Reformulation of Bologna Sausage by Total Pork Backfat Replacement with an Emulsion Gel Based on Olive, Walnut, and Chia Oils, and Stabilized with Chitosan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Emulsion Gel Preparation
2.3. Bologna Sausage Production
2.4. Proximate Analysis
2.5. Fatty Acid Profile and Nutritional Indices
2.6. pH Measurement
2.7. Thermal Stability of Emulsion Gels
2.8. Thermal Processing Loss and Moisture Retention
2.9. Color Measurement
2.10. Texture Profile Analysis
2.11. Lipid Oxidation
2.12. Sensory Analysis
2.13. Statistical Analysis
3. Results
3.1. Color, pH, and Thermal Stability of the Emulsion Gel
3.2. Proximate Composition and Energy Values
3.3. Fatty Acids Profile
3.4. Color Properties and pH
3.5. Technological Properties
3.6. Texture Analysis
3.7. Lipid Oxidation
3.8. Sensory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- da Silva Barretto, A.C.; Pacheco, M.T.B.; Pollonio, M.A.R. Effect of the addition of wheat fiber and partial pork back fat on the chemical composition, texture and sensory property of low-fat bologna sausage containing inulin and oat fiber. Food Sci. Technol. 2015, 35, 100–107. [Google Scholar] [CrossRef]
- Beiloune, F.; Bolumar, T.; Toepfl, S.; Heinz, V. Fat Reduction and Replacement by Olive Oil in Bologna Type Cooked Sausage. Quality and Nutritional Aspects. Food Nutr. Sci. 2014, 2014, 13. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Agregán, R.; Lorenzo, J.M. Effect of the partial replacement of pork backfat by microencapsulated fish oil or mixed fish and olive oil on the quality of frankfurter type sausage. J. Food Sci. Technol. 2017, 54, 26–37. [Google Scholar] [CrossRef]
- da Silva, S.L.; Amaral, J.T.; Ribeiro, M.; Sebastião, E.E.; Vargas, C.; de Lima Franzen, F.; Schneider, G.; Lorenzo, J.M.; Fries, L.L.M.; Cichoski, A.J.; et al. Fat replacement by oleogel rich in oleic acid and its impact on the technological, nutritional, oxidative, and sensory properties of Bologna-type sausages. Meat Sci. 2019, 149, 141–148. [Google Scholar] [CrossRef]
- Franco, D.; Martins, A.J.; López-Pedrouso, M.; Purriños, L.; Cerqueira, M.A.; Vicente, A.A.; Pastrana, L.M.; Zapata, C.; Lorenzo, J.M. Strategy towards replacing pork backfat with a linseed oleogel in frankfurter sausages and its evaluation on physicochemical, nutritional, and sensory characteristics. Foods 2019, 8, 366. [Google Scholar] [CrossRef]
- Franco, D.; Martins, A.J.; López-Pedrouso, M.; Cerqueira, M.A.; Purriños, L.; Pastrana, L.M.; Vicente, A.A.; Zapata, C.; Lorenzo, J.M. Evaluation of linseed oil oleogels to partially replace pork backfat in fermented sausages. J. Sci. Food Agric. 2020, 100, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Pando, G.; Cofrades, S.; Ruiz-Capillas, C.; Solas, M.T.; Triki, M.; Jimenez-Colmenero, F. Low-fat frankfurters formulated with a healthier lipid combination as functional ingredient: Microstructure, lipid oxidation, nitrite content, microbiological changes and biogenic amine formation. Meat Sci. 2011, 89, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Capillas, C.; Herrero, A.M. Novel Strategies for the Development of Healthier Meat and Meat Products and Determination of Their Quality Characteristics. Foods 2021, 10, 2578. [Google Scholar] [CrossRef]
