Tunicates as Sources of High-Quality Nutrients and Bioactive Compounds for Food/Feed and Pharmaceutical Applications: A Review
Abstract
:1. Introduction
2. The Tunicates and Its Life Cycle
3. The Chemical Compositions of Tunicates
Tunicates | Water (%) | Ash (%) | Protein (%) | Carbohydrate (%) | Lipids (%) | Reference |
---|---|---|---|---|---|---|
Cyclosalpa affinis | 97.61 | 62.64 ± 1.91 | 6.96 ± 2.92 | 0.91 ± 0.01 | 1.03 ± 0.08 | [22] |
Cyclosalpa sp. | 95.72 ± 0.31 | 55.21 | 9.09 | 0.84 | 3.73 | [22] |
Iasis zonaria | 96.51 ± 0.57 | 76.42 ± 4.10 | 10.16 ± 0.77 | 2.39 ± 0.27 | 1.68 ± 0.08 | [22] |
Salpa fusiformis | 96.17 | 68.53 ± 2.01 | 2.57 ± 0.20 | 0.63 ± 0.03 | 1.52 ± 0.78 | [22] |
Salpa maxima | 96.98 ± 0.31 | 60 | 9.94 | 1.32 | 3.81 | [22] |
Salp unknown | 96.20 ± 0.29 | 60.21 | 14.09 ± 0.23 | 2.14 ± 0.13 | 3.13 ± 0.75 | [22] |
Thalia democratica | 95.04 ± 0.05 | 70.07 ± 2.05 | 9.07 ± 1.21 | 1.11 ± 0.08 | 1.44 ± 0.26 | [22] |
Thetys vagina | 95.05 | 67.54 ± 4.03 | 3.86 ± 1.68 | 0.99 ± 0.11 | 0.68 ± 0.06 | [22] |
Cnemidocarpa verrucosa | - | 38.8 ± 1.70 | 6.20 ± 0.50 | 0.70 ± 0.05 | 4.90 ± 0.90 | [23] |
Salpa fusiformis | - | 66.41 ± 3.85 | 0.50 ± 0.15 | 0.06 ± 0.02 | 0.22 ± 0.18 | [24] |
Salpa thompsoni | 96.90 | 54.90 | 9.20 | 1.10 | 5.50 | [25] |
4. Chemical Constituents of Tunicates
5. Tunicates as a Source of Nutrients for Food and Feed Applications
5.1. Tunicate Species for Food Applications
5.2. Tunicate Species for Feed Applications
6. Tunicates as Sources of Bioactive Compounds
6.1. Natural Products from Tunicates
Tunicate Species | Chemical Compound | Function | References |
---|---|---|---|
Polycarpaaurata | Chrodrimanins A and H | Inhibited the activity of protein tyrosine phosphatase 1B | [66,67] |
Microbulbifer sp. | Bulbiferates A and B | Antibacterial | [68] |
Unidentified ascidian from Tweed Heads | Diterpene glycoside sordarin | Antifungal activity | [69] |
Ecteinascidia turbinata | Ecteinamycin | Against microbial Clostridium difficile NAP1/B1/027 | [70] |
Penicillium verruculosum | Verruculides A and chrodrimanins A and H | Protein tyrosine phosphatase 1B inhibition | [71] |
Ecteinascidia turbinata | Halomadurones C and D | Activated nuclear factor E2-related factor antioxidant response element (Nrf2-ARE) | [72] |
Pseudoalteromonas rubra | Isatin | Antibacterial | [73] |
Pseudoalteromonas tunicata | Tambjamine | Antifungal | [74] |
Ecteinascidia turbinata | Bisanthraquinones 1 and 2 | Cytotoxic against HCT116 cells Antimicrobial activity | [75] |
Synoicum prunum | Prunolides A, B, and C | Inhibited the growth of HeLa cells | [40] |
Saccharopolyspora sp. | JBIR-66 | Cytotoxic | [76] |
Molgula manhattensis | Granaticin, granatomycin D, and dihydrogranaticin B | Antimicrobial | [77] |
Clavelina picta | Piclavines A–C | Antimicrobial | [78] |
Didemnum molle | trichodermamides A and B | Antimicrobial | [79] |
Unidentified ascidian from Hiroshima | Gifhornenolone A | Inhibited the activity of an androgen receptor | [80] |
Ectcinascidia turbinata | Oxepinamide A | Anti-inflammatory activity on mouse ear edema | [81] |
6.2. Antimicrobial Activity
6.3. Antitumor and Anticancer Activities
6.4. Antidiabetic Activity
6.5. Antioxidant Activity
6.6. Anti-Inflammatory Activity
6.7. Bioactive Compounds Explored in Clinical Trials
7. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, C.; Xiao, Z.; Ge, C.; Wu, Y. Animal by-products collagen and derived peptide, as important components of innovative sustainable food systems—A comprehensive review. Crit. Rev. Food Sci. 2022, 62, 8703–8727. [Google Scholar] [CrossRef] [PubMed]
- Liceaga, A.M.; Aguilar-Toalá, J.E.; Vallejo-Cordoba, B.; González-Córdova, A.F.; Hernández-Mendoza, A. Insects as an alternative protein source. Annu. Rev. Food Sci. Technol. 2022, 13, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Lambert, G.; Karney, R.C.; Rhee, W.Y.; Carman, M.R. Wild and cultured edible tunicates: A review. Manag. Biol. Invasions 2016, 7, 59–66. [Google Scholar] [CrossRef]
- Wawrzyniak, M.K.; Matas Serrato, L.A.; Blanchoud, S. Artificial seawater based long-term culture of colonial ascidians. Dev. Biol. 2021, 480, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, C.; Tulasi, B.R.; Raju, M.; Thakur, N.; Dufossé, L. Marine natural products from tunicates and their associated microbes. Mar. Drugs 2021, 19, 308. [Google Scholar] [CrossRef] [PubMed]
- Roy, V.C.; Islam, M.R.; Sadia, S.; Yeasmin, M.; Park, J.-S.; Lee, H.-J.; Chun, B.-S. Trash to treasure: An up-to-date understanding of the valorization of seafood by-products, targeting the major bioactive compounds. Mar. Drugs 2023, 21, 485. [Google Scholar] [CrossRef] [PubMed]
- Samuelsen, T.A.; Haustveit, G.; Kousoulaki, K. The use of tunicate (Ciona intestinalis) as a sustainable protein source in fish feed—Effects on the extrusion process, physical pellet quality and microstructure. Anim. Feed. Sci. Technol. 2022, 284, 115193. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.-N.; Fu, C.-M.; Wang, G.-Y. Phylogenetic analysis and screening of antimicrobial and antiproliferative activities of culturable bacteria associated with the ascidian Styela clava from the yellow sea, china. BioMed Res. Int. 2019, 2019, 7851251. [Google Scholar] [CrossRef]
