human digestion models for food applications. Food Chem. 2011, 125, 1–12. [Google Scholar] [CrossRef]
- Gonçalves, A.; Estevinho, B.N.; Rocha, F. Methodologies for simulation of gastrointestinal digestion of different controlled delivery systems and further uptake of encapsulated bioactive compounds. Trends Food Sci. Technol. 2021, 114, 510–520. [Google Scholar] [CrossRef]
- Camilleri, M. Functional dyspepsia and gastroparesis. Dig. Dis. 2016, 34, 491–499. [Google Scholar] [CrossRef]
- Nanayakkara, W.S.; Skidmore, P.M.; O’Brien, L.; Wilkinson, T.J.; Gearry, R.B. Efficacy of the low FODMAP diet for treating irritable bowel syndrome: The evidence to date. Clin. Gastroenterol. Hepatol. 2016, 9, 131. [Google Scholar]
- Polese, B.; Nicolai, E.; Genovese, D.; Verlezza, V.; La Sala, C.N.; Aiello, M.; Inglese, M.; Incoronato, M.; Sarnelli, G.; De Rosa, T.; et al. Postprandial gastrointestinal function differs after acute administration of sourdough compared with brewer’s yeast bakery products in healthy adults. J. Nutr. 2018, 148, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Koistinen, V.M.; Mattila, O.; Katina, K.; Poutanen, K.; Aura, A.-M.; Hanhineva, K. Metabolic profiling of sourdough fermented wheat and rye bread. Sci. Rep. 2018, 8, 5684. [Google Scholar] [CrossRef] [PubMed]
- Chiș, M.S.; Păucean, A.; Stan, L.; Suharoschi, R.; Socaci, S.-A.; Man, S.M.; Pop, C.R.; Muste, S. Impact of protein metabolic conversion and volatile derivatives on gluten-free muffins made with quinoa sourdough. Cyta-J. Food 2019, 17, 744–753. [Google Scholar] [CrossRef]
- Katina, K.; Arendt, E.; Liukkonen, K.-H.; Autio, K.; Flander, L.; Poutanen, K. Potential of sourdough for healthier cereal products. Trends Food Sci. Technol. 2005, 16, 104–112. [Google Scholar] [CrossRef]
- Scazzina, F.; Del Rio, D.; Pellegrini, N.; Brighenti, F. Sourdough bread: Starch digestibility and postprandial glycemic response. J. Cereal Sci. 2009, 49, 419–421. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Tian, X.; Liu, Y.; Gao, K.; Tan, B. The effects of wheat bran dietary fiber and raw wheat bran on the quality of steamed bread. Food Sci. Technol. 2023, 173, 114304. [Google Scholar] [CrossRef]
- GB/T 21118-2007; Chinese Steamed Bread Made of Wheat Flour. National Food and Strategic Reserves Administration: Beijing, China, 2007.
- Niu, L.; Li, D.; Liu, C.; Song, J.; Chen, J.; Chen, Y.; Yuan, J. Changes of free sugars and amino acids in table corn during development. Shipin Kexue 2020, 41, 165–172. [Google Scholar]
- Chi, C.; Li, X.; Zhang, Y.; Chen, L.; Li, L. Understanding the mechanism of starch digestion mitigation by rice protein and its enzymatic hydrolysates. Food Hydrocoll. 2018, 84, 473–480. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- GB 5009.124-2016; National Food Safety Standard Determination of Amino Acids in Food. National Health Commission: Beijing, China, 2016.
- GB/T 35991-2018; Inspection of Grain and Oils—Steamed Buns of Wheat Flour Processing Quality Evaluation. National Food and Strategic Reserves Administration: Beijing, China, 2018.