- Barbut, S.; Wood, J.; Marangoni, A. Potential use of organogels to replace animal fat in comminuted meat products. Meat Sci. 2016, 122, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.; Vasconcelos, L.; Leite, A.; Botella-Martínez, C.; Pereira, E.; Mateo, J.; Kasaiyan, S.; Teixeira, A. Use of olive and sunflower oil hydrogel emulsions as pork fat replacers in goat meat burgers: Fat reduction and effects in lipidic quality. Biomolecules 2022, 12, 1416. [Google Scholar] [CrossRef]
- Freire, M.; Cofrades, S.; Serrano-Casas, V.; Pintado, T.; Jimenez, M.J.; Jimenez-Colmenero, F. Gelled double emulsions as delivery systems for hydroxytyrosol and n-3 fatty acids in healthy pork patties. J. Food Sci. Technol. 2017, 54, 3959–3968. [Google Scholar] [CrossRef] [PubMed]
- Cîrstea (Lazăr), N.; Nour, V.; Boruzi, A.I. Effects of Pork Backfat Replacement with Emulsion Gels Formulated with a Mixture of Olive, Chia and Algae Oils on the Quality Attributes of Pork Patties. Foods 2023, 12, 519. [Google Scholar] [CrossRef]
- Salcedo-Sandoval, L.; Cofrades, S.; Pérez, C.R.C.; Solas, M.T.; Jiménez-Colmenero, F. Healthier oils stabilized in konjac matrix as fat replacers in n-3 PUFA enriched frankfurters. Meat Sci. 2013, 93, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Alejandre, M.; Passarini, D.; Astiasarán, I.; Ansorena, D. The effect of low-fat beef patties formulated with a low-energy fat analogue enriched in long-chain polyunsaturated fatty acids on lipid oxidation and sensory attributes. Meat Sci. 2017, 134, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Pintado, T.; Ruiz-Capillas, C.; Jimenez-Colmenero, F.; Carmona, P.; Herrero, A.M. Oil in-water emulsion gels stabilized with chia (Salvia hispanica L.) and cold gelling agents: Technological and infrared spectroscopic characterization. Food Chem. 2015, 185, 470–478. [Google Scholar] [CrossRef]
- Herrero, A.M.; Carmona, P.; Jiménez-Colmenero, F.; Ruíz-Capillas, C. Polysaccharide gels as oil bulking agents: Technological and structural properties. Food Hydrocoll. 2014, 36, 374–381. [Google Scholar] [CrossRef]
- Poyato, C.; Astiasarán, I.; Barriuso, B.; Ansorena, D. A new polyunsaturated gelled emulsion as replacer of pork back-fat in burger patties: Effect on lipid composition, oxidative stability and sensory acceptability. LWT—Food Sci. Technol. 2015, 62, 1069–1075. [Google Scholar] [CrossRef]
- Pintado, T.; Cofrades, S. Quality characteristics of healthy dry fermented sausages formulated with a mixture of olive and chia oil structured in oleogel or emulsion gel as animal fat replacer. Foods 2020, 9, 830. [Google Scholar] [CrossRef]
- Câmara, A.K.F.I.; Ozaki, M.M.; Santos, M.; Vidal, V.A.S.; Ribeiro, W.O.; Paglarini, C.d.S.; Bernardinelli, O.D.; Sabadini, E.; Pollonio, M.A.R. Olive oil-based emulsion gels containing chia (Salvia hispanica L.) mucilage delivering healthy claims to low-saturated fat Bologna sausages. Food Struct. 2021, 28, 100187. [Google Scholar] [CrossRef]
- Jiménez-Colmenero, F.; Herrero, A.; Pintado, T.; Solas, M.T.; Ruiz-Capillas, C. Influence of emulsified olive oil stabilizing system used for pork backfat replacement in frankfurters. Food Res. Int. 2010, 43, 2068–2076. [Google Scholar] [CrossRef]