- Palanisamy, S.K.; Rajendran, N.M.; Marino, A. Natural products diversity of marine ascidians (Tunicates; Ascidiacea) and successful drugs in clinical development. Nat. Prod. Bioprospecting 2017, 7, 1–111. [Google Scholar] [CrossRef]
- Bianchi, C.N.; Morri, C. Marine biodiversity of the mediterranean sea: Situation, problems and prospects for future research. Marine Poll. Bull. 2000, 40, 367–376. [Google Scholar] [CrossRef]
- Tzafriri-Milo, R.; Benaltabet, T.; Torfstein, A.; Shenkar, N. The potential use of invasive ascidians for biomonitoring heavy metal pollution. Front. Mar. Sci. 2019, 6, 611. [Google Scholar] [CrossRef]
- Swalla, B.J.; Smith, A.B. Deciphering Deuterostome phylogeny: Molecular, morphological, and palaeontological perspectives. Phil. Trans. R. Soc. B 2008, 363, 1557–1568. [Google Scholar] [CrossRef] [PubMed]
- Slantchev, K.; Yaln, F.; Ersz, T.; Nechev, J.; Al, H.; Stefanov, K.; Popov, S. Composition of lipophylic extracts from two Tinicates, Styela sp. and Phallusia sp. from the Eastern Mediterranean. Z. Naturforschung C 2002, 57, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Madin, L.P.; Kremer, P.; Wiebe, P.H.; Purcell, J.E.; Horgan, E.H.; Nemazie, D.A. Periodic swarms of the salp Salpa aspera in the Slope Water off the NE United States: Biovolume, vertical migration, grazing, and vertical flux. Deep Sea Res. Pt. I Oceanogr. Res. Pap. 2006, 53, 804–819. [Google Scholar] [CrossRef]
- Sutherland, K.R.; Madin, L.P. A comparison of filtration rates among pelagic tunicates using kinematic measurements. Mar. Biol. 2010, 157, 755–764. [Google Scholar] [CrossRef]
- Culkin, F.; Morris, R.J. The fatty acid composition of two marine filter-feeders in relation to a phytoplankton diet. Deep Sea Res. Oceanogr. Abstr. 1970, 17, 861–865. [Google Scholar] [CrossRef]
- Kassmer, S.H.; Nourizadeh, S.; De Tomaso, A.W. Cellular and molecular mechanisms of regeneration in colonial and solitary Ascidians. Dev. Biol. 2019, 448, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Lambert, G. Nonindigenous ascidians in tropical waters. Pac. Sci. 2002, 56, 291–298. [Google Scholar] [CrossRef]
- Berrill, N.J. The Tunicata with an Account of the British Species; Ray Society: London, UK, 1950. [Google Scholar]
- Dubischar, C.D.; Pakhomov, E.A.; Bathmann, U.V. The tunicate Salpa thompsoni ecology in the Southern Ocean. II. Proximate and elemental composition. Mar. Biol. 2006, 149, 625–632. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J. Excellent chemical and material cellulose from tunicates: Diversity in cellulose production yield and chemical and morphological structures from different tunicate species. Cellulose 2014, 21, 3427–3441. [Google Scholar] [CrossRef]
- Wang, M.; O’Rorke, R.; Nodder, S.D.; Jeffs, A.G. Nutritional composition of potential zooplankton prey of the spiny lobster phyllosoma (Jasus edwardsii). Mar. Freshw. Res. 2014, 65, 337–349. [Google Scholar] [CrossRef]
- McClintock, J.B.; Heine, J.; Slattery, M.; Weston, J. Biochemical and energetic composition, population biology, and chemical defense of the antarctic ascidian Cnemidocarpa verrucosa lesson. J. Exp. Mar. Biol. Ecol. 1991, 147, 163–175. [Google Scholar] [CrossRef]
- Clarke, A.; Holmes, L.J.; Gore, D.J. Proximate and elemental composition of gelatinous zooplankton from the Southern Ocean. J. Exp. Mar. Biol. Ecol. 1992, 155, 55–68. [Google Scholar] [CrossRef]
- Donnelly, J.; Torres, J.J.; Hopkins, T.L.; Lancraft, T.M. Chemical composition of antarctic zooplankton during austral fall and winter. Polar Biol. 1994, 14, 171–183. [Google Scholar] [CrossRef]
- Oh, K.S.; Kim, J.S.; Heu, M.S. Food constituents of edible ascidians Halocynthia roretzi and Pyura michaelseni. Korean J. Food Sci. Technol. 1997, 29, 955–962. [Google Scholar]
- Zhao, Y.; Li, J. Ascidian bioresources: Common and variant chemical compositions and exploitation strategy—Examples of Halocynthia roretzi, Styela plicata, Ascidia sp. and Ciona intestinalis. Z. Naturforschung C 2016, 71, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, Y.; Lindström, M.E.; Li, J. Tunicate cellulose nanocrystals: Preparation, neat films and nanocomposite films with glucomannans. Carbohydr. Polym. 2015, 117, 286–296. [Google Scholar] [CrossRef]
- Petersen, J.K. Ascidian suspension feeding. J. Exp. Mar. Biol. Ecol. 2007, 342, 127–137. [Google Scholar] [CrossRef]
- Troedsson, C.; Thompson, E.; Bouquet, J.M.; Magnesen, T.; Schander, C.; Jiebing, L.I. Tunicate Extract for Use in Animal Feeds. US10159264B2, 25 December 2018. [Google Scholar]
- Lee, E.-H.; Oh, K.-S.; Lee, T.-H.; Ahn, C.-B.; Chung, Y.-H.; Kim, K.-S. Lipid components of sea squirt, Halocynthia roretzi, and mideuduck, Styela clava. Korean J. Food Sci. Technol. 1985, 17, 289–294. [Google Scholar]
- Monmai, C.; Jang, A.Y.; Kim, J.-E.; Lee, S.-M.; You, S.; Kang, S.; Park, W.J. Immunomodulatory activities of body wall fatty acids extracted from Halocynthia aurantium on RAW264.7 cells. J. Microbiol. Biotechn. 2020, 30, 1927–1936. [Google Scholar] [CrossRef]
