Exploring Strategies to Mitigate the Lightness Effect on the Prediction of Soybean Oil Content in Blends of Olive and Avocado Oil Using Smartphone Digital Image Colorimetry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Digital Image Acquisition
2.3. Data Preprocessing
2.3.1. Correction by Illuminance
2.3.2. Correction by White Reference
2.4. Calibration Models
2.5. Method Robustness Assessment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zahir, E.; Saeed, R.; Hameed, M.A.; Yousuf, A. Study of Physicochemical Properties of Edible Oil and Evaluation of Frying Oil Quality by Fourier Transform-Infrared (FT-IR) Spectroscopy. Arab. J. Chem. 2017, 10, S3870–S3876. [Google Scholar] [CrossRef]
- Jamwal, R.; Amit; Kumari, S.; Sharma, S.; Kelly, S.; Cannavan, A.; Singh, D.K. Recent Trends in the Use of FTIR Spectroscopy Integrated with Chemometrics for the Detection of Edible Oil Adulteration. Vib. Spectrosc. 2021, 113, 103222. [Google Scholar] [CrossRef]
- Meenu, M.; Cai, Q.; Xu, B. A Critical Review on Analytical Techniques to Detect Adulteration of Extra Virgin Olive Oil. Trends Food Sci. Technol. 2019, 91, 391–408. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, M.A.; Martin-Calvo, N. Mediterranean Diet and Life Expectancy; Beyond Olive Oil, Fruits, and Vegetables. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 401–407. [Google Scholar] [CrossRef]
- Ozdemir, F.; Topuz, A. Changes in Dry Matter, Oil Content and Fatty Acids Composition of Avocado during Harvesting Time and Post-Harvesting Ripening Period. Food Chem. 2004, 86, 79–83. [Google Scholar] [CrossRef]
- Quiñones-Islas, N.; Meza-Márquez, O.G.; Osorio-Revilla, G.; Gallardo-Velazquez, T. Detection of Adulterants in Avocado Oil by Mid-FTIR Spectroscopy and Multivariate Analysis. Food Res. Int. 2013, 51, 148–154. [Google Scholar] [CrossRef]
- Jabeur, H.; Zribi, A.; Makni, J.; RebaiI, A.; Abdelhedi, R.; Bouaziz, M. Detection of Chemlali Extra-Virgin Olive Oil Adulteration Mixed with Soybean Oil, Corn Oil, and Sunflower Oil by Using GC and HPLC. J. Agric. Food Chem. 2014, 62, 4893–4904. [Google Scholar] [CrossRef] [PubMed]
- Frangipane, M.T.; Costantini, L.; Merendino, N.; Massantini, R. Antioxidant Profile and Sensory Analysis in Olive Oils of Different Quality Grades. Agriculture 2023, 13, 993. [Google Scholar] [CrossRef]
- Rohman, A.; Man, Y.B.C. The Chemometrics Approach Applied to FTIR Spectral Data for the Analysis of Rice Bran Oil in Extra Virgin Olive Oil. Chemom. Intell. Lab. Syst. 2012, 110, 129–134. [Google Scholar] [CrossRef]
- Mendes, T.O.; da Rocha, R.A.; Porto, B.L.S.; de Oliveira, M.A.L.; dos Anjos, V.D.C.; Bell, M.J.V. Quantification of Extra-Virgin Olive Oil Adulteration with Soybean Oil: A Comparative Study of NIR, MIR, and Raman Spectroscopy Associated with Chemometric Approaches. Food Anal. Methods 2015, 8, 2339–2346. [Google Scholar] [CrossRef]