- Pérez-Álvarez, J.A.; Roldán-Verdú, A.; Martínez-Mayoral, A.; Sayas-Barberá, E.; Navarro-Rodriguez de Vera, C.; Viuda-Martos, M.; Fernández-López, J. Chia Oleogel as a Potential New Ingredient for Healthy Cooked Meat Sausages. Proceedings 2021, 70, 76. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Kumar, M.; Sharma, B.D. The storage stability and textural, physico-chemical and sensory quality of low-fat ground pork patties with carrageenan as fat replacer. Int. J. Food Sci. Technol. 2004, 39, 31–42. [Google Scholar] [CrossRef]
- Saracila, M.; Panaite, T.D.; Mironeasa, S.; Untea, A.E. Dietary Supplementation of Some Antioxidants as Attenuators of Heat Stress on Chicken Meat Characteristics. Agriculture 2021, 11, 638. [Google Scholar] [CrossRef]
- Witte, V.C.; Krauze, G.F.; Bailey, M.E. A new extraction method for determining 2-thiobarbituric acid values of pork and beef during storage. J. Food Sci. 1970, 35, 582–585. [Google Scholar] [CrossRef]
- Ben Hsouna, A.; Gargouri, M.; Dhifi, W.; Saibi, W. Antioxidant and hepato-preventive effect of Citrus aurantium extract against carbon tetrachloride-induced hepatotoxicity in rats and characterisation of its bioactive compounds by HPLC-MS. Arch. Physiol. Biochem. 2019, 125, 332–343. [Google Scholar] [CrossRef]
- Sato, A.C.K.; Moraes, K.E.F.P.; Cunha, R.L. Development of gelled emulsions with improved oxidative and pH stability. Food Hydrocoll. 2014, 34, 184–192. [Google Scholar] [CrossRef]
- Delgado-Pando, G.; Cofrades, S.; Ruiz-Capillas, C.; Solas, M.T.; Jiménez-Colmenero, F. Healthier lipid combination oil-in-water emulsions prepared with various protein systems: An approach for development of functional meat products. Eur. J. Lipid Sci. Tech. 2010, 112, 791–801. [Google Scholar] [CrossRef]
- Martins, A.J.; Lorenzo, J.M.; Franco, D.; Pateiro, M.; Domínguez, R.; Munekata, P.E.S.; Pastrana, L.M.; Vicente, A.A.; Cunha, R.L.; Cerqueira, M.A. Characterization of Enriched Meat-Based Pâté Manufactured with Oleogels as Fat Substitutes. Gels 2020, 6, 17. [Google Scholar] [CrossRef]
- Jiménez-Colmenero, F.; Triki, M.; Herrero, A.M.; Rodríguez-Salas, L.; Ruiz-Capillas, C. Healthy oil combination stabilized in a konjac matrix as pork fat replacement in low-fat, PUFA-enriched, dry fermented sausages. LWT Food Sci. Technol. 2013, 51, 158–163. [Google Scholar] [CrossRef]
- Rodriguez, E.S.; Julio, L.M.; Henning, C.; Diehl, B.W.K.; Tomás, M.C.; Ixtaina, V.Y. Effect of natural antioxidants on the physicochemical properties and stability of freeze-dried microencapsulated chia seed oil. J. Sci. Food Agric. 2019, 99, 1682–1690. [Google Scholar] [CrossRef] [PubMed]
- Savage, G.; Dutta, P.; McNeil, D. Fatty acid and tocopherol contents and oxidative stability of walnut oils. J. Am. Oil Chem. Soc. 1999, 76, 1059–1063. [Google Scholar] [CrossRef]
- Martínez, M.L.; Labuckas, D.O.; Lamarque, A.L.; Maestri, D.M. Walnut (Juglans regia L.): Genetic resources, chemistry, by-products. J. Sci. Food Agric. 2010, 90, 1959–1967. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Simopoulos, A. Evolutionary aspects of diet: The omega-6/omega-3 ratio and the brain. Mol. Neurobiol. 2011, 44, 203–215. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar]
- European Parliament; Council of the European Union. Corrigendum to Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union 2007, 12, 16. [Google Scholar]