- Jang, A.-y.; Rod-in, W.; Monmai, C.; Choi, G.S.; Park, W.J. Anti-inflammatory effects of neutral lipids, glycolipids, phospholipids from Halocynthia aurantium tunic by suppressing the activation of NF-κB and MAPKs in LPS-stimulated RAW264.7 macrophages. PLoS ONE 2022, 17, e0270794. [Google Scholar] [CrossRef] [PubMed]
- Slantchev, K.; Stefanov, K.; Seizova, K.; Popov, S.; Andreev, S. Chemical composition of the lipophylic extract from the tunicate Botryllus schlosseri. Z. Naturforschung C 2000, 55, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Mayzaud, P.; Boutoute, M.; Perissinotto, R.; Nichols, P. Polar and neutral lipid composition in the pelagic tunicate Pyrosoma atlanticum. Lipids 2007, 42, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, C.; Kanias, G.D. Tunicate species as marine pollution indicators. Mar. Poll. Bull. 1977, 8, 229–231. [Google Scholar] [CrossRef]
- Ueki, T.; Michibata, H. Molecular mechanism of the transport and reduction pathway of vanadium in ascidians. Coord. Chem. Rev. 2011, 255, 2249–2257. [Google Scholar] [CrossRef]
- Michibata, H.; Miyamoto, T.; Sakurai, H. Purification of vanadium binding substance from the blood cells of the tunicate, Ascidiasydneiensissamea. Chem. Bioph. Res. Co. 1986, 141, 251–257. [Google Scholar] [CrossRef]
- Kosyanenko, A.A.; Ivanenko, N.V.; Yarusova, S.B.; Rakov, V.A.; Kosyanenko, D.V.; Zhukovskaya, A.F.; Zhevtun, I.G. The metal content in tissues of the Ascidian Halocynthia aurantium Pallas, 1787 (Ascidiacea: Stolidobranchia) from coastal waters of the sea of japan. Russ. J. Mar. Biol. 2021, 47, 357–363. [Google Scholar] [CrossRef]
- Carroll, A.R.; Healy, P.C.; Quinn, R.J.; Tranter, C.J. Prunolides A, B, and C: Novel tetraphenolic bis-spiroketals from the Australian Ascidian Synoicum prunum. J. Org. Chem. 1999, 64, 2680–2682. [Google Scholar] [CrossRef]
- Wang, C.J.; Su, J.Y.; Zeng, L.M. Chemical constituents of the tunicate Styela plicata from the Dayawan Bay. Chin. J. Anal. Chem. 2001, 29, 1313–1314. [Google Scholar]
- Park, C.-K.; Matsui, T.; Watanabe, K.; Yamaguchi, K.; Konosu, S. Extractive nitrogenous constituents of two species of edible ascidians Styela clava and S. plicata. Nippon. Suisan Gakk. 1991, 57, 169–174. [Google Scholar] [CrossRef]
- Vafidis, D.; Antoniadou, C.; Chintiroglou, C. Population dynamics, allometric relationships and reproductive status of Microcosmus sabatieri (Tunicata: Ascidiacea) in the Aegean Sea. J. Mar. Biol. Assoc. UK 2008, 88, 1043–1051. [Google Scholar] [CrossRef]
- Heron, A.C.; McWilliam, P.S.; DalPont, G. Length-weight relation in the salp Thalia democratica and potential of salps as a source of food. Mar. Ecol. Prog. Ser. 1988, 42, 125–132. [Google Scholar] [CrossRef]
- Aas, T.S.; Ytrestøyl, T.; Åsgård, T. Utilization of feed resources in the production of Atlantic salmon (Salmo salar) in Norway: An update for 2016. Aquacult. Rep. 2019, 15, 100216. [Google Scholar] [CrossRef]
- Kousoulaki, K.; Baeverfjord, G.; Nygaard, H.; Noren, F. Cultivation of tunicates as novel ingredient in fish feed. Nofima Rep. K-33 2020, 35. [Google Scholar]
- Dou, X.; Dong, B. Origins and bioactivities of natural compounds derived from marine ascidians and their symbionts. Mar. Drugs 2019, 17, 670. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1995, 12, 223–269. [Google Scholar] [CrossRef]
- Watters, D.J.; van den Brenk, A.L. Toxins from ascidians. Toxicon 1993, 31, 1349–1372. [Google Scholar] [CrossRef]
- Ito, M.; Yokoi, K.; Inoue, T.; Asano, S.; Hatano, R.; Shinohara, R.; Itonori, S.; Sugita, M. Sphingomyelins in four ascidians, Ciona intestinalis, Halocynthia roretzi, Halocynthia aurantium, and Styela clava. J. Oleo Sci. 2009, 58, 473–480. [Google Scholar] [CrossRef]
- Cai, M.; Sugumaran, M.; Robinson, W.E. The crosslinking and antimicrobial properties of tunichrome. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2008, 151, 110–117. [Google Scholar] [CrossRef]
- López-Legentil, S.; Turon, X. How do morphotypes and chemotypes relate to genotypes? The colonial ascidian Cystodytes (Polycitoridae). Zool. Scr. 2005, 34, 3–14. [Google Scholar] [CrossRef]
- Wipf, P.; Uto, Y. Total synthesis and revision of stereochemistry of the marine metabolite trunkamide A. J. Org. Chem. 2000, 65, 1037–1049. [Google Scholar] [CrossRef] [PubMed]
- Perez, L.J.; Faulkner, D.J. Bistratamides E-J, modified cyclic hexapeptides from the Philippines ascidian Lissoclinum bistratum. J. Nat. Prod. 2003, 66, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Yonezawa, Y.; Tani, N.; Shin, C.G. Total synthesis of bistratamides G and H from various kinds of δala and δabu-containing oligopeptides. Bull. Chem. Soc. Jpn. 2005, 78, 1492–1499. [Google Scholar] [CrossRef]
- Delfourne, E.; Roubin, C.; Bastide, J. The first synthesis of the pentacyclic pyridoacridine marine alkaloids: Arnoamines A and B. J. Org. Chem. 2000, 65, 5476–5479. [Google Scholar] [CrossRef] [PubMed]
- Trieu, T.H.; Dong, J.; Zhang, Q.; Zheng, B.; Meng, T.-Z.; Lu, X.; Shi, X.-X. Total syntheses of Eudistomins Y1–Y7 by an efficient one-pot process of tandem benzylic oxidation and aromatization of 1-Benzyl-3,4-dihydro-β-Carbolines. Eur. J. Org. Chem. 2013, 2013, 3271–3277. [Google Scholar] [CrossRef]
