The Non-Nutritional Factor Types, Mechanisms of Action and Passivation Methods in Food Processing of Kidney Bean (Phaseolus vulgaris L.): A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Search and Study Selection
2.2. Data Extraction
3. Results
3.1. Eligibility of Studies
3.2. Types and Action Mechanism of Non-Nutritional Factors in KBs
3.2.1. Lectin
3.2.2. Trypsin Inhibitor
3.2.3. Phytic Acid
3.2.4. Tannin
3.2.5. Saponin
3.3. Control Measures of Non-Nutritional Factors in Food Processing
3.3.1. Elimination of Heat-Sensitive Non-Nutritional Factors
3.3.2. Elimination of Heat-Stable Non-Nutritional Factors
3.3.3. Fermentation Treatment
4. Conclusions and Prospective Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Montanha, G.S.; Romeu, S.L.Z.; Marques, J.P.R.; Rohr, L.A.; de Almeida, E.; dos Reis, A.R.; Linhares, F.S.; Sabatini, S.; Pereira de Carvalho, H.W. Microprobe-XRF assessment of nutrient distribution in soybean, cowpea, and kidney bean seeds: A Fabaceae family case study. ACS Agric. Sci. Technol. 2022, 2, 1318–1324. [Google Scholar] [CrossRef]
- Henn, K.; Zhang, X.; Thomsen, M.; Rinnan, Å.; Bredie, W.L. The versatility of pulses: Are consumption and consumer perception in different European countries related to the actual climate impact of different pulse types? Future Foods 2022, 6, 100202. [Google Scholar] [CrossRef]
- Aydar, E.F.; Mertdinç, Z.; Demircan, E.; Çetinkaya, S.K.; Özçelik, B. Kidney bean (Phaseolus vulgaris L.) milk substitute as a novel plant-based drink: Fatty acid profile, antioxidant activity, in-vitro phenolic bio-accessibility and sensory characteristics. Innov. Food Sci. Emerg. 2023, 83, 103254. [Google Scholar] [CrossRef]
- Punia, S.; Dhull, S.B.; Sandhu, K.S.; Kaur, M.; Purewal, S.S. Kidney bean (Phaseolus vulgaris) starch: A review. Legume Sci. 2020, 2, e52. [Google Scholar] [CrossRef]
- Awasthi, A.; Tripathi, A.; Baran, C.; Sharma, S.; Sharma, S.; Uttam, K. Potential of confocal micro-Raman spectroscopy for the nutrient profiling of kidney beans. Natl. Acad. Sci. Lett. 2023, 46, 133–135. [Google Scholar] [CrossRef]
- Mungkung, R.; Dangsiri, S.; Satmalee, P.; Surojanametakul, V.; Saejew, K.; Gheewala, S.H. The nutrition-environment nexus assessment of Thai Riceberry product for supporting environmental product declaration. Environ. Dev. Sustain. 2023, 1–17. [Google Scholar] [CrossRef]
- Xiao, T.; Wang, Z.; Ma, Y.; Wang, A.; Chen, Z.; Wang, L.; Wang, F.; Tong, L.T. The multi-step process optimisation of candied kidney beans with high nutrients and γ-aminobutyric acid retention. Int. J. Food Sci. Tech. 2023, 58, 205–212. [Google Scholar] [CrossRef]
- Wani, I.A.; Sogi, D.S.; Shivhare, U.S.; Gill, B.S. Physico-chemical and functional properties of native and hydrolyzed kidney bean (Phaseolus vulgaris L.) protein isolates. Food Res. Int. 2015, 76, 11–18. [Google Scholar] [CrossRef]
- Yan, X.; Jia, Y.; Man, H.; Sun, S.; Huang, Y.; Qi, B.; Li, Y. Tracking the driving forces for the unfolding and folding of kidney bean protein isolates: Revealing mechanisms of dynamic changes in structure and function. Food Chem. 2023, 402, 134230. [Google Scholar] [CrossRef]
- Khrisanapant, P.; Kebede, B.; Leong, S.Y.; Oey, I. Effects of Hydrothermal Processing on Volatile and Fatty Acids Profile of Cowpeas (Vigna unguiculata), Chickpeas (Cicer arietinum) and Kidney Beans (Phaseolus vulgaris). Molecules 2022, 27, 8204. [Google Scholar] [CrossRef]
- Cardador-Martínez, A.; Martínez-Tequitlalpan, Y.; Gallardo-Velazquez, T.; Sánchez-Chino, X.M.; Martínez-Herrera, J.; Corzo-Ríos, L.J.; Jiménez-Martínez, C. Effect of instant controlled pressure-drop on the non-nutritional compounds of seeds and sprouts of common black bean (Phaseolus vulgaris L.). Molecules 2020, 25, 1464. [Google Scholar] [CrossRef]
- Smułek, W.; Rojewska, M.; Pacholak, A.; Machrowicz, O.; Prochaska, K.; Kaczorek, E. Co-interaction of nitrofurantoin and saponins surfactants with biomembrane leads to an increase in antibiotic’s antibacterial activity. J. Mol. Liq. 2022, 364, 120070. [Google Scholar] [CrossRef]