- European Commission. Regulation (EU) No 432/2012 of the European Parliament and of the Council of 16 May 2012 establishing a list of permited health claims made on foods other than those referring to the reduction of disease risk and to children’s development and health. Off. J. Eur. Union 2012, 136, 1–408. [Google Scholar]
- Huang, L.; Ren, Y.; Li, H.; Zhang, Q.; Wang, Y.; Cao, J.; Liu, X. Create Fat Substitute from Soybean Protein Isolate/Konjac Glucomannan: The Impact of the Protein and Polysaccharide Concentrations Formulations. Front. Nutr. 2022, 9, 843832. [Google Scholar] [CrossRef]
- Martins, A.J.; Lorenzo, J.M.; Franco, D.; Vicente, A.A.; Cunha, R.L.; Pastrana, L.M.; Quiñones, J.; Cerqueira, M.A. Omega-3 and Polyunsaturated Fatty Acids-Enriched Hamburgers Using Sterol-Based Oleogels. Eur. J. Lipid Sci. Technol. 2019, 121, 1900111. [Google Scholar] [CrossRef]
- Stajić, S.; Stanišić, N.; Tomasevic, I.; Djekic, I.; Ivanović, N.; Živković, D. Use of linseed oil in improving the quality of chicken frankfurters. J. Food Process. Preserv. 2018, 42, e13529. [Google Scholar] [CrossRef]
- López-López, I.; Cofrades, S.; Jiménez-Colmenero, F. Low-fat frankfurters enriched with n-3 PUFA and edible seaweed: Effects of olive oil and chilled storage on physicochemical, sensory and microbial characteristics. Meat Sci. 2009, 83, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Lakshmanan, V.; Das, A.K.; Mendiratta, S.K.; Anjaneyulu, A.S.R. Quality characteristics and storage stability of patties from buffalo head and heart meats. Int. J. Food Sci. Technol. 2008, 43, 1798–1806. [Google Scholar] [CrossRef]
- Kumar, D.; Tanwar, V.K. Effects of incorporation of ground mustard on quality attributes of chicken nuggets. J. Food Sci. Technol. 2011, 48, 759–762. [Google Scholar] [CrossRef]
- Zetzl, A.K.; Marangoni, A.G.; Barbut, S. Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters. Food Funct. 2012, 3, 327–337. [Google Scholar] [CrossRef]
- Youssef, M.K.; Barbut, S. Effects of Protein Level and Fat/Oil on Emulsion Stability, Texture, Microstructure and Color of Meat Batters. Meat Sci. 2009, 82, 228–233. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; González-Rodríguez, R.M.; Sánchez, M.; Amado, I.R.; Franco, D. Effects of natural (grape seed and chestnut extract) and synthetic antioxidants (butylated hydroxytoluene, BHT) on the physical, chemical, microbiological and sensory characteristics of dry cured sausage “chorizo”. Food Res. Int. 2013, 54, 611–620. [Google Scholar] [CrossRef]
- Delgado-Pando, G.; Cofrades, S.; Ruiz-Capillas, C.; Jimenez-Colmenero, F. Healthier lipid combination as functional ingredient influencing sensory and technological properties of low-fat frankfurters. Eur. J. Lipid Sci. Technol. 2010, 112, 859–870. [Google Scholar] [CrossRef]
- Bush, L.A.; Stevenson, L.; Lane, K.E. The oxidative stability of omega-3 oil-in-water nanoemulsion systems suitable for functional food enrichment: A systematic review of the literature. Crit. Rev. Food Sci. 2017, 59, 1154–1168. [Google Scholar] [CrossRef]
- Liu, J.; Kerry, J.F.; Kerry, J.P. Application and assessment of extruded edible casings manufactured from pectin and gelatin/sodium alginate blends for use with breakfast pork sausage. Meat Sci. 2006, 75, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Bloukas, J.G.; Paneras, E.D.; Fournitzis, G.C. Effect of replacing pork backfat with olive oil on processing and quality characteristics of fermented sausages. Meat Sci. 1997, 45, 133–144. [Google Scholar] [CrossRef]