- Kaleemullah Khan, B.; Praba, L.K.; Abdul Jaffar Ali, H. Ascidians as bioresources: An anti-inflammatory activity of colonial ascidians Eudistoma ovatum and Didemnum perlucidum. J. Biol. Act. Prod. Nat. 2021, 11, 254–268. [Google Scholar] [CrossRef]
- Jumeri; Kim, S.M. Antioxidant and anticancer activities of enzymatic hydrolysates of solitary tunicate (Styela clava). Food Sci. Biotechnol. 2011, 20, 1075. [Google Scholar] [CrossRef]
- Gandra, M.; Vavalcante, M.C.M.; Pavão, M.S.G. Anticoagulant sulfated glycosaminoglycans in the tissues of the primitive chordate Styela plicata (Tunicata). Glycobiology 2000, 10, 1333–1340. [Google Scholar] [CrossRef]
- Dagorn, F.; Dumay, J.; Wielgosz-Collin, G.; Rabesaotra, V.; Viau, M.; Monniot, C.; Biard, J.-F.; Barnathan, G. Phospholipid distribution and phospholipid fatty acids of the tropical tunicates Eudistoma sp. and Leptoclinides uniorbis. Lipids 2010, 45, 253–261. [Google Scholar] [CrossRef]
- Lloret, J. Human health benefits supplied by Mediterranean marine biodiversity. Marine Poll. Bull. 2010, 60, 1640–1646. [Google Scholar] [CrossRef]
- Jiang, M.; Chen, S.; Guo, H.; Liu, L. Research progress on bioactive secondary metabolites from marine ascidian derived-microorganisms. Chin. J. Mar. Drugs 2023, 42, 69–81. [Google Scholar]
- Tapiolas, D.M.; Bowden, B.F.; Abou-Mansour, E.; Willis, R.H.; Doyle, J.R.; Muirhead, A.N.; Liptrot, C.; Llewellyn, L.E.; Wolff, C.W.W.; Wright, A.D.; et al. Eusynstyelamides A, B, and C, nNOS inhibitors, from the Ascidian Eusynstyela latericius. J. Nat. Prod. 2009, 72, 1115–1120. [Google Scholar] [CrossRef] [PubMed]
- Lindquist, N.; Hay, M.E.; Fenical, W. Defense of ascidians and their conspicuous larvae: Adult vs. larval chemical defenses. Ecol. Monogr. 1992, 62, 547–568. [Google Scholar] [CrossRef]
- Guo, J.; Ran, H.; Zeng, J.; Liu, D.; Xin, Z. Tafuketide, a phylogeny-guided discovery of a new polyketide from Talaromyces funiculosus Salicorn 58. Appl. Microbiol. Biot. 2016, 100, 5323–5338. [Google Scholar] [CrossRef] [PubMed]
- Bai, T.; Quan, Z.; Zhai, R.; Awakawa, T.; Matsuda, Y.; Abe, I. Elucidation and heterologous reconstitution of Chrodrimanin B biosynthesis. Org. Lett. 2018, 20, 7504–7508. [Google Scholar] [CrossRef] [PubMed]
- Jayanetti, D.R.; Braun, D.R.; Barns, K.J.; Rajski, S.R.; Bugni, T.S. Bulbiferates A and B: Antibacterial acetamidohydroxybenzoates from a marine proteobacterium, Microbulbifer sp. J. Nat. Prod. 2019, 82, 1930–1934. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-C.; Lu, C.-K.; Chiang, Y.-R.; Wang, G.-J.; Ju, Y.-M.; Kuo, Y.-H.; Lee, T.-H. Diterpene glycosides and polyketides from Xylotumulus gibbisporus. J. Nat. Prod. 2014, 77, 751–757. [Google Scholar] [CrossRef]
- Wyche, T.P.; Alvarenga, R.F.R.; Piotrowski, J.S.; Duster, M.N.; Warrack, S.R.; Cornilescu, G.; De Wolfe, T.J.; Hou, Y.; Braun, D.R.; Ellis, G.A.; et al. Chemical genomics, structure elucidation, and in vivo studies of the marine-derived anticlostridial ecteinamycin. ACS Chem. Biol. 2017, 12, 2287–2295. [Google Scholar] [CrossRef]
- Yamazaki, H.; Nakayama, W.; Takahashi, O.; Kirikoshi, R.; Izumikawa, Y.; Iwasaki, K.; Toraiwa, K.; Ukai, K.; Rotinsulu, H.; Wewengkang, D.S.; et al. Verruculides A and B, two new protein tyrosine phosphatase 1B inhibitors from an Indonesian ascidian-derived Penicillium verruculosum. Bioorg. Med. Chem. Lett. 2015, 25, 3087–3090. [Google Scholar] [CrossRef]
- Wyche, T.; Standiford, M.; Hou, Y.; Braun, D.; Johnson, D.; Johnson, J.; Bugni, T. Activation of the nuclear factor E2-related factor 2 pathway by novel natural products Halomadurones A–D and a synthetic analogue. Mar. Drugs 2013, 11, 5089–5099. [Google Scholar] [CrossRef]
- Ayuningrum, D.; Liu, Y.; Riyanti; Sibero, M.T.; Kristiana, R.; Asagabaldan, M.A.; Wuisan, Z.G.; Trianto, A.; Radjasa, O.K.; Sabdono, A.; et al. Tunicate-associated bacteria show a great potential for the discovery of antimicrobial compounds. PLoS ONE 2019, 14, e0213797. [Google Scholar] [CrossRef] [PubMed]
- Burke, C.; Thomas, T.; Egan, S.; Kjelleberg, S. The use of functional genomics for the identification of a gene cluster encoding for the biosynthesis of an antifungal tambjamine in the marine bacterium Pseudoalteromonas tunicata. Environ. Microbiol. 2007, 9, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Liao, Z.; Zhou, M.; Wang, G.; Wu, Y.; Gao, S.; Qiu, D.; Liu, X.; Lin, T.; Chen, H. Cytoskyrin C, an unusual asymmetric bisanthraquinone with cage-like skeleton from the endophytic fungus Diaporthe sp. Fitoterapia 2018, 128, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Takagi, M.; Motohashi, K.; Izumikawa, M.; Khan, S.T.; Hwang, J.-H.; Shin-Ya, K. JBIR-66, a new metabolite isolated from tunicate-derived Saccharopolyspora sp. SS081219JE-28. Biosci. Biotech. Bioch. 2010, 74, 2355–2357. [Google Scholar] [CrossRef] [PubMed]
- Sung, A.A.; Gromek, S.M.; Balunas, M.J. Upregulation and identification of antibiotic activity of a marine-derived Streptomyces sp. via co-cultures with human pathogens. Mar. Drugs 2017, 15, 250. [Google Scholar] [CrossRef] [PubMed]