- Salim, R.; Nehvi, I.B.; Mir, R.A.; Tyagi, A.; Ali, S.; Bhat, O.M. A review on anti-nutritional factors: Unraveling the natural gateways to human health. Front. Nutr. 2023, 10, 1215873. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Aguirre, A.I.; Téllez-Pérez, C.; San Martín-Azócar, A.; Cardador-Martínez, A. Effect of instant controlled pressure-drop (DIC), cooking and germination on non-nutritional factors of common vetch (Vicia sativa spp.). Molecules 2019, 25, 151. [Google Scholar] [CrossRef] [PubMed]
- Bento, J.A.C.; Ribeiro, P.R.V.; Alexandre, L.M.; Alves Filho, E.G.; Bassinello, P.Z.; de Brito, E.S.; Caliari, M.; Júnior, M.S.S. Chemical profile of colorful bean (Phaseolus vulgaris L.) flours: Changes influenced by the cooking method. Food Chem. 2021, 356, 129718. [Google Scholar] [CrossRef]
- Gu, B.J.; Masli, M.D.P.; Ganjyal, G.M. Whole faba bean flour exhibits unique expansion characteristics relative to the whole flours of lima, pinto, and red kidney beans during extrusion. J. Food Sci. 2020, 85, 404–413. [Google Scholar] [CrossRef]
- Roy, M.; Sarker, A.; Azad, M.A.K.; Shaheb, M.R.; Hoque, M.M. Evaluation of antioxidant and antimicrobial properties of dark red kidney bean (Phaseolus vulgaris) protein hydrolysates. J. Food Meas. Charact. 2020, 14, 303–313. [Google Scholar] [CrossRef]
- Li, M.; Wang, B.; Lv, W.; Lin, R.; Zhao, D. Characterization of pre-gelatinized kidney bean (Phaseolus vulgaris L.) produced using microwave hot-air flow rolling drying technique. LWT—Food Sci. Technol. 2022, 154, 112673. [Google Scholar] [CrossRef]
- Siddiq, A.; Hasan, A.; Alam, S. Dose dependent hepatotoxic effects of dry seed Phaseolus vulgaris linn. (red kidney beans) on rabbits. Acta Aliment. 2018, 47, 291–297. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Ann. Intern. Med. 2009, 151, W-65–W-94. [Google Scholar] [CrossRef]
- Boz, Z.; Koelsch Sand, C. A systematic analysis of the overall nutritional contribution of food loss and waste in tomatoes, spinach, and kidney beans as a function of processing. J. Food Process Eng. 2020, 43, e13509. [Google Scholar] [CrossRef]
- Díaz de Durana, A.; Rosado, A. Allergy to white kidney beans with cross-reactivity to red kidney beans. Report of two cases in children. J. Investig. Allerg. Clin. 2022, 33, 141–142. [Google Scholar] [CrossRef]
- Popoola, J.O.; Ojuederie, O.B.; Aworunse, O.S.; Adelekan, A.; Oyelakin, A.S.; Oyesola, O.L.; Akinduti, P.A.; Dahunsi, S.O.; Adegboyega, T.T.; Oranusi, S.U. Nutritional, functional, and bioactive properties of african underutilized legumes. Front. Plant Sci. 2023, 14, 1105364. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, J.; Huang, Y.; Li, M.; Lu, J.; Jin, N.; He, Y.; Fan, B. Phytohemagglutinin content in fresh kidney bean in China. Int. J. Food Prop. 2019, 22, 405–413. [Google Scholar] [CrossRef]
- Yang, Y.; He, S.; Zhang, Y.; Li, X.; Liu, H.; Li, Q.; Cao, X.; Ye, Y.; Sun, H. Comparison of crude prolamins from seven kidney beans (Phaseolus vulgaris L.) based on composition, structure and functionality. Food Chem. 2021, 357, 129748. [Google Scholar] [CrossRef]
- Godrich, J.; Rose, P.; Muleya, M.; Gould, J. The effect of popping, soaking, boiling and roasting processes on antinutritional factors in chickpeas and red kidney beans. Int. J. Food Sci. Tech. 2023, 58, 279–289. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, X.; Xiao, Q.; Zhang, F.; Liu, N.; Tang, L.; Wang, J.; Ma, X.; Tan, B.; Chen, J. Rapeseed meal and its application in pig diet: A review. Agriculture 2022, 12, 849. [Google Scholar] [CrossRef]
- Duraiswamy, A.; Jebakani, S.; Selvaraj, S.; Pramitha, L.; Selvaraj, R.; Sheriff, S.K.; Thinakaran, J.; Rathinamoorthy, S. Genetic manipulation of anti-nutritional factors in major crops for a sustainable diet in future. Front. Plant Sci. 2022, 13, 1070398. [Google Scholar] [CrossRef]
- Choe, U.; Chang, L.; Ohm, J.-B.; Chen, B.; Rao, J. Structure modification, functionality and interfacial properties of kidney bean (Phaseolus vulgaris L.) protein concentrate as affected by post-extraction treatments. Food Hydrocoll. 2022, 133, 108000. [Google Scholar] [CrossRef]
- Aminou, H.A.; Alam-Eldin, Y.H.; Hashem, H.A. Effect of Nigella sativa alcoholic extract and oil, as well as Phaseolus vulgaris (kidney bean) lectin on the ultrastructure of Trichomonas vaginalis trophozoites. J. Parasit. Dis. 2016, 40, 707–713. [Google Scholar] [CrossRef]