- Faraji, H.; McClements, D.J.; Decker, E.A. Role of Continuous Phase Protein on the Oxidative Stability of Fish Oil-in-Water Emulsions. J. Agric. Food Chem. 2004, 52, 4558–4564. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive compounds and quality of extra virgin olive oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef]
- Lanza, B.; Ninfali, P. Antioxidants in extra virgin olive oil and table olives: Connections between agriculture and processing for health choices. Antioxidants 2020, 9, 41. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Ding, Y.; Chen, Z.; Zhou, Z.; Zhong, W.; Hu, C.; He, D.; Wang, X. Characteristics and Antioxidant Activity of Walnut Oil Using Various Pretreatment and Processing Technologies. Foods 2022, 11, 1698. [Google Scholar] [CrossRef]
- Ivanova, D.G.; Yaneva, Z.L. Antioxidant properties and redox-modulating activity of chitosan and its derivatives: Biomaterials with application in cancer therapy. BioRes. Open Access 2020, 9, 64–72. [Google Scholar] [CrossRef]
- Shan, L.C.; De Brún, A.; Henchion, M.; Li, C.; Murrin, C.; Wall, P.G.; Monahan, F.J. Consumer evaluations of processed meat products reformulated to be healthier–A conjoint analysis study. Meat Sci. 2017, 131, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Kouzounis, D.; Lazaridou, A.; Katsanidis, E. Partial replacement of animal fat by oleogels structured with monoglycerides and phytosterols in frankfurter sausages. Meat Sci. 2017, 130, 38–46. [Google Scholar] [CrossRef]
Parameter | Storage Time (Days) | |
---|---|---|
0 | 10 | |
L* | 70.59 ± 3.61 a | 79.43 ± 1.77 b |
a* | 1.53 ± 0.20 b | 0.17 ± 0.08 a |
b* | 20.63 ± 0.95 b | 16.90 ± 0.23 a |
pH | 7.61 ± 0.07 a | 8.21 ± 0.06 b |
Total fluid release (%) | 1.01 ± 0.05 a | 1.37 ± 0.08 b |
CBS | RBS | |
---|---|---|
Moisture (%) | 68.31 ± 0.87 b | 66.47 ± 0.28 a |
Protein (%) | 11.58 ± 0.23 a | 12.28 ± 0.39 b |
Fat (%) | 12.41 ± 0.23 a | 12.26 ± 0.26 a |
Ash (%) | 2.31 ± 0.10 a | 2.24 ± 0.13 a |
Energy value (kcal/100 g) | 191.98 ± 1.88 a | 198.77 ± 2.08 b |
Energy from fat (kcal/100 g) | 112.93 ± 2.09 a | 111.56 ± 1.68 a |
Fatty Acids | CBS | RBS |
---|---|---|
Caprylic (C8:0) | 0.16 ± 0.01 a | 0.08 ± 0.01 a |
Capric (C10:0) | 0.17 ± 0.01 b | 0.14 ± 0.01 a |
Myristic (C14:0) | 1.45 ± 0.07 b | 0.75 ± 0.04 a |
Pentadecenoic (C15:1n-13) | 0.10 ± 0.00 a | 0.10 ± 0.01 a |
Palmitic (C16:0) | 21.49 ± 0.96 b | 15.23 ± 0.48 a |
Palmitoleic (C16:1n-7) | 3.64 ± 0.15 b | 1.77 ± 0.18 a |
Heptadecanoic (C17:0) | 0.09 ± 0.01 b | 0.19 ± 0.01 a |
Heptadecenoic (C17:1n-7) | 0.21 ± 0.02 b | 0.14 ± 0.01 a |
Stearic (C18:0) | 9.31 ± 0.34 b | 5.74 ± 0.26 a |
Oleic (C18:1n-9) | 44.30 ± 1.31 b | 39.59 ± 1.36 a |
Linoleic (C18:2n-6) | 15.92 ± 0.56 a | 21.88 ± 0.62 b |
α Linolenic (C18:3n-3) | 1.06 ± 0.05 a | 12.28 ± 0.34 b |
Octadecatetraenoic (C18:4n-3) | 0.00 ± 0.00 a | 0.17 ± 0.01 b |
Eicosadienoic (C20:2n-6) | 0.46 ± 0.03 b | 0.30 ± 0.02 a |
Arachidonic (C20:4n-6) | 0.41 ± 0.02 b | 0.22 ± 0.01 a |
Tricosanoic (C23:0) | 0.12 ± 0.01 b | 0.00 ± 0.00 a |
Docosadienoic (C22:2n-6) | 1.07 ± 0.04 b | 0.76 ± 0.04 a |