- Raub, M.F.; Cardellina, J.H.; Spande, T.F. The piclavines, antimicrobial indolizidines from the tunicate Clavelina picta. Tetrahedron Lett. 1992, 33, 2257–2260. [Google Scholar] [CrossRef]
- Garo, E.; Starks, C.M.; Jensen, P.R.; Fenical, W.; Lobkovsky, E.; Clardy, J. Trichodermamides A and B, cytotoxic modified dipeptides from the marine-derived fungus Trichoderma virens. J. Nat. Prod. 2003, 66, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Shirai, M.; Okuda, M.; Motohashi, K.; Imoto, M.; Furihata, K.; Matsuo, Y.; Katsuta, A.; Shizuri, Y.; Seto, H. Terpenoids produced by actinomycetes: Isolation, structural elucidation and biosynthesis of new diterpenes, gifhornenolones A and B from Verrucosispora gifhornensis YM28-088. J. Antibiot. 2010, 63, 245–250. [Google Scholar] [CrossRef]
- Ebada, S.S.; Fischer, T.; Hamacher, A.; Du, F.-Y.; Roth, Y.O.; Kassack, M.U.; Wang, B.-G.; Roth, E.H. Psychrophilin E, a new cyclotripeptide, from co-fermentation of two marine alga-derived fungi of the genus Aspergillus. Nat. Prod. Rep. 2014, 28, 776–781. [Google Scholar] [CrossRef]
- Agrawal, S.; Acharya, D.; Adholeya, A.; Barrow, C.J.; Deshmukh, S.K. Nonribosomal peptides from marine microbes and their antimicrobial and anticancer potential. Front. Pharmacol. 2017, 8, 828. [Google Scholar] [CrossRef]
- Fatima, I.; Kanwal, S.; Mahmood, T. Natural products mediated targeting of virally infected cancer. Dose-Response 2019, 17, 1559325818813227. [Google Scholar] [CrossRef] [PubMed]
- Casertano, M.; Menna, M.; Imperatore, C. The ascidian-derived metabolites with antimicrobial properties. Antibiotics 2020, 9, 510. [Google Scholar] [CrossRef] [PubMed]
- Raub, M.F.; Cardellina, J.H.I.; Choudhary, M.I.; Ni, C.Z.; Clardy, J.; Alley, M.C. Cheminform abstract: Clavepictines A and B: Cytotoxic Quinolizidines from the Tunicate Clavelina picta. J. Am. Chem. Soc. 1991, 22, 3178–3180. [Google Scholar] [CrossRef]
- Franks, A.; Haywood, P.; Holmström, C.; Egan, S.; Kjelleberg, S.; Kumar, N. Isolation and structure elucidation of a novel yellow pigment from the marine bacterium Pseudoalteromonas tunicata. Molecules 2005, 10, 1286–1291. [Google Scholar] [CrossRef] [PubMed]
- Galinier, R.; Roger, E.; Sautiere, P.E.; Aumelas, A.; Banaigs, B.; Mitta, G. Halocyntin and papillosin, two new antimicrobial peptides isolated from hemocytes of the solitary tunicate, Halocynthia papillosa. J. Pept. Sci. 2009, 15, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Abourriche, A.; Abboud, Y.; Maoufoud, S.; Mohou, H.; Seffaj, T.; Charrouf, M.; Chaib, N.; Bennamara, A.; Bontemps, N.; Francisco, C. Cynthichlorine: A bioactive alkaloid from the tunicate Cynthia savignyi. Il Farm. 2003, 58, 1351–1354. [Google Scholar] [CrossRef] [PubMed]
- Chithra Lekha Devi, S.K.; Rajasekharan, K.N.; Padmakumar, K.; Tanaka, J.; Higa, T. Biological Activity and Chemistry of the Compound Ascidian Eusynstyela tincta. In The Biology of Ascidians; Sawada, H., Yokosawa, H., Lambert, C.C., Eds.; Springer: Tokyo, Japan, 2001; pp. 341–354. [Google Scholar]
- Wang, W.; Kim, H.; Nam, S.J.; Rho, B.J.; Kang, H. Antibacterial butenolides from the Korean tunicate Pseudodistoma antinboja. J. Nat. Prod. 2012, 75, 2049–2054. [Google Scholar] [CrossRef] [PubMed]
- Menzel, L.P.; Lee, I.H.; Sjostrand, B.; Lehrer, R.I. Immunolocalization of clavanins in Styela clava hemocytes. Dev. Comp. Immunol. 2002, 26, 505–515. [Google Scholar] [CrossRef]
- Charyulu, G.A.; McKee, T.C.; Ireland, C.M. Diplamine, a cytotoxic polyaromatic alkaloid from the tunicate Diplosoma sp. Tetrahedron Lett. 1989, 30, 4201–4202. [Google Scholar] [CrossRef]
- Azumi, K.; Yokosawa, H.; Ishii, S. Halocyamines: Novel antimicrobial tetrapeptide-like substances isolated from the hemocytes of the solitary ascidian Halocynthia roretzi. Biochemistry 1990, 29, 159–165. [Google Scholar] [CrossRef]
- Jang, W.S.; Kim, K.N.; Lee, Y.S.; Nam, M.H.; Lee, I.H. Halocidin: A new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. FEBS Lett. 2002, 521, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Fedders, H.; Michalek, M.; Grötzinger, J.; Leippe, M. An exceptional salt-tolerant antimicrobial peptide derived from a novel gene family of haemocytes of the marine invertebrate Ciona intestinalis. Biochem. J. 2008, 416, 65–75. [Google Scholar] [CrossRef]
- Dewapriya, P.; Khalil, Z.G.; Prasad, P.; Salim, A.A.; Cruz-Morales, P.; Marcellin, E.; Capon, R.J. Talaropeptides A-D: Structure and biosynthesis of extensively N-methylated linear peptides from an australian marine tunicate-derived Talaromyces sp. Front. Chem. 2018, 6, 394. [Google Scholar] [CrossRef] [PubMed]
- Shaala, L.; Youssef, D. Identification and bioactivity of compounds from the fungus Penicillium sp. CYE-87 Isolated from a marine tunicate. Mar. Drugs 2015, 13, 1698–1709. [Google Scholar] [CrossRef]
- James, S.G.; Holmström, C.; Kjelleberg, S. Purification and characterization of a novel antibacterial protein from the marine bacterium D2. Appl. Environ. Microb. 1996, 62, 2783–2788. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, R.W.; Davidson, B.S. Didemnolines A-D, new N9-substituted β-carbolines from the marine ascidian Didemnum sp. Tetrahedron 1995, 51, 10125–10130. [Google Scholar] [CrossRef]