- Georgouli, K.; Martinez Del Rincon, J.; Koidis, A. Continuous Statistical Modelling for Rapid Detection of Adulteration of Extra Virgin Olive Oil Using Mid Infrared and Raman Spectroscopic Data. Food Chem. 2017, 217, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Gurdeniz, G.; Ozen, B. Detection of Adulteration of Extra-Virgin Olive Oil by Chemometric Analysis of Mid-Infrared Spectral Data. Food Chem. 2009, 116, 519–525. [Google Scholar] [CrossRef]
- Calvano, C.D.; Aresta, A.; Zambonin, C.G. Detection of Hazelnut Oil in Extra-Virgin Olive Oil by Analysis of Polar Components Bymicro-Solid Phase Extraction Based on Hydrophilic Liquid Chromatography and MALDI-ToF Mass Spectrometry. J. Mass Spectrom. 2010, 45, 981–988. [Google Scholar] [CrossRef]
- Srigley, C.T.; Oles, C.J.; Kia, A.R.F.; Mossoba, M.M. Authenticity Assessment of Extra Virgin Olive Oil: Evaluation of Desmethylsterols and Triterpene Dialcohols. JAOCS J. Am. Oil Chem. Soc. 2016, 93, 171–181. [Google Scholar] [CrossRef]
- Xu, Z.; Morris, R.H.; Bencsik, M.; Newton, M.I. Detection of Virgin Olive Oil Adulteration Using Low Field Unilateral NMR. Sensors 2014, 14, 2028–2035. [Google Scholar] [CrossRef]
- Tang, F.; Green, H.S.; Wang, S.C.; Hatzakis, E. Analysis and Authentication of Avocado Oil Using High Resolution Nmr Spectroscopy. Molecules 2021, 26, 310. [Google Scholar] [CrossRef]
- Zhao, H.; Zhan, Y.; Xu, Z.; John Nduwamungu, J.; Zhou, Y.; Powers, R.; Xu, C. The Application of Machine-Learning and Raman Spectroscopy for the Rapid Detection of Edible Oils Type and Adulteration. Food Chem. 2022, 373, 131471. [Google Scholar] [CrossRef]
- Rydlewski, A.A.; Pizzo, J.S.; Manin, L.P.; Galuch, M.B.; Santos, P.D.S.; Zapiello, C.; Santos, O.O.; Visentainer, J.V. Evaluation of Possible Fraud in Avocado Oil-Based Products from the Composition of Fatty Acids by GC-FID and Lipid Profile by ESI-MS. Chem. Pap. 2020, 74, 2799–2812. [Google Scholar] [CrossRef]
- Ferreira Barbosa, M.; Silva Do Nascimento, D.; Grünhut, M.; Vieira Dantas, H.; Fernandez Band, B.S.; Ugulino De Araújo, M.C.; Insausti, M. Fast Determination of Biodiesel Content in Commercial Diesel/Biodiesel Blends by Using Digital Images and Multivariate Calibration. Anal. Sci. 2017, 33, 1285–1289. [Google Scholar] [CrossRef]
- Resende, L.M.B.; Magalhães, E.J.; Nunes, C.A. Optimization and Validation of a Smartphone-Based Method for the Determination of Total Sterols in Selected Vegetable Oils by Digital Image Colorimetry. J. Food Compos. Anal. 2023, 117, 105111. [Google Scholar] [CrossRef]
- Anconi, A.C.S.A.; Brito, N.C.S.; Nunes, C.A. Determination of Peroxide Value in Edible Oils Based on Digital Image Colorimetry. J. Food Compos. Anal. 2022, 113, 104724. [Google Scholar] [CrossRef]