Other fatty acids | 0.04 ± 0.01 a | 0.66 ± 0.03 b |
Nutritional indices | ||
Σ SFA | 32.79 ± 1.36 b | 22.13 ± 0.95 a |
Σ MUFA | 48.25 ± 1.38 b | 41.60 ± 1.05 a |
Σ PUFA | 18.92 ± 0.55 a | 35.61 ± 1.25 b |
Σ PUFA n-6 | 17.86 ± 0.49 a | 23.16 ± 0.86 b |
Σ PUFA n-3 | 1.06 ± 0.05 a | 12.45 ± 0.49 a |
n-6/n-3 | 16.85 | 1.86 |
AI | 0.41 | 0.24 |
TI | 0.89 | 0.31 |
h/H | 2.69 | 4.63 |
Parameter | Samples | Storage Time (Days) | ||||
---|---|---|---|---|---|---|
0 | 4 | 8 | 12 | 18 | ||
L* | CBS | 76.62 ± 0.98 a,B | 74.98 ± 1.67 a,A | 75.67 ± 0.63 a,A,B | 76.82 ± 0.86 a,B | 76.00 ± 0.41 a,A,B |
RBS | 78.27 ± 0.93 b,B | 76.48 ± 2.14 a,A | 77.49 ± 0.45 b,A,B | 77.92 ± 0.89 a,B | 76.41 ± 0.53 a,A | |
a* | CBS | 11.30 ± 0.32 b,D | 10.97 ± 0.53 a,C,D | 10.82 ± 0.18 b,B,C | 10.41 ± 0.26 b,A,B | 10.25 ± 0.32 a,A |
RBS | 10.65 ± 0.27 a,C | 10.32 ± 0.73 a,B,C | 10.06 ± 0.13 a,A,B | 9.84 ± 0.26 a,A | 10.02 ± 0.25 a,A,B | |
b* | CBS | 10.08 ± 0.15 a,C | 9.90 ± 0.47 a,B,C | 9.46 ± 0.15 a,A | 9.69 ± 0.13 a,A,B | 10.01 ± 0.30 a,B,C |
RBS | 10.98 ± 0.23 b,C | 10.56 ± 0.35 b,A | 10.36 ± 0.19 b,A | 10.89 ± 0.23 b,B,C | 10.61 ± 0.18 a,A,B | |
pH | CBS | 6.35 ± 0.03 a,A | 6.37 ± 0.04 a,A,B | 6.39 ± 0.03 a,A,B | 6.41 ± 0.02 a,B | 6.49 ± 0.04 a,C |
RBS | 6.61 ± 0.02 b,A | 6.64 ± 0.03 b,A,B | 6.67 ± 0.03 b,B | 6.69 ± 0.04 b,B | 6.81 ± 0.03 b,C |
CBS | RBS | |
---|---|---|
Cooking loss (%) | 0.68 ± 0.06 a | 1.53 ± 0.28 b |
Moisture retention (%) | 67.84 ± 0.63 b | 65.44 ± 0.49 a |
Parameters | CBS | RBS |
---|---|---|
Hardness (N) | 42.83 ± 5.34 a | 52.56 ± 7.6 b |
Springiness (%) | 0.68 ± 0.10 a | 0.81 ± 0.02 b |
Resilience (adm) | 1.66 ± 0.13 a | 1.93 ± 1.15 b |
Cohesiveness (adm) | 1.00 ± 0.01 a | 1.00 ± 0.04 a |
Gumminess (N) | 29.19 ± 1.85 a | 42.46 ± 6.20 b |
Shear force (N) | 21.55 ± 1.22 a | 27.51 ± 2.17 b |
Parameters | CBS | RBS |
---|---|---|
Color | 8.58 ± 0.51 a | 8.17 ± 0.72 a |
Taste | 8.17 ± 0.72 a | 8.08 ± 0.67 a |
Flavor | 8.33 ± 0.78 a | 8.50 ± 0.80 a |
Texture | 8.33 ± 0.78 a | 8.08 ± 0.79 a |
Overall acceptability | 8.33 ± 0.65 a | 8.25 ± 0.75 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cîrstea, N.; Nour, V.; Corbu, A.R.; Muntean, C.; Codină, G.G. Reformulation of Bologna Sausage by Total Pork Backfat Replacement with an Emulsion Gel Based on Olive, Walnut, and Chia Oils, and Stabilized with Chitosan. Foods 2023, 12, 3455. https://doi.org/10.3390/foods12183455
Cîrstea N, Nour V, Corbu AR, Muntean C, Codină GG. Reformulation of Bologna Sausage by Total Pork Backfat Replacement with an Emulsion Gel Based on Olive, Walnut, and Chia Oils, and Stabilized with Chitosan. Foods. 2023; 12(18):3455. https://doi.org/10.3390/foods12183455
Chicago/Turabian StyleCîrstea (Lazăr), Nicoleta, Violeta Nour, Alexandru Radu Corbu, Camelia Muntean, and Georgiana Gabriela Codină. 2023. "Reformulation of Bologna Sausage by Total Pork Backfat Replacement with an Emulsion Gel Based on Olive, Walnut, and Chia Oils, and Stabilized with Chitosan" Foods 12, no. 18: 3455. https://doi.org/10.3390/foods12183455
APA StyleCîrstea, N., Nour, V., Corbu, A. R., Muntean, C., & Codină, G. G. (2023). Reformulation of Bologna Sausage by Total Pork Backfat Replacement with an Emulsion Gel Based on Olive, Walnut, and Chia Oils, and Stabilized with Chitosan. Foods, 12(18), 3455. https://doi.org/10.3390/foods12183455