- Schupp, P.; Poehner, T.; Edrada, R.; Ebel, R.; Berg, A.; Wray, V.; Proksch, P. Eudistomins W and X, two new β-Carbolines from the Micronesian Tunicate Eudistoma sp. J. Nat. Prod. 2003, 66, 272–275. [Google Scholar] [CrossRef]
- Asolkar, R.N.; Kirkland, T.N.; Jensen, P.R.; Fenical, W. Arenimycin, an antibiotic effective against rifampin- and methicillin-resistant Staphylococcus aureus from the marine actinomycete Salinispora arenicola. J. Antibiot. 2010, 63, 37–39. [Google Scholar] [CrossRef]
- Appleton, D.R.; Pearce, A.N.; Copp, B.R. anti-Tuberculosis natural products: Synthesis and biological evaluation of pyridoacridine alkaloids related to ascididemin. Tetrahedron 2010, 66, 4977–4986. [Google Scholar] [CrossRef]
- Zhu, Y.; Han, S.; Li, J.; Gao, H.; Dong, B. Aqueous extract of sea squirt (Halocynthia roretzi) with potent activity against human cancer cells acts synergistically with doxorubicin. Mar. Drugs 2022, 20, 284. [Google Scholar] [CrossRef]
- Fayette, J.; Coquard, I.R.; Alberti, L.; Boyle, H.; Méeus, P.; Decouvelaere, A.-V.; Thiesse, P.; Sunyach, M.-P.; Ranchère, D.; Blay, J.-Y. ET-743: A novel agent with activity in soft-tissue sarcomas. Curr. Opin. Oncol. 2006, 18, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Mateos, M.-V.; Cibeira, M.T.; Richardson, P.; Blade, J.; Prosper, F.; Oriol, A.; de la Rubia, J.; Alegre, A.; Lahuerta, J.J.; García-Sanz, R.; et al. Final results of a phase ii trial with plitidepsin (aplidin) alone and in combination with dexamethasone in patients with relapsed/refractory multiple myeloma. Blood 2008, 112, 3700. [Google Scholar] [CrossRef]
- Guan, Y.; Sakai, R.; Rinehart, K.L.; Wang, A.H.J. Molecular and crystal structures of ecteinascidins: Potent antitumor compounds from the Caribbean tunicate Ecteinascidia turbinata. J. Biomol. Struct. Dyn. 1993, 10, 793–818. [Google Scholar] [PubMed]
- Roylance, R.; Seddon, B.; Mctiernan, A.; Sykes, K.; Daniels, S.; Whelan, J. Experience of the use of Trabectedin (ET-743, Yondelis) in 21 patients with pre-treated advanced sarcoma from a single centre. Clin. Oncol. 2007, 19, 572–576. [Google Scholar] [CrossRef]
- Blackman, A.J.; Li, C.; Hockless, D.C.; Skelton, B.W.; White, A.H. Cylindricines A and B, novel alkaloids from the ascidian Clavelina cylindrica. Tetrahedron 1993, 49, 8645–8656. [Google Scholar] [CrossRef]
- Jimenez, P.C.; Wilke, D.V.; Ferreira, E.G.; Takeara, R.; De Moraes, M.O.; Silveira, E.R.; Da Cruz Lotufo, T.M.; Lopes, N.P.; Costa-Lotufo, L.V. Structure elucidation and anticancer activity of 7-oxostaurosporine derivatives from the brazilian endemic tunicate Eudistoma vannamei. Mar. Drugs 2012, 10, 1092–1102. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Pons, L.; Carbone, M.; Vázquez, J.; Rodríguez, J.; Nieto, R.M.; Varela, M.M.; Gavagnin, M.; Avila, C. Natural products from antarctic colonial ascidians of the genera aplidium and synoicum: Variability and defensive role. Mar. Drugs 2012, 10, 1741–1764. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 4–14. [Google Scholar] [CrossRef]
- Watanabe, H.; Okawara, M.; Matahira, Y.; Mano, T.; Wada, T.; Suzuki, N.; Takara, T. The Impact of Ascidian (Halocynthia roretzi)-derived plasmalogen on cognitive function in healthy humans: A randomized, double-blind, placebo-controlled trial. J. Oleo Sci. 2020, 69, 1597–1607. [Google Scholar] [CrossRef]
- Mikami, N.; Hosokawa, M.; Miyashita, K. Effects of sea squirt (Halocynthia roretzi) lipids on white adipose tissue weight and blood glucose in diabetic/obese KK-Ay mice. Mol. Med. Rep. 2010, 3, 449–453. [Google Scholar]
- Li, J.L.; Kim, E.L.; Wang, H.; Hong, J.; Shin, S.; Lee, C.-K.; Jung, J.H. Epimeric methylsulfinyladenosine derivatives from the marine ascidian Herdmania momus. Bioorg. Med. Chem. Lett. 2013, 23, 4701–4704. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, A.S.; Ananthan, G. Alpha-amylase inhibitory activities of ascidians in the treatment of diabetes mellitus. Bangl. J. Pharmacol. 2014, 9, 498–500. [Google Scholar] [CrossRef]
- Zhu, Y.; Gao, H.; Han, S.; Li, J.; Wen, Q.; Dong, B. Antidiabetic activity and metabolite profiles of ascidian Halocynthia roretzi. J. Funct. Foods 2022, 93, 105095. [Google Scholar] [CrossRef]
- Elya, B.; Yasman; Edawati, Z. Antioxidant activity of the ascidian marine invertebrates, Didemnum sp. Int. J. App. Pharm. 2018, 10, 81–86. [Google Scholar] [CrossRef]
- Krishnaiah, P.; Reddy, V.L.N.; Venkataramana, G.; Ravinder, K.; Srinivasulu, M.; Raju, T.V.; Ravikumar, K.; Chandrasekar, D.; Ramakrishna, S.; Venkateswarlu, Y. New lamellarin alkaloids from the Indian Ascidian Didemnum obscurum and their antioxidant properties. J. Nat. Prod. 2004, 67, 1168–1171. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Chen, Q.; Dai, Y.; Huang, Y.; Hou, Q.; Huang, Y.; Zhong, K.; Huang, Y.; Gao, H.; Bu, Q. Identification of novel antioxidant peptides from sea squirt (Halocynthia roretzi) and its neuroprotective effect in 6-OHDA-induced neurotoxicity. Food Funct. 2022, 13, 6008–6021. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.R.M.; Bezerra, W.P.; Souto, J.T. Marine alkaloids with anti-inflammatory activity: Current knowledge and future perspectives. Mar. Drugs 2020, 18, 147. [Google Scholar] [CrossRef] [PubMed]