- Vojdani, A.; Afar, D.; Vojdani, E. Reaction of lectin-specific antibody with human tissue: Possible contributions to autoimmunity. J. Immunol. Res. 2020, 2020, 1438957. [Google Scholar] [CrossRef] [PubMed]
- Wainaina, I.; Wafula, E.; Sila, D.; Kyomugasho, C.; Grauwet, T.; Van Loey, A.; Hendrickx, M. Thermal treatment of common beans (Phaseolus vulgaris L.): Factors determining cooking time and its consequences for sensory and nutritional quality. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3690–3718. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Leng, X.; Duan, J.; Zhu, Y.; Wang, J.; Yan, Z.; Min, S.; Wei, D.; Wang, X. Functional component isolated from Phaseolus vulgaris lectin exerts in vitro and in vivo anti-tumor activity through potentiation of apoptosis and immunomodulation. Molecules 2021, 26, 498. [Google Scholar] [CrossRef] [PubMed]
- Nath, A.B.; Sivaramakrishna, A.; Marimuthu, K.; Saraswathy, R. A comparative study of phytohaemagglutinin and extract of Phaseolus vulgaris seeds by characterization and cytogenetics. Spectro. Acta A Mol. Biomol. Spectrosc. 2015, 134, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Micula-Gondek, W.; Tao, Y.; Guarda, A.S. Atypical purging behaviors in a patient with anorexia nervosa: Consumption of raw red kidney beans as an emetic. Eat. Weight. Disord.—Stud. Anorex. Bulim. Obes. 2018, 23, 537–539. [Google Scholar] [CrossRef]
- Sun, X.; Ye, Y.; He, S.; Wu, Z.; Yue, J.; Sun, H.; Cao, X. A novel oriented antibody immobilization based voltammetric immunosensor for allergenic activity detection of lectin in kidney bean by using AuNPs-PEI-MWCNTs modified electrode. Biosens. Bioelectron. 2019, 143, 111607. [Google Scholar] [CrossRef]
- He, S.; Zhao, J.; Elfalleh, W.; Jemaà, M.; Sun, H.; Sun, X.; Tang, M.; He, Q.; Wu, Z.; Lang, F. In silico identification and in vitro analysis of B and T-cell epitopes of the black turtle bean (Phaseolus vulgaris L.) lectin. Cell. Physiol. Bio. 2018, 49, 1600–1614. [Google Scholar] [CrossRef]
- Kochubei, T.; Maksymchuk, O.; Piven, O.; Lukash, L. Isolectins of phytohemagglutinin are able to induce apoptosis in HEp-2 carcinoma cells in vitro. Exp. Hematol. Oncol. 2015, 37, 116–119. [Google Scholar] [CrossRef]
- Chachadi, V.B.; Nayanegali, T.R.; Pujari, B.G.; Umarji, L.V.; Budyhalamath, V.; Inamdar, S.R.; Cheng, P.W. Inhibitory activity of salivary glycoproteins on phytohemagglutins (PHA): Possible molecules to enhance nutritional quality of red kidney beans. Legume Res. 2020, 43, 337–344. [Google Scholar] [CrossRef]
- Wang, Y.; He, S.; Zhou, F.; Sun, H.; Cao, X.; Ye, Y.; Li, J. Detection of lectin protein allergen of kidney beans (Phaseolus vulgaris L.) and desensitization food processing technology. J. Agric. Food Chem. 2021, 69, 14723–14741. [Google Scholar] [CrossRef]
- Sharma, A.; Vashisht, S.; Mishra, R.; Gaur, S.N.; Prasad, N.; Lavasa, S.; Batra, J.K.; Arora, N. Molecular and immunological characterization of cysteine protease from Phaseolus vulgaris and evolutionary cross-reactivity. J. Food Biochem. 2022, 46, e14232. [Google Scholar] [CrossRef]
- Sureda, E.A.; Prykhodko, O.; Weström, B. Early effects on the intestinal barrier and pancreatic function after enteral stimulation with protease or kidney bean lectin in neonatal rats. Brit. J. Nutr. 2018, 119, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- Nciri, N.; Cho, N.; El Mhamdi, F.; Ben Mansour, A.; Haj Sassi, F.; Ben Aissa-Fennira, F. Identification and characterization of phytohemagglutinins from white kidney beans (Phaseolus vulgaris L., var. Beldia) in the rat small intestine. J. Med. Food 2016, 19, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.; Dan, X.; Ng, C.C.W.; Ng, T.B. Lectins with potential for anti-cancer therapy. Molecules 2015, 20, 3791–3810. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Hu, J.; Min, S.; Chen, C.; Zhu, Y.; Pan, Y.; Wei, D.; Wang, X. Recombinant Phaseolus vulgaris phytohemagglutinin L-form expressed in the Bacillus brevis exerts in vitro and in vivo anti-tumor activity through potentiation of apoptosis and immunomodulation. Int. Immunopharmacol. 2023, 120, 110322. [Google Scholar] [CrossRef]
- Mittal, A.; Kansal, R.; Kalia, V.; Tripathi, M.; Gupta, V.K. A kidney bean trypsin inhibitor with an insecticidal potential against Helicoverpa armigera and Spodoptera litura. Acta Physiol. Plant. 2014, 36, 525–539. [Google Scholar] [CrossRef]