- de Carvalho, T.C.L.; Nunes, C.A. Smartphone-Based Method for the Determination of Chlorophyll and Carotenoid Contents in Olive and Avocado Oils: An Approach with Calibration Transfer. J. Food Compos. Anal. 2021, 104, 104164. [Google Scholar] [CrossRef]
- Barman, U.; Choudhury, R.D. Smartphone Image Based Digital Chlorophyll Meter to Estimate the Value of Citrus Leaves Chlorophyll Using Linear Regression, LMBP-ANN and SCGBP-ANN. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 2938–2950. [Google Scholar] [CrossRef]
- Fan, Y.; Li, J.; Guo, Y.; Xie, L.; Zhang, G. Digital Image Colorimetry on Smartphone for Chemical Analysis: A Review. Meas. J. Int. Meas. Confed. 2021, 171, 108829. [Google Scholar] [CrossRef]
- De Melo Milanez, K.D.T.; Pontes, M.J.C. Classification of Extra Virgin Olive Oil and Verification of Adulteration Using Digital Images and Discriminant Analysis. Anal. Methods 2015, 7, 8839–8846. [Google Scholar] [CrossRef]
- Song, W.; Song, Z.; Vincent, J.; Wang, H.; Wang, Z. Quantification of Extra Virgin Olive Oil Adulteration Using Smartphone Videos. Talanta 2020, 216, 120920. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Q.Y.; Luo, M.R.; Liu, X.Y. The Impact of Illuminance and Colour Temperature on Viewing Fine Art Paintings under LED Lighting. Light. Res. Technol. 2015, 47, 795–809. [Google Scholar] [CrossRef]
- Isnomo, Y.H.P.; Zakaria, M.N.; Junus, M.; Anshori, M.A.; Aisah, A. Optical Fiber Temperature Sensor Design. IOP Conf. Ser. Mater. Sci. Eng. 2020, 732, 012108. [Google Scholar] [CrossRef]
- Mitra, I.; Saha, A.; Roy, K. Exploring Quantitative Structure-Activity Relationship Studies of Antioxidant Phenolic Compounds Obtained from Traditional Chinese Medicinal Plants. Mol. Simul. 2010, 36, 1067–1079. [Google Scholar] [CrossRef]
- Nunes, C.A.; Freitas, M.P.; Pinheiro, A.C.M.; Bastos, S.C. Chemoface: A Novel Free User-Friendly Interface for Chemometrics. J. Braz. Chem. Soc. 2012, 23, 2003–2010. [Google Scholar] [CrossRef]
- Oussama, A.; Elabadi, F.; Platikanov, S.; Kzaiber, F.; Tauler, R. Detection of Olive Oil Adulteration Using FT-IR Spectroscopy Nd PLS with Variable Importance of Projection (VIP) Scores. JAOCS J. Am. Oil Chem. Soc. 2012, 89, 1807–1812. [Google Scholar] [CrossRef]
- Tan, J.; Li, R.; Jiang, Z.T.; Shi, M.; Xiao, Y.Q.; Jia, B.; Lu, T.X.; Wang, H. Detection of Extra Virgin Olive Oil Adulteration With Edible Oils Using Front-Face Fluorescence and Visible Spectroscopies. JAOCS J. Am. Oil Chem. Soc. 2018, 95, 535–546. [Google Scholar] [CrossRef]
- Turrini, F.; Zunin, P.; Boggia, R. Potentialities of Rapid Analytical Strategies for the Identification of the Botanical Species of Several “specialty” or “gourmet” Oils. Foods 2021, 10, 183. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Calabuig, A.M.; Pradana-López, S.; Ramayo-Muñoz, A.; Cancilla, J.C.; Torrecilla, J.S. Deep Quantification of a Refined Adulterant Blended into Pure Avocado Oil. Food Chem. 2023, 404, 134474. [Google Scholar] [CrossRef] [PubMed]