- Belmiro, C.L.R.; Castelo-Branco, M.T.L.; Melim, L.M.C.; Schanaider, A.; Elia, C.; Madi, K.; Pavão, M.S.G.; de Souza, H.S.P. Unfractionated heparin and new heparin analogues from ascidians (chordate-tunicate) ameliorate colitis in rats. J. Biol. Chem. 2009, 284, 11267–11278. [Google Scholar] [CrossRef]
- Sauviat, M.-P.; Vercauteren, J.; Grimaud, N.; Jugé, M.; Nabil, M.; Petit, J.-Y.; Biard, J.-F. Sensitivity of cardiac background inward rectifying K+ outward current (IK1) to the alkaloids Lepadiformines A, B, and C. J. Nat. Prod. 2006, 69, 558–562. [Google Scholar] [CrossRef]
- Pearce, A.N.; Chia, E.W.; Berridge, M.V.; Maas, E.W.; Page, M.J.; Harper, J.L.; Webb, V.L.; Copp, B.R. Orthidines A–E, tubastrine, 3,4-dimethoxyphenethyl-β-guanidine, and 1,14-sperminedihomovanillamide: Potential anti-inflammatory alkaloids isolated from the New Zealand ascidian Aplidium orthium that act as inhibitors of neutrophil respiratory burst. Tetrahedron 2008, 64, 5748–5755. [Google Scholar] [CrossRef]
- Pearce, A.N.; Chia, E.W.; Berridge, M.V.; Clark, G.R.; Harper, J.L.; Larsen, L.; Maas, E.W.; Page, M.J.; Perry, N.B.; Webb, V.L.; et al. Anti-inflammatory thiazine alkaloids isolated from the New Zealand Ascidian Aplidium sp.: Inhibitors of the neutrophil respiratory burst in a model of gouty arthritis. J. Nat. Prod. 2007, 70, 936–940. [Google Scholar] [CrossRef] [PubMed]
- Appleton, D.R.; Page, M.J.; Lambert, G.; Berridge, M.V.; Copp, B.R. Kottamides A−D: Novel bioactive imidazolone-containing alkaloids from the New Zealand ascidian Pycnoclavella kottae. J. Org. Chem. 2002, 67, 5402–5404. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Xiao, B.; Park, M.; Yoo, E.S.; Shin, S.; Hong, J.; Chung, H.Y.; Kim, H.S.; Jung, J.H. PPAR-γ agonistic metabolites from the Ascidian Herdmania momus. J. Nat. Prod. 2012, 75, 2082–2087. [Google Scholar] [CrossRef] [PubMed]
- Cooreman, K.; De Spiegeleer, B.; Van Poucke, C.; Vanavermaete, D.; Delbare, D.; Wynendaele, E.; De Witte, B. Emerging pharmaceutical therapies of Ascidian-derived natural products and derivatives. Environ. Toxicol. Phar. 2023, 102, 104254. [Google Scholar] [CrossRef] [PubMed]
- Millward, M.J.; House, C.; Bowtell, D.; Webster, L.; Olver, I.N.; Gore, M.; Copeman, M.; Lynch, K.; Yap, A.; Wang, Y.; et al. The multikinase inhibitor midostaurin (PKC412A) lacks activity in metastatic melanoma: A phase IIA clinical and biologic study. Br. J. Cancer 2006, 95, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Petty, W.J.; Sands, J.M. An overview of lurbinectedin as a new second-line treatment option for small cell lung cancer. Ther. Adv. Med. Oncol. 2021, 13, 175883592110205. [Google Scholar] [CrossRef] [PubMed]
- Baer, M.R. Chapter 6—FLT3 inhibitors as sensitizing agents for cancer chemotherapy. In Protein Kinase Inhibitors as Sensitizing Agents for Chemotherapy; Chen, Z.-S., Yang, D.-H., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 4, pp. 67–88. [Google Scholar]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R.; Blunt, J.W. Marine natural products. Nat. Prod. Rep. 2013, 30, 237–323. [Google Scholar] [CrossRef]
- Maroney, A.C.; Finn, J.P.; Connors, T.J.; Durkin, J.T.; Angeles, T.; Gessner, G.; Xu, Z.; Meyer, S.L.; Savage, M.J.; Greene, L.A.; et al. CEP-1347 (KT7515), a semisynthetic inhibitor of the mixed lineage kinase family. J. Biol. Chem. 2001, 276, 25302–25308. [Google Scholar] [CrossRef]
- Huang, T.; Wang, X.; Guo, W.; Lin, S. 2.15—Tryptophan-derived microbial alkaloids. In Comprehensive Natural Products III; Liu, H.-W., Begley, T.P., Eds.; Elsevier: Oxford, UK, 2020; pp. 393–445. [Google Scholar]
- Fischer, T.; Stone, R.M.; DeAngelo, D.J.; Galinsky, I.; Estey, E.; Lanza, C.; Fox, E.; Ehninger, G.; Feldman, E.J.; Schiller, G.J.; et al. Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J. Clin. Oncol. 2010, 28, 4339–4345. [Google Scholar] [CrossRef]
Tunicates Species | Ciona intestinalis | Ascidia sp. | Ciona intestinalis | Halocynthia roretzi | Salpa thompsoni | Styela clava | Pyura michaelseni |
---|---|---|---|---|---|---|---|
Crude protein (%) | 30.86 | 41.34 | 51.82 | 43.05 | 4.40 | 8.30 | 12.30 |
Crude lipid (%) | - | - | - | - | - | 2.10 | 1.40 |
Cellulose (%) | 57.67 | 37.57 | 37.29 | 52.59 | - | - | - |
Lipids calculated by fatty acid (%) | 0.35 | 0.98 | 0.42 | 0.18 | 5.70 | - | - |
Total sugar (%) | - | - | - | - | - | 1.50 | 2.70 |
Fatty Acid (%) | Styela plicata | Ascidia sp. | Ciona intestinalis | Halocynthia roretzi | Halocynthia aurantium | Cystodytes violatinctus | Pyrosoma atlanticum | Cystoseira tamariscifolia | Cynthia squamulata |
---|---|---|---|---|---|---|---|---|---|
C12:0 | - | - | - | - | - | 1.20 | - | 2.55 | 2.36 |
C14:0 | 0.68 | 3.76 | 2.08 | 4.10 | 4.90 | 4.50 | 6.93 | 3.40 | 3.71 |
C15:0 | 2.04 | 1.18 | 0.83 | 6.10 | 4.60 | 1.50 | 1.40 | 4.37 | 4.69 |
C16:1 | 4.08 | 6.35 | 8.33 | 2.10 | - | 1.26 | 2.51 | 5.36 | 6.14 |
C16:0 | 15.31 | 20.94 | 11.67 | 25.40 | 18.10 | 21.20 | 16.48 | 5.08 | 5.83 |
C17:0 | 7.48 | 1.18 | 1.25 | 7.20 | 6.50 | 4.80 | 0.77 | 6.22 | 6.47 |
C18:4 | 0.34 | 1.41 | 0.83 | - | - | - | 3.95 | 11.71 | 12.14 |