- Wati, R.K.; Theppakorn, T.; Benjakul, S.; Rawdkuen, S. Trypsin inhibitor from 3 legume seeds: Fractionation and proteolytic inhibition study. J. Food Sci. 2010, 75, C223–C228. [Google Scholar] [CrossRef]
- Bosmali, I.; Giannenas, I.; Christophoridou, S.; Ganos, C.G.; Papadopoulos, A.; Papathanasiou, F.; Kolonas, A.; Gortzi, O. Microclimate and Genotype Impact on Nutritional and Antinutritional Quality of Locally Adapted Landraces of Common Bean (Phaseolus vulgaris L.). Foods 2023, 12, 1119. [Google Scholar] [CrossRef]
- Pal, R.S.; Bhartiya, A.; Kant, L.; Aditya, J.P.; Mishra, K.K.; Pattanayak, A. Common and lesser-known pulses from Northwestern Himalaya: A comparison study for quality traits. Legume Res. 2020, 43, 386–393. [Google Scholar] [CrossRef]
- Guo, Z.; Huang, Z.; Guo, Y.; Li, B.; Yu, W.; Zhou, L.; Jiang, L.; Teng, F.; Wang, Z. Effects of high-pressure homogenization on structural and emulsifying properties of thermally soluble aggregated kidney bean (Phaseolus vulgaris L.) proteins. Food Hydrocoll. 2021, 119, 106835. [Google Scholar] [CrossRef]
- Negi, P.; Chand, S.; Thakur, N.; Nath, A.K. Biological activity of serine protease inhibitor isolated from the seeds of Phaseolus vulgaris. Agric. Res. 2018, 7, 265–270. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Akbar, Z.; Choudhary, M.I. Insight into the structural basis of the dual inhibitory mode of Lima bean (Phaseolus lunatus) serine protease inhibitor. Proteins. 2023, 91, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Sibian, M.S.; Riar, C.S. Effect of germination on chemical composition, antinutritional factors, functional properties and nutritional value of kidney bean (Phaseolus lunatus). Carpathian J. Food Sci. Technol. 2023, 15, 208–219. [Google Scholar] [CrossRef]
- Handa, V.; Thakur, K.; Arya, S.K. Exploit of oxalate and phytate from the oilseeds with phytase treated seeds for dietary improvement. Biocatal. Agric. Biotechnol. 2021, 37, 102168. [Google Scholar] [CrossRef]
- Jha, R.; Yadav, H.K.; Raiya, R.; Singh, R.K.; Jha, U.C.; Sathee, L.; Singh, P.; Thudi, M.; Singh, A.; Chaturvedi, S.K.; et al. Integrated breeding approaches to enhance the nutritional quality of food legumes. Front. Plant Sci. 2022, 13, 984700. [Google Scholar] [CrossRef]
- Rousseau, S.; Pallares, A.P.; Vancoillie, F.; Hendrickx, M.; Grauwet, T. Pectin and phytic acid reduce mineral bioaccessibility in cooked common bean cotyledons regardless of cell wall integrity. Food Res. Int. 2020, 137, 109685. [Google Scholar] [CrossRef]
- Singh, P.; Prasad, S. Spectroscopic review of chelating agents and their influence on the bioavailability of Fe, Zn and Ca in Fijian foods. Appl. Spectrosc. Rev. 2020, 55, 574–592. [Google Scholar] [CrossRef]
- Gilani, G.S.; Xiao, C.W.; Cockell, K.A. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br. J. Nutr. 2012, 108, S315–S332. [Google Scholar] [CrossRef]
- Kumar, S.; Verma, A.K.; Das, M.; Jain, S.; Dwivedi, P.D. Clinical complications of kidney bean (Phaseolus vulgaris L.) consumption. Nutrition 2013, 29, 821–827. [Google Scholar] [CrossRef]
- Sarkhel, S.; Roy, A. Phytic acid and its reduction in pulse matrix: Structure–function relationship owing to bioavailability enhancement of micronutrients. J. Food Process Eng. 2022, 45, e14030. [Google Scholar] [CrossRef]
- Kumar, A.; Dash, G.K.; Sahoo, S.K.; Lal, M.K.; Sahoo, U.; Sah, R.P.; Ngangkham, U.; Kumar, S.; Baig, M.J.; Sharma, S. Phytic acid: A reservoir of phosphorus in seeds plays a dynamic role in plant and animal metabolism. Phytochem. Rev. 2023, 22, 1281–1304. [Google Scholar] [CrossRef]
- Sanchis, P.; Rivera, R.; Berga, F.; Fortuny, R.; Adrover, M.; Costa-Bauza, A.; Masmiquel, L. Phytate decreases formation of advanced glycation end-products in patients with type II diabetes: Randomized crossover trial. Sci. Rep 2018, 8, 9619. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-España, M.; Figueroa-Hernández, C.Y.; de Dios Figueroa-Cárdenas, J.; Rayas-Duarte, P.; Hernández-Estrada, Z.J. Effects of germination and lactic acid fermentation on nutritional and rheological properties of sorghum: A graphical review. Curr. Res. Nutr. Food Sci. 2022, 5, 807–812. [Google Scholar] [CrossRef]