- Teleky, B.-E.; Martău, A.G.; Ranga, F.; Chețan, F.; Vodnar, D.C. Exploitation of lactic acid bacteria and baker’s yeast as single or multiple starter cultures of wheat flour dough enriched with soy flour. Biomolecules 2020, 10, 778. [Google Scholar] [CrossRef]
- Östman, E. Fermentation as a Means of Optimizing the Glycaemic Index-Food Mechanisms and Metabolic Merits with Emphasis on Lactic Acid in Cereal Products; Lund University: Lund, Sweden, 2003. [Google Scholar]
- Poutanen, K.; Flander, L.; Katina, K. Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol. 2009, 26, 693–699. [Google Scholar] [CrossRef]
- Liljeberg, H.; Björck, I. Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. Eur. J. Clin. Nutr. 1998, 52, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Östman, E.M.; Nilsson, M.; Elmståhl, H.L.; Molin, G.; Björck, I. On the effect of lactic acid on blood glucose and insulin responses to cereal products: Mechanistic studies in healthy subjects and in vitro. J. Cereal Sci. 2002, 36, 339–346. [Google Scholar] [CrossRef]
- Demirkesen-Bicak, H.; Arici, M.; Yaman, M.; Karasu, S.; Sagdic, O. Effect of different fermentation condition on estimated glycemic index, in vitro starch digestibility, and textural and sensory properties of sourdough bread. Foods 2021, 10, 514. [Google Scholar] [CrossRef] [PubMed]
- Liljeberg, H.; Björck, I. Delayed gastric emptying rate as a potential mechanism for lowered glycemia after eating sourdough bread: Studies in humans and rats using test products with added organic acids or an organic salt. Am. J. Clin. Nutr. 1996, 64, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, E.; Al-Sabty, H.; Haverkamp, R. Studies on lysine requirements of rainbow trout (Oncorhynchus mykiss) fed wheat gluten as only source of dietary protein. J. Anim. Physiol. Anim. Nutr. 1992, 67, 74–82. [Google Scholar] [CrossRef]
- Yoshizawa, F. New therapeutic strategy for amino acid medicine: Notable functions of branched chain amino acids as biological regulators. J. Pharmacol. Sci 2012, 118, 149–155. [Google Scholar] [CrossRef]
- Ouyang, Y.; Wu, Q.; Li, J.; Sun, S.; Sun, S.R. S-adenosylmethionine: A metabolite critical to the regulation of autophagy. Cell Prolif. 2020, 53, e12891. [Google Scholar] [CrossRef]
- Jarosz, D.F.; Brown, J.C.; Walker, G.A.; Datta, M.S.; Ung, W.L.; Lancaster, A.K.; Rotem, A.; Chang, A.; Newby, G.A.; Weitz, D.A.; et al. Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism. Cell 2014, 158, 1083–1093. [Google Scholar] [CrossRef] [PubMed]
- Heitmann, M.; Zannini, E.; Arendt, E. Impact of Saccharomyces cerevisiae metabolites produced during fermentation on bread quality parameters: A review. Crit. Rev. Food Sci. 2018, 58, 1152–1164. [Google Scholar] [CrossRef] [PubMed]
- Ortolan, F.; Steel, C.J. Protein characteristics that affect the quality of vital wheat gluten to be used in baking: A review. Compr. Rev. Food 2017, 16, 369–381. [Google Scholar] [CrossRef]
- Edeghor, U.; Lennox, J.; Etta-Agbo, B.; Aminadokiari, D. Bread fermentation using synergistic activity between lactic acid bacteria (lactobacillus bulgaricus) and baker’s yeast (Sacchromyces cerevisae). Pak. J. Food Sci. 2016, 26, 46–53. [Google Scholar]
- Liljeberg, H.; Åkerberg, A.; Björck, I. Resistant starch formation in bread as influenced by choice of ingredients or baking conditions. Food Chem. 1996, 56, 389–394. [Google Scholar] [CrossRef]
- Liao, L.; Wu, W. Fermentation effect on the properties of sweet potato starch and its noodle’s quality by Lactobacillus plantarum. J Food Process Eng. 2017, 40, e12460. [Google Scholar] [CrossRef]
- Tu, Y.; Huang, S.; Chi, C.; Lu, P.; Chen, L.; Li, L.; Li, X. Digestibility and structure changes of rice starch following co-fermentation of yeast and Lactobacillus strains. Int. J. Biol. Macromol. 2021, 184, 530–537. [Google Scholar] [CrossRef]