C18:3 | - | - | - | - | - | - | 0.11 | 9.84 | 9.76 |
C18:2 | 1.36 | 0.71 | 1.67 | - | - | - | 2.34 | 9.09 | 8.97 |
C18:1 | 15.65 | 25.41 | 14.58 | - | - | 20.0 | 6.78 | 8.25 | 8.85 |
C18:0 | 11.22 | 12.71 | 6.25 | 16.80 | 18.60 | 24.80 | 1.19 | 7.75 | 8.53 |
C19:0 | - | - | - | - | 2.30 | 3.60 | - | - | - |
C20:5 | 25.85 | 6.82 | 24.58 | - | - | - | 0.19 | 21.41 | 20.74 |
C20:4 | 0.34 | 2.35 | 0.42 | - | - | - | - | - | - |
C20:2 | 1.7 | 1.65 | 0.83 | - | - | - | 0.13 | - | - |
C20:1 | 3.06 | 7.76 | 10.83 | - | - | - | 0.75 | - | - |
C20:0 | 0.34 | 0.47 | 1.67 | 2.50 | 5.00 | 3.10 | 0.19 | - | 17.35 |
C21:0 | - | - | - | - | - | 2.30 | - | - | - |
C22:6 | 5.78 | 2.59 | 12.92 | - | - | - | - | - | 40.13 |
C22:1 | 3.4 | 2.12 | 1.33 | 4.10 | - | - | - | - | - |
C22:0 | 1.36 | 2.59 | 0.33 | - | 25.80 | 0.40 | 0.06 | - | - |
C23:0 | - | - | - | - | 4.50 | - | - | - | - |
C24:0 | - | - | - | - | 2.10 | - | - | - | - |
SFA | 38.43 | 42.83 | 24.08 | - | - | - | - | - | - |
MUFA | 26.19 | 41.64 | 35.07 | - | - | - | - | - | - |
PUFA | 35.37 | 15.53 | 41.25 | - | - | - | - | - | - |
UFA | 61.56 | 57.17 | 76.32 | - | - | - | - | - | - |
ω-3 ratio | 31.97 | 10.82 | 38.33 | - | - | - | - | - | - |
ω-6 ratio | 3.4 | 4.71 | 2.92 | - | - | - | - | - | - |
ω-6/ω-3 ratio | 0.11 | 0.44 | 0.08 | - | - | - | - | - | - |
Tunicate Species | Bioactive Compound | Activity against | Reference |
---|---|---|---|
Cynthia savignyi | Cynthichlorine | A. radiobacter, E. coli, P. aeruginosa, Botrytis cinerea, Verticillium albo atrum | [88] |
Eusynstyela tincta | Clavanins | E. coli, L. monocytogenes, C. albicans | [89] |
Pseudodistoma antinboja | Cadiolides J–M | Gram-positive bacteria | [90] |
Styela clava | Clavanins A–D | Pathogenic L. monocytogenes, C. albicans | [91] |
Diplosoma sp. | Diplamine | E. coli, S. aureus | [92] |
Eusynstyela latericius | Eusynstyelamides A and B | S. aureus | [64] |
Halocynthia papillosa | Halocyntin and papillosin | Gram-positive and Gram-negative marine bacteria | [87] |
Halocynthia roretzi | Halocyamines A and B | Bacteria and yeasts | [93] |
Halocynthia aureum | Halocidin | Methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa | [94] |
Eusynstyela tincta | Kuanoniamine A | B. subtilis, E. coli, S. aureus, V. cholerae, and V. parahaemolyticus and fungi A. fumigatus and C. albicans | [89] |
Ciona intestinalis | Salt-tolerant peptide | Gram-negative and Gram-positive bacteria | [95] |
unidentified tunicate | Talaropeptides A and B | Gram-positive bacteria, Bacillus subtilis | [96] |
Didemnum sp. | Terretriones C and D | C. albicans | [97] |
Pseudoalteromonas tunicata | 190-kDa protein | Marine isolates | [98] |
Bioactive Compound | Tunicate Species | Natural Product or Derivative | Biosynthetic Class of Agent | Molecular Target | Disease Area | References |
---|---|---|---|---|---|---|
Trabectedin (ET-743/Ecteinascidine 743/Yondelis©) | Ecteinascidia turbinate | Natural product | NRPS-derived alkaloid | Minor groove of DNA | Cancer | [128] |
Lurbinectedin (PM01183/Zepzelca©) | Ecteinascidia turbinat | Derivative; trabectedin analog | NRPS-alkaloid | Minor groove of DNA and nucleotide excision repair | Cancer | [129] |
Midostaurine (PKC-412/CGP41251/Rydapt©) | Tunicates | Semisynthetic analogue of staurosporine | Indolocarbazole | Flt-3 and PKC | Cancer | [130] |
Plitidepsin (dehydrodidemnin B/Aplidine©) | Aplidium albicans | Natural product | Cyclic depsipeptide | Rac1 and JNK activation | Cancer | [104,131] |
Lestaurtinib (CEP-701) | Tunicates | Synthetic analogue of Staurosporine | Indolocarbazole | Flt-3, JAK-2, Trk-A, Trk-B, and Trk-C | Cancer | [132] |
Enzastaurin (LY317615) | Ascidian | Synthetic analogue of Staurosporine | Indolocarbazole | PKCβ and GSK-3β | Cancer | NCT00332202 |
Becatecarin (NSC 655649) | Tunicates | Synthetic analogue of Staurosporine | Indolocarbazole | Potent stabilizers of DNA | Cancer | [133] |
Didemnin B | Trididemnum solidum | Natural product | Cyclic depsipeptide | Anti-viral agent | Cancer | [134] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, P.; Khong, H.Y.; Mao, W.; Chen, X.; Bao, L.; Wen, X.; Xu, Y. Tunicates as Sources of High-Quality Nutrients and Bioactive Compounds for Food/Feed and Pharmaceutical Applications: A Review. Foods 2023, 12, 3684. https://doi.org/10.3390/foods12193684
Gao P, Khong HY, Mao W, Chen X, Bao L, Wen X, Xu Y. Tunicates as Sources of High-Quality Nutrients and Bioactive Compounds for Food/Feed and Pharmaceutical Applications: A Review. Foods. 2023; 12(19):3684. https://doi.org/10.3390/foods12193684
Chicago/Turabian StyleGao, Pingping, Heng Yen Khong, Wenhui Mao, Xiaoyun Chen, Lingxiang Bao, Xinru Wen, and Yan Xu. 2023. "Tunicates as Sources of High-Quality Nutrients and Bioactive Compounds for Food/Feed and Pharmaceutical Applications: A Review" Foods 12, no. 19: 3684. https://doi.org/10.3390/foods12193684
APA StyleGao, P., Khong, H. Y., Mao, W., Chen, X., Bao, L., Wen, X., & Xu, Y. (2023). Tunicates as Sources of High-Quality Nutrients and Bioactive Compounds for Food/Feed and Pharmaceutical Applications: A Review. Foods, 12(19), 3684. https://doi.org/10.3390/foods12193684