- Campa, A.; Rodríguez Madrera, R.; Jurado, M.; García-Fernández, C.; Suárez Valles, B.; Ferreira, J.J. Genome-wide association study for the extractable phenolic profile and coat color of common bean seeds (Phaseolus vulgaris L.). BMC Plant Biol. 2023, 23, 158. [Google Scholar] [CrossRef]
- Wang, N.; Hatcher, D.; Tyler, R.; Toews, R.; Gawalko, E. Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.). Food Res. Int. 2010, 43, 589–594. [Google Scholar] [CrossRef]
- Anino, C.; Onyango, A.N.; Imathiu, S.; Maina, J.; Onyangore, F. Chemical composition of the seed and ‘milk’ of three common bean (Phaseolus vulgaris L.) varieties. J. Food Meas. Charact. 2019, 13, 1242–1249. [Google Scholar] [CrossRef]
- Parmar, N.; Singh, N.; Kaur, A.; Thakur, S. Comparison of color, anti-nutritional factors, minerals, phenolic profile and protein digestibility between hard-to-cook and easy-to-cook grains from different kidney bean (Phaseolus vulgaris) accessions. J. Food Sci. Technol. 2017, 54, 1023–1034. [Google Scholar] [CrossRef]
- Wodajo, D.; Emire, S.A. Haricot beans (Phaseolus vulgaris L.) flour: Effect of varieties and processing methods to favor the utilization of underconsumed common beans. Int. J. Food Prop. 2022, 25, 1186–1202. [Google Scholar] [CrossRef]
- Kitum, V.C.; Kinyanjui, P.K.; Mathara, J.M.; Sila, D.N. Oligosaccharide and antinutrient content of whole red haricot bean fermented in salt-sugar and salt-only solutions. Legum. Sci. 2022, 4, e110. [Google Scholar] [CrossRef]
- Thummajitsakul, S.; Piyaphan, P.; Khamthong, S.; Unkam, M.; Silprasit, K. Comparison of FTIR fingerprint, phenolic content, antioxidant and anti-glucosidase activities among Phaseolus vulgaris L., Arachis hypogaea L. and Plukenetia volubilis L. Electron. J. Biotechnol. 2023, 61, 14–23. [Google Scholar] [CrossRef]
- Tong, Z.; He, W.; Fan, X.; Guo, A. Biological function of plant tannin and its application in animal health. Front. Vet. Sci. 2022, 8, 803657. [Google Scholar] [CrossRef] [PubMed]
- Dueñas, M.; Martínez-Villaluenga, C.; Limón, R.I.; Peñas, E.; Frias, J. Effect of germination and elicitation on phenolic composition and bioactivity of Kidney Beans. Food Res. Int. 2015, 70, 55–63. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Althwab, S.A.; Qiu, H.; Zbasnik, R.; Urrea, C.; Carr, T.P.; Schlegel, V. Great northern beans (Phaseolus vulgaris L.) lower cholesterol in hamsters fed a high-saturated-fat diet. J. Nutr. 2022, 152, 2080–2087. [Google Scholar] [CrossRef]
- Bento, J.A.C.; Bassinello, P.Z.; Carvalho, R.N.; Souza Neto, M.A.D.; Caliari, M.; Soares Junior, M.S. Functional and pasting properties of colorful bean (Phaseolus vulgaris L.) flours: Influence of the cooking method. J. Food Process. Preserv. 2021, 45, e15899. [Google Scholar] [CrossRef]
- Bljahhina, A.; Pismennõi, D.; Kriščiunaite, T.; Kuhtinskaja, M.; Kobrin, E.G. Quantitative analysis of oat (Avena sativa L.) and pea (Pisum sativum L.) saponins in plant-based food products by hydrophilic interaction liquid chromatography coupled with mass spectrometry. Foods 2023, 12, 991. [Google Scholar] [CrossRef]
- Pathaw, N.; Devi, K.S.; Sapam, R.; Sanasam, J.; Monteshori, S.; Phurailatpam, S.; Devi, H.C.; Chanu, W.T.; Wangkhem, B.; Mangang, N.L. A comparative review on the anti-nutritional factors of herbal tea concoctions and their reduction strategies. Front. Nutr. 2022, 9, 988964. [Google Scholar] [CrossRef]
- Guzmán, D.C.; Olguin, H.J.; Corona, Q.V.; Herrera, M.O.; Brizuela, N.O.; Mejía, G.B. Consumption of cooked common beans or saponins could reduce the risk of diabetic complications. Diabetes Metab. Syndr. Obes. 2020, 13, 3481–3486. [Google Scholar] [CrossRef]
- Kenar, J.A.; Felker, F.C.; Singh, M.; Byars, J.A.; Berhow, M.A.; Bowman, M.J.; Winkler-Moser, J.K. Comparison of composition and physical properties of soluble and insoluble navy bean flour components after jet-cooking, soaking, and cooking. LWT—Food Sci. Technol. 2020, 130, 109765. [Google Scholar] [CrossRef]
- Ravoninjatovo, M.; Ralison, C.; Servent, A.; Morel, G.; Achir, N.; Andriamazaoro, H.; Dornier, M. Effects of soaking and thermal treatment on nutritional quality of three varieties of common beans (Phaseolus vulgaris L.) from Madagascar. Legum. Sci. 2022, 4, e143. [Google Scholar] [CrossRef]