- Capitán-Vallvey, L.F.; López-Ruiz, N.; Martínez-Olmos, A.; Erenas, M.M.; Palma, A.J. Recent Developments in Computer Vision-Based Analytical Chemistry: A Tutorial Review. Anal. Chim. Acta 2015, 899, 23–56. [Google Scholar] [CrossRef]
Condition | Smartphone | Illumination |
---|---|---|
SM-IN | Moto G2 | natural |
SM-IA | Moto G2 | artificial |
SG-IN | Galaxy S6 Edge | natural |
SG-IA | Galaxy S6 Edge | artificial |
RGB | |||||
---|---|---|---|---|---|
EVOO-SO | No Correction | Illuminance | Blanks Difference | Blanks Ratio | |
Calibration | RMSE | 0.02 | 0.03 | 0.02 | 0.03 |
R2 | 0.99 | 0.99 | 0.99 | 0.99 | |
y-randomization | RMSE | 0.28 | 0.28 | 0.27 | 0.28 |
R2 | 0.12 | 0.11 | 0.14 | 0.12 | |
R2p | 0.93 | 0.93 | 0.92 | 0.93 | |
Cross-validation | RMSE | 0.03 | 0.03 | 0.03 | 0.03 |
R2 | 0.99 | 0.99 | 0.99 | 0.99 | |
External validation | RMSE | 0.04 | 0.04 | 0.04 | 0.04 |
R2 | 0.98 | 0.98 | 0.98 | 0.99 | |
r2m | 0.95 | 0.95 | 0.93 | 0.92 | |
RG | |||||
Calibration | RMSE | 0.09 | 0.09 | 0.10 | 0.10 |
R2 | 0.92 | 0.92 | 0.87 | 0.88 | |
y-randomization | RMSE | 0.29 | 0.29 | 0.29 | 0.29 |
R2 | 0.05 | 0.04 | 0.04 | 0.04 | |
R2p | 0.89 | 0.89 | 0.85 | 0.86 | |
Cross-validation | RMSE | 0.09 | 0.09 | 0.11 | 0.11 |
R2 | 0.90 | 0.90 | 0.85 | 0.86 | |
External validation | RMSE | 0.11 | 0.11 | 0.14 | 0.14 |
R2 | 0.88 | 0.89 | 0.77 | 0.77 | |
r2m | 0.78 | 0.78 | 0.49 | 0.51 | |
RB | |||||
Calibration | RMSE | 0.03 | 0.03 | 0.03 | 0.03 |
R2 | 0.99 | 0.99 | 0.99 | 0.99 | |
y-randomization | RMSE | 0.29 | 0.29 | 0.29 | 0.29 |
R2 | 0.04 | 0.04 | 0.05 | 0.06 | |
R2p | 0.97 | 0.97 | 0.97 | 0.96 | |
Cross-validation | RMSE | 0.03 | 0.03 | 0.03 | 0.03 |
R2 | 0.99 | 0.99 | 0.99 | 0.99 | |
External validation | RMSE | 0.04 | 0.04 | 0.04 | 0.04 |
R2 | 0.98 | 0.98 | 0.98 | 0.98 | |
r2m | 0.95 | 0.94 | 0.94 | 0.93 | |
GB | |||||
Calibration | RMSE | 0.03 | 0.03 | 0.03 | 0.03 |
R2 | 0.99 | 0.99 | 0.99 | 0.99 | |
y-randomization | RMSE | 0.29 | 0.29 | 0.28 | 0.29 |
R2 | 0.04 | 0.04 | 0.08 | 0.04 | |
R2p | 0.97 | 0.97 | 0.95 | 0.97 | |
Cross-validation | RMSE | 0.03 | 0.03 | 0.03 | 0.03 |
R2 | 0.99 | 0.99 | 0.99 | 0.99 | |
External validation | RMSE | 0.04 | 0.04 | 0.05 | 0.04 |
R2 | 0.98 | 0.98 | 0.98 | 0.98 | |
r2m | 0.95 | 0.94 | 0.95 | 0.94 |
RGB | |||||
---|---|---|---|---|---|
AVO-SO | No Correction | Illuminance | Blanks Difference | Blanks Ratio | |
Calibration | RMSE | 0.08 | 0.08 | 0.08 | 0.08 |
R2 | 0.93 | 0.93 | 0.93 | 0.93 | |
y-randomization | RMSE | 0.28 | 0.29 | 0.29 | 0.28 |
R2 | 0.12 | 0.06 | 0.08 | 0.10 | |
R2p | 0.87 | 0.90 | 0.89 | 0.88 | |
Cross-validation | RMSE | 0.09 | 0.09 | 0.09 | 0.09 |