- Zotta, T.; Piraino, P.; Ricciardi, A.; McSweeney, P.L.H.; Parente, E. Proteolysis in model sourdough fermentations. J. Agric. Food Chem. 2006, 54, 2567–2574. [Google Scholar] [CrossRef]
- Arora, K.; Ameur, H.; Polo, A.; Di Cagno, R.; Rizzello, C.G.; Gobbetti, M. Thirty years of knowledge on sourdough fermentation: A systematic review. Trends Food Sci. Technol. 2021, 108, 71–83. [Google Scholar] [CrossRef]
- Ma, Z.; Cao, W.; Zhang, B.; Wu, M.; Luo, K.; Zheng, J.; Huang, W.; Li, N.; Filip, A. Biochemical Characteristics of Tannase-Producing LAB Fermented Red Beans and Lentils Sourdough and Its Effects on in Vitro Digestibility of Steamed Bread. Sci. Technol. Food Ind. 2020, 41, 85–93, 98. [Google Scholar]
KCL | KH2PO4 | NaHCO3 | NaCL | MgCl2·6H2O | CaCl2·2H2O | |
---|---|---|---|---|---|---|
SSF | 15.1 | 3.7 | 13.6 | - | 0.15 | 1.5 |
SGF | 6.9 | 0.9 | 25 | 47.2 | 0.12 | 0.15 |
SIF | 6.8 | 0.8 | 85 | 38.4 | 0.33 | 0.6 |
Project | Scores | Scoring Criteria |
---|---|---|
Appearance | 20 | The shape of the bread is complete and the color is even milky white (15–20); the color of the steamed bread is white or slightly yellow and uniform (10–15); yellow or gray, uneven (5–10); surface shrinkage and collapse (0–5) |
Flavor | 30 | Wheat flavor, moderate acid and alkali, pleasant taste (20–30); fragrance is light, taste slightly sour or alkaline (30 points); taste (10–20 points); taste sour (0–10) |
Texture | 20 | Steamed bread has moderate viscosity and soft, easy to swallow (13–20); steamed bread is firm and does not stick to teeth (7–12); hard taste, hard to swallow (0–7) |
Elasticity | 10 | Recovery faster (7–10); rebound slower (4–6); basic, no rebound (0–3) |
Internal structure | 20 | The internal structure of the steamed bread is clear and the stomata size is uniform (13–20); the steamed bun is uniform and the stoma is smaller (7–12); stomata were hornet’s nest, no texture, and there is a lump (0–10) |
Amino Acid Type | Steamed Bread Type | |||
---|---|---|---|---|
Blank | Yeast | LP-GM4-Yeast | ||
Essential Amino Acids | Thr | 0.121 | 0.135 | 0.134 |
Val | 0.174 | 0.194 | 0.191 | |
Met *** | 0.060 | 0.066 | 0.080 | |
Ile | 0.167 | 0.184 | 0.182 | |
Leu *** | 0.317 | 0.342 | 0.334 | |
Phe *** | 0.228 | 0.246 | 0.234 | |
Lys *** | 0.096 | 0.111 | 0.117 | |
Semi-Essential Amino Acids | His | 0.126 | 0.137 | 0.145 |
Arg | 0.157 | 0.170 | 0.171 | |
Non-Essential Amino Acids | Ser | 0.208 | 0.227 | 0.215 |
Asp | 0.182 | 0.205 | 0.211 | |
Glu | 1.442 | 1.560 | 1.513 | |
Pro | 0.529 | 0.552 | 0.526 | |
Gly | 0.160 | 0.173 | 0.174 | |
Ala | 0.138 | 0.155 | 0.176 | |
Cys | 0.000 | 0.000 | 0.000 | |
Tyr | 0.096 | 0.108 | 0.105 | |
TAA | 4.202 | 4.565 | 4.507 | |
EAA | 1.163 | 1.277 | 1.271 | |
NEAA | 3.038 | 3.289 | 3.236 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Danial, M.; Liu, L.; Sadiq, F.A.; Wei, X.; Zhang, G. Effects of Co-Fermentation of Lactiplantibacillus plantarum and Saccharomyces cerevisiae on Digestive and Quality Properties of Steamed Bread. Foods 2023, 12, 3333. https://doi.org/10.3390/foods12183333
Liu Y, Danial M, Liu L, Sadiq FA, Wei X, Zhang G. Effects of Co-Fermentation of Lactiplantibacillus plantarum and Saccharomyces cerevisiae on Digestive and Quality Properties of Steamed Bread. Foods. 2023; 12(18):3333. https://doi.org/10.3390/foods12183333
Chicago/Turabian StyleLiu, Yan, Muhammad Danial, Linlin Liu, Faizan Ahmed Sadiq, Xiaorong Wei, and Guohua Zhang. 2023. "Effects of Co-Fermentation of Lactiplantibacillus plantarum and Saccharomyces cerevisiae on Digestive and Quality Properties of Steamed Bread" Foods 12, no. 18: 3333. https://doi.org/10.3390/foods12183333
APA StyleLiu, Y., Danial, M., Liu, L., Sadiq, F. A., Wei, X., & Zhang, G. (2023). Effects of Co-Fermentation of Lactiplantibacillus plantarum and Saccharomyces cerevisiae on Digestive and Quality Properties of Steamed Bread. Foods, 12(18), 3333. https://doi.org/10.3390/foods12183333