- Kong, X.; Li, Y.; Liu, X. A review of thermosensitive antinutritional factors in plant-based foods. J. Food Biochem. 2022, 46, e14199. [Google Scholar] [CrossRef]
- Ertaş, N. Improving the cake quality by using red kidney bean applied different traditional processing methods. J. Food Process. Preserv. 2021, 45, e15527. [Google Scholar] [CrossRef]
- Faria, M.A.; Araújo, A.; Pinto, E.; Oliveira, C.; Oliva-Teles, M.T.; Almeida, A.; Delerue-Matos, C.; Ferreira, I.M. Bioaccessibility and intestinal uptake of minerals from different types of home-cooked and ready-to-eat beans. J. Funct. Foods 2018, 50, 201–209. [Google Scholar] [CrossRef]
- Kambabazi, M.R.; Okoth, M.W.; Ngala, S.; Njue, L.; Vasanthakaalam, H. Physicochemical properties and sensory evaluation of a bean-based composite soup flour. Legum. Sci. 2022, 4, e139. [Google Scholar] [CrossRef]
- Alagbe, E.; Okoye, G.; Amoo, T.; Adekeye, B.; Taiwo, O.; Adeyemi, A.; Daniel, E. Spontaneous and controlled fermentation to improve nutritional value of Ikpakpa beans, Phaseolus vulgaris. Cogent Eng. 2022, 9, 2066823. [Google Scholar] [CrossRef]
- Rojas, J.U.; Verreth, J.A.J.; Van Weerd, J.H.; Huisman, E.A. Effect of different chemical treatments on nutritional and antinutritional properties of coffee pulp. Anim. Feed. Sci. Technol. 2022, 99, 195–204. [Google Scholar] [CrossRef]
- Jiménez-Martínez, C.; Mora-Escobedo, R.; Cardador Martínez, A.; Muzquiz, M.; Martin Pedrosa, M.; Dávila-Ortiz, G. Effect of aqueous, acid, and alkaline thermal treatments on antinutritional factors content and protein quality in Lupinus campestris seed flour. J. Agric. Food Chem. 2010, 58, 1741–1745. [Google Scholar] [CrossRef]
- Wu, X.; Tan, M.; Zhu, Y.; Duan, H.; Ramaswamy, H.S.; Bai, W.; Wang, C. The influence of high pressure processing and germination on anti-nutrients contents, in vitro amino acid release and mineral digestibility of soybeans. J. Food Compos. Anal. 2023, 115, 104953. [Google Scholar] [CrossRef]
- Khrisanapant, P.; Leong, S.Y.; Kebede, B.; Oey, I. Effects of hydrothermal processing duration on the texture, starch and protein in vitro digestibility of cowpeas, chickpeas and kidney beans. Foods 2021, 10, 1415. [Google Scholar] [CrossRef]
- Wiesinger, J.A.; Cichy, K.A.; Hooper, S.D.; Hart, J.J.; Glahn, R.P. Processing white or yellow dry beans (Phaseolus vulgaris L.) into a heat treated flour enhances the iron bioavailability of bean-based pastas. J. Funct. Foods 2020, 71, 104018. [Google Scholar] [CrossRef]
- Une, S.; Nonaka, K.; Akiyama, J. Effects of hull scratching, soaking, and boiling on Antinutrients in Japanese red sword bean (Canavalia gladiata). J. Food Sci. 2016, 81, C2398–C2404. [Google Scholar] [CrossRef]
- Wiesinger, J.A.; Cichy, K.A.; Glahn, R.P.; Grusak, M.A.; Brick, M.A.; Thompson, H.J.; Tako, E. Demonstrating a nutritional advantage to the fast-cooking dry bean (Phaseolus vulgaris L.). J. Agric. Food Chem. 2016, 64, 8592–8603. [Google Scholar] [CrossRef] [PubMed]
- Khattab, R.; Arntfield, S. Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LWT—Food Sci. Technol. 2009, 42, 1113–1118. [Google Scholar] [CrossRef]
- Sparvoli, F.; Laureati, M.; Pilu, R.; Pagliarini, E.; Toschi, I.; Giuberti, G.; Fortunati, P.; Daminati, M.G.; Cominelli, E.; Bollini, R. Exploitation of common bean flours with low antinutrient content for making nutritionally enhanced biscuits. Front. Plant Sci. 2016, 7, 928. [Google Scholar] [CrossRef] [PubMed]
- Mbassi, J.E.G.; Alban, N.; Bertrand, Z.Z.; Mikhail, A.; Eileen Bogweh, N. Nutritional, organoleptic, and physical properties of biscuits made with cassava flour: Effects of eggs substitution with kidney bean milk (Phaseolus vulgaris L.). Int. J. Food Prop. 2022, 25, 695–707. [Google Scholar] [CrossRef]
- Margier, M.; Georgé, S.; Hafnaoui, N.; Remond, D.; Nowicki, M.; Du Chaffaut, L.; Amiot, M.J.; Reboul, E. Nutritional composition and bioactive content of legumes: Characterization of pulses frequently consumed in France and effect of the cooking method. Nutrients 2018, 10, 1668. [Google Scholar] [CrossRef]
- Kumar, Y.; Basu, S.; Goswami, D.; Devi, M.; Shivhare, U.S.; Vishwakarma, R.K. Anti-nutritional compounds in pulses: Implications and alleviation methods. Legum. Sci. 2022, 4, e111. [Google Scholar] [CrossRef]