R2 | 0.91 | 0.90 | 0.90 | 0.90 | |
External validation | RMSE | 0.06 | 0.05 | 0.08 | 0.07 |
R2 | 0.96 | 0.97 | 0.94 | 0.95 | |
r2m | 0.95 | 0.96 | 0.85 | 0.88 | |
RG | |||||
Calibration | RMSE | 0.09 | 0.09 | 0.09 | 0.09 |
R2 | 0.91 | 0.91 | 0.92 | 0.91 | |
y-randomization | RMSE | 0.29 | 0.29 | 0.29 | 0.28 |
R2 | 0.04 | 0.05 | 0.07 | 0.11 | |
R2p | 0.89 | 0.88 | 0.88 | 0.86 | |
Cross-validation | RMSE | 0.11 | 0.11 | 0.10 | 0.10 |
R2 | 0.88 | 0.87 | 0.89 | 0.89 | |
External validation | RMSE | 0.07 | 0.06 | 0.08 | 0.07 |
R2 | 0.94 | 0.96 | 0.94 | 0.94 | |
r2m | 0.87 | 0.85 | 0.82 | 0.83 | |
RB | |||||
Calibration | RMSE | 0.14 | 0.13 | 0.13 | 0.13 |
R2 | 0.78 | 0.81 | 0.82 | 0.82 | |
y-randomization | RMSE | 0.29 | 0.29 | 0.29 | 0.29 |
R2 | 0.06 | 0.05 | 0.08 | 0.05 | |
R2p | 0.76 | 0.79 | 0.78 | 0.79 | |
Cross-validation | RMSE | 0.16 | 0.14 | 0.14 | 0.14 |
R2 | 0.73 | 0.77 | 0.78 | 0.78 | |
External validation | RMSE | 0.12 | 0.15 | 0.11 | 0.11 |
R2 | 0.92 | 0.86 | 0.95 | 0.95 | |
r2m | 0.43 | 0.37 | 0.52 | 0.51 | |
GB | |||||
Calibration | RMSE | 0.11 | 0.10 | 0.10 | 0.10 |
R2 | 0.87 | 0.88 | 0.89 | 0.89 | |
y-randomization | RMSE | 0.29 | 0.29 | 0.29 | 0.29 |
R2 | 0.04 | 0.08 | 0.04 | 0.06 | |
R2p | 0.85 | 0.84 | 0.87 | 0.86 | |
Cross-validation | RMSE | 0.12 | 0.11 | 0.11 | 0.11 |
R2 | 0.84 | 0.86 | 0.87 | 0.87 | |
External validation | RMSE | 0.08 | 0.10 | 0.08 | 0.08 |
R2 | 0.96 | 0.94 | 0.97 | 0.97 | |
r2m | 0.71 | 0.65 | 0.72 | 0.72 |
EVOO-SO | No Correction | Illuminance | Blanks Difference | Blanks Ratio | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | R2 | r2m | RMSE | R2 | r2m | RMSE | R2 | r2m | RMSE | R2 | r2m | ||
RGB | SM-IN | 0.17 | 0.92 | 0.4 | 0.08 | 0.95 | 0.86 | 0.17 | 0.72 | 0.5 | 1.83 | 0.02 | 0.02 |
SG-IN | 0.12 | 0.97 | 0.71 | 0.08 | 0.98 | 0.86 | 0.12 | 0.97 | 0.72 | 0.09 | 0.96 | 0.81 | |
SM-IA | 0.19 | 0.94 | 0.3 | 0.11 | 0.93 | 0.78 | 0.14 | 0.93 | 0.44 | 0.18 | 0.93 | 0.63 | |
RG | SM-IN | 0.54 | 0.59 | 0.23 | 0.91 | 0.51 | 0 | 1.64 | 0.04 | 0.03 | 20.14 | 0 | 0 |
SG-IN | 0.77 | 0.96 | 0 | 0.68 | 0.96 | 0 | 0.52 | 0.96 | 0.17 | 0.46 | 0.96 | 0.24 | |
SM-IA | 0.32 | 0.62 | 0.43 | 0.65 | 0.62 | 0.18 | 0.49 | 0.35 | 0.24 | 0.93 | 0.35 | 0 | |
RB | SM-IN | 0.18 | 0.93 | 0.33 | 0.07 | 0.96 | 0.91 | 0.15 | 0.9 | 0.48 | 0.12 | 0.91 | 0.77 |
SG-IN | 0.1 | 0.97 | 0.76 | 0.08 | 0.98 | 0.9 | 0.09 | 0.97 | 0.79 | 0.08 | 0.96 | 0.89 | |
SM-IA | 0.2 | 0.94 | 0.27 | 0.1 | 0.93 | 0.81 | 0.17 | 0.94 | 0.32 | 0.12 | 0.95 | 0.75 | |
GB | SM-IN | 0.16 | 0.95 | 0.31 | 0.06 | 0.96 | 0.94 | 0.22 | 0.72 | 0.32 | 1.18 | 0.08 | 0.07 |
SG-IN | 0.09 | 0.97 | 0.89 | 0.09 | 0.98 | 0.95 | 0.07 | 0.98 | 0.87 | 0.08 | 0.97 | 0.97 | |
SM-IA | 0.16 | 0.94 | 0.33 | 0.09 | 0.93 | 0.85 | 0.22 | 0.92 | 0.17 | 0.09 | 0.93 | 0.85 |