- Nakitto, A.M.; Muyonga, J.H.; Nakimbugwe, D. Effects of combined traditional processing methods on the nutritional quality of beans. Food Sci. Nutr. 2015, 3, 233–241. [Google Scholar] [CrossRef]
- Yasmin, A.; Zeb, A.; Khalil, A.W.; Paracha, G.M.U.D.; Khattak, A.B. Effect of processing on anti-nutritional factors of red kidney bean (Phaseolus vulgaris) grains. Food Bioproc. Tech. 2008, 1, 415–419. [Google Scholar] [CrossRef]
- Zhu, L.; Mukherjee, A.; Kyomugasho, C.; Chen, D.; Hendrickx, M. Calcium transport and phytate hydrolysis during chemical hardening of common bean seeds. Food Res. Int. 2022, 156, 111315. [Google Scholar] [CrossRef]
- Haileslassie, H.A.; Henry, C.J.; Tyler, R.T. Impact of pre-treatment (soaking or germination) on nutrient and anti-nutrient contents, cooking time and acceptability of cooked red dry bean (Phaseolus vulgaris L.) and chickpea (Cicer arietinum L.) grown in Ethiopia. Int. J. Food Sci. Tech. 2019, 54, 2540–2552. [Google Scholar] [CrossRef]
- Hu, M.; Du, X.; Liu, G.; Zhang, S.; Wu, H.; Li, Y. Germination improves the functional properties of soybean and enhances soymilk quality. Int. J. Food Sci. Technol. 2022, 57, 3892–3902. [Google Scholar] [CrossRef]
- Ikram, A.; Saeed, F.; Afzaal, M.; Imran, A.; Niaz, B.; Tufail, T.; Hussain, M.; Anjum, F.M. Nutritional and end-use perspectives of sprouted grains: A comprehensive review. Food Sci. Nutr. 2021, 9, 4617–4628. [Google Scholar] [CrossRef] [PubMed]
- Nciri, N.; Cho, N.; Mhamdi, F.E.; Ismail, H.B.; Mansour, A.B.; Sassi, F.H.; Aissa-Fennira, F.B. Toxicity assessment of common beans (Phaseolus vulgaris L.) widely consumed by Tunisian population. J. Med. Food. 2015, 18, 1049–1064. [Google Scholar] [CrossRef] [PubMed]
- Owuamanam, C.; Ogueke, C.; Iwouno, J.; Edom, T. Use of seed sprouting in modification of food nutrients and pasting profile of tropical legume flours. Niger. Food J. 2014, 32, 117–125. [Google Scholar] [CrossRef]
- Limón, R.I.; Peñas, E.; Martínez-Villaluenga, C.; Frias, J. Role of elicitation on the health-promoting properties of kidney bean sprouts. LWT—Food Sci. Technol. 2014, 56, 328–334. [Google Scholar] [CrossRef]
- Mugabo, E.; Afoakwa, E.O.; Annor, G.; Rwubatse, B. Effect of pretreatments and processing conditions on anti-nutritional factors in climbing bean flours. Int. J. Food Stud. 2017, 6, 34–43. [Google Scholar] [CrossRef]
- Zhao, J.; He, S.; Tang, M.; Sun, X.; Zhang, Z.; Ye, Y.; Cao, X.; Sun, H. Low-pH induced structural changes, allergenicity and in vitro digestibility of lectin from black turtle bean (Phaseolus vulgaris L.). Food Chem. 2019, 283, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; He, S.; Ye, Y.; Cao, X.; Liu, H.; Wu, Z.; Yue, J.; Jin, R.; Sun, H. Combined effects of pH and thermal treatments on IgE-binding capacity and conformational structures of lectin from black kidney bean (Phaseolus vulgaris L.). Food Chem. 2020, 329, 127183. [Google Scholar] [CrossRef]
- He, Q.; Sun, X.; He, S.; Wang, T.; Zhao, J.; Yang, L.; Wu, Z.; Sun, H. PEGylation of black kidney bean (Phaseolus vulgaris L.) protein isolate with potential functironal properties. Colloids Surf. B 2018, 164, 89–97. [Google Scholar] [CrossRef]
- Yang, Y.; He, Q.; Sun, H.; Cao, X.; Elfalleh, W.; Wu, Z.; Zhao, J.; Sun, X.; Zhang, Y.; He, S. PEGylation may reduce allergenicity and improve gelling properties of protein isolate from black kidney bean (Phaseolus vulgaris L.). Food Biosci. 2018, 25, 83–90. [Google Scholar] [CrossRef]
- Israr, B.; Frazier, R.A.; Gordon, M.H. Enzymatic hydrolysis of phytate and effects on soluble oxalate concentration in foods. Food Chem. 2017, 214, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.M.; Sitohy, M.Z.; Ahmed, A.I.; Rabie, N.A.; Amin, S.A.; Aboelenin, S.M.; Soliman, M.M.; El-Saadony, M.T. Biochemical and functional characterization of kidney bean protein alcalase-hydrolysates and their preservative action on stored chicken meat. Molecules 2021, 26, 4690. [Google Scholar] [CrossRef] [PubMed]
- Kasera, R.; Singh, A.; Lavasa, S.; Prasad, K.N.; Arora, N. Enzymatic hydrolysis: A method in alleviating legume allergenicity. Food Chem. Toxicol. 2015, 76, 54–60. [Google Scholar] [CrossRef] [PubMed]
- AL-Ansi, W.; Wang, Y.; Fan, M. Effect of kidney bean extract on phytohaemagglutinin activity, functional properties, and the estimated glycaemic index in-vitro. Int. J. Food Sci. Technol. 2023, 58, 3469–3477. [Google Scholar] [CrossRef]
- Tao, L.; Wang, J.; Zhu, Q.; Zhang, J.; Li, Y.; Song, S.; Yu, L. Effect of fermentation with Lactobacillus fermentum FL-0616 on probiotic-rich bean powders. J. Food Sci. Technol. 2023, 60, 1144–1152. [Google Scholar] [CrossRef]
- Sun, W.; He, J.; Wang, H.; Zhang, Q.; Li, W.; Rui, X. Solid-state fermentation alters the fate of red kidney bean protein during buccal and gastrointestinal digestion: Relationship with cotyledon cell wall integrity. Food Chem. 2023, 410, 135370. [Google Scholar] [CrossRef]
- Garrido-Galand, S.; Asensio-Grau, A.; Calvo-Lerma, J.; Heredia, A.; Andrés, A. The potential of fermentation on nutritional and technological improvement of cereal and legume flours: A review. Food Res. Int. 2021, 145, 110398. [Google Scholar] [CrossRef]
- Suprayogi, W.P.S.; Ratriyanto, A.; Akhirini, N.; Hadi, R.F.; Setyono, W.; Irawan, A. Changes in nutritional and antinutritional aspects of soybean meals by mechanical and solid-state fermentation treatments with Bacillus subtilis and Aspergillus oryzae. Bioresour. Technol. Rep. 2022, 17, 100925. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Chakraborty, S. Optimization of extraction process for legume-based synbiotic beverages, followed by their characterization and impact on antinutrients. Int. J. Gastron. Food Sci. 2022, 28, 100506. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Chakraborty, S. Optimization of fermentation conditions of synbiotic legume-based beverages and study of their antimicrobial and proteolytic activity. J. Food Sci. 2022, 87, 5070–5088. [Google Scholar] [CrossRef]
- Espinosa-Páez, E.; Alanis-Guzmán, M.G.; Hernández-Luna, C.E.; Báez-González, J.G.; Amaya-Guerra, C.A.; Andrés-Grau, A.M. Increasing antioxidant activity and protein digestibility in Phaseolus vulgaris and Avena sativa by fermentation with the Pleurotus ostreatus Fungus. Molecules 2017, 22, 2275. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Páez, E.; Hernández-Luna, C.E.; Longoria-García, S.; Martínez-Silva, P.A.; Ortiz-Rodríguez, I.; Villarreal-Vera, M.T.; Cantú-Saldaña, C.M. Pleurotus ostreatus: A potential concurrent biotransformation agent/ingredient on development of functional foods (cookies). LWT—Food Sci. Technol. 2021, 148, 111727. [Google Scholar] [CrossRef]
- Sáez, G.D.; Hébert, E.M.; Saavedra, L.; Zárate, G. Molecular identification and technological characterization of lactic acid bacteria isolated from fermented kidney beans flours (Phaseolus vulgaris L. and P. coccineus) in northwestern Argentina. Food Res. Int. 2017, 102, 605–615. [Google Scholar] [CrossRef] [PubMed]
Non-Nutritional Factors | Existing Form | Stability Type | Physiological Effects |
---|---|---|---|
Lectin | Protein | Heat-sensitive | Protein digestion and absorption [24] |
Trypsin inhibitor | Protein | Heat-sensitive | Protein digestion and absorption [25] |
Phytic acid | Phytate | Thermal stability | Digestion and utilization of minerals [26] |
Tannin | Polyphenol | Thermal stability | Digestion and utilization of carbohydrates [27] |
Saponin | Glycoside triterpenoids | Thermal stability | Stimulate the immune system [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Liu, C.; Wu, S.; Ma, T. The Non-Nutritional Factor Types, Mechanisms of Action and Passivation Methods in Food Processing of Kidney Bean (Phaseolus vulgaris L.): A Systematic Review. Foods 2023, 12, 3697. https://doi.org/10.3390/foods12193697
Zhang Z, Liu C, Wu S, Ma T. The Non-Nutritional Factor Types, Mechanisms of Action and Passivation Methods in Food Processing of Kidney Bean (Phaseolus vulgaris L.): A Systematic Review. Foods. 2023; 12(19):3697. https://doi.org/10.3390/foods12193697
Chicago/Turabian StyleZhang, Zifan, Chunxiu Liu, Sisi Wu, and Tiezheng Ma. 2023. "The Non-Nutritional Factor Types, Mechanisms of Action and Passivation Methods in Food Processing of Kidney Bean (Phaseolus vulgaris L.): A Systematic Review" Foods 12, no. 19: 3697. https://doi.org/10.3390/foods12193697
APA StyleZhang, Z., Liu, C., Wu, S., & Ma, T. (2023). The Non-Nutritional Factor Types, Mechanisms of Action and Passivation Methods in Food Processing of Kidney Bean (Phaseolus vulgaris L.): A Systematic Review. Foods, 12(19), 3697. https://doi.org/10.3390/foods12193697