AVO-SO | No Correction | Illuminance | Blanks Difference | Blanks Ratio | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | R2 | r2m | RMSE | R2 | r2m | RMSE | R2 | r2m | RMSE | R2 | r2m | ||
RGB | SM-IN | 0.33 | 0.28 | 0.23 | 0.39 | 0.32 | 0.29 | 0.38 | 0.32 | 0.3 | 0.49 | 0.21 | 0.17 |
SG-IN | 0.34 | 0.95 | 0.38 | 0.24 | 0.96 | 0.56 | 0.25 | 0.94 | 0.52 | 0.19 | 0.94 | 0.63 | |
SM-IA | 0.33 | 0.83 | 0.42 | 0.67 | 0.85 | 0.07 | 0.34 | 0.87 | 0.41 | 0.76 | 0.86 | 0 | |
RG | SM-IN | 0.32 | 0.41 | 0.38 | 0.33 | 0.54 | 0.45 | 0.31 | 0.45 | 0.43 | 0.41 | 0.39 | 0.31 |
SG-IN | 0.22 | 0.93 | 0.57 | 0.15 | 0.94 | 0.71 | 0.22 | 0.92 | 0.57 | 0.15 | 0.92 | 0.71 | |
SM-IA | 0.38 | 0.87 | 0.37 | 0.53 | 0.9 | 0.17 | 0.22 | 0.9 | 0.61 | 0.62 | 0.89 | 0.09 | |
RB | SM-IN | 0.61 | 0.74 | 0 | 0.33 | 0.7 | 0.43 | 0.25 | 0.74 | 0.6 | 0.29 | 0.77 | 0.51 |
SG-IN | 0.41 | 0.91 | 0.14 | 0.2 | 0.82 | 0.48 | 0.11 | 0.9 | 0.77 | 0.14 | 0.9 | 0.6 | |
SM-IA | 1.08 | 0.85 | 0 | 0.28 | 0.8 | 0.48 | 0.2 | 0.83 | 0.48 | 0.21 | 0.83 | 0.61 | |
GB | SM-IN | 0.51 | 0.77 | 0.2 | 0.3 | 0.75 | 0.46 | 0.22 | 0.74 | 0.58 | 0.28 | 0.77 | 0.48 |
SG-IN | 0.19 | 0.96 | 0.7 | 0.09 | 0.92 | 0.86 | 0.1 | 0.94 | 0.82 | 0.07 | 0.95 | 0.93 | |
SM-IA | 0.89 | 0.93 | 0 | 0.41 | 0.91 | 0.3 | 0.09 | 0.92 | 0.87 | 0.38 | 0.93 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Carvalho, I.M.; da Silva Mutz, Y.; Machado, A.C.G.; de Lima Santos, A.A.; Magalhães, E.J.; Nunes, C.A. Exploring Strategies to Mitigate the Lightness Effect on the Prediction of Soybean Oil Content in Blends of Olive and Avocado Oil Using Smartphone Digital Image Colorimetry. Foods 2023, 12, 3436. https://doi.org/10.3390/foods12183436
de Carvalho IM, da Silva Mutz Y, Machado ACG, de Lima Santos AA, Magalhães EJ, Nunes CA. Exploring Strategies to Mitigate the Lightness Effect on the Prediction of Soybean Oil Content in Blends of Olive and Avocado Oil Using Smartphone Digital Image Colorimetry. Foods. 2023; 12(18):3436. https://doi.org/10.3390/foods12183436
Chicago/Turabian Stylede Carvalho, Isabella Marques, Yhan da Silva Mutz, Amanda Cristina Gomes Machado, Amanda Aparecida de Lima Santos, Elisângela Jaqueline Magalhães, and Cleiton Antônio Nunes. 2023. "Exploring Strategies to Mitigate the Lightness Effect on the Prediction of Soybean Oil Content in Blends of Olive and Avocado Oil Using Smartphone Digital Image Colorimetry" Foods 12, no. 18: 3436. https://doi.org/10.3390/foods12183436
APA Stylede Carvalho, I. M., da Silva Mutz, Y., Machado, A. C. G., de Lima Santos, A. A., Magalhães, E. J., & Nunes, C. A. (2023). Exploring Strategies to Mitigate the Lightness Effect on the Prediction of Soybean Oil Content in Blends of Olive and Avocado Oil Using Smartphone Digital Image Colorimetry. Foods, 12(18), 3436. https://doi.org/10.3390/foods12183436