Microbial Diversity and Volatile Flavor Compounds in Tibetan Flavor Daqu
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Pretreatment
2.2. DNA Extraction, PCR Amplification and High-Throughput Sequencing
2.3. Analysis of the Microbial Diversity
2.4. Analysis of the Volatile Flavor Compounds in Daqu Using HS-SPME-GC-MS
2.5. Identification of the Key Flavor Compounds in Daqu Using ROAV (Relative Odor Activity Value)
2.6. Correlation Analysis of the Microbial Community Diversity and Flavor Compounds in TF Daqu
3. Results and Discussion
3.1. Sequencing Results and Alpha Diversity
3.2. Microbial Community Structure of TF Daqu
3.3. Volatile Flavor Compounds in TF Daqu
3.4. Identification of the Key Flavor Compounds in TF Daqu
3.5. Correlation Analysis of the Microbial Community Diversity and Flavor Compounds in TF Daqu
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TF Daqu | Tibetan flavor Daqu |
TF liquor | Tibetan flavor liquor |
References
- Yan, Q.; Zhang, K.; Zou, W.; Hou, Y. Three main flavour types of Chinese Baijiu: Characteristics, research, and perspectives. J. Inst. Brew. 2021, 127, 317–326. [Google Scholar] [CrossRef]
- He, Q.; Wen, D.; Qin, T. A Tibetan flavor liquor and its brewing technology: China. CN200910261194.X, 2 June 2010. [Google Scholar]
- Wu, X.; Jiang, Q.; Wang, Z.; Xu, Y.; Chen, W.; Sun, J.; Liu, Y. Diversity, enzyme production and antibacterial activity of Bacillus strains isolated from sesame-flavored liquor Daqu. Arch. Microbiol. 2021, 203, 5831–5839. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cai, W.; Wang, W.; Shu, N.; Zhang, Z.; Hou, Q.; Shan, C.; Guo, Z. Analysis of microbial diversity and functional differences in different types of high-temperature Daqu. Food Sci. Nutr. 2021, 9, 1003–1016. [Google Scholar] [CrossRef]
- Wu, X.; Jing, R.; Chen, W.; Geng, X.; Li, M.; Yang, F.; Yan, Y.; Liu, Y. High-throughput sequencing of the microbial diversity of roasted-sesame-like flavored Daqu with different characteristics. 3 Biotech 2020, 10, 502. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.G.; Dou, X.; Han, P.J.; Bai, F.Y.; Zhou, J.; Zhang, S.Y.; Qin, H.; Ma, Y.Y. Microbial diversity in Daqu during production of luzhou flavored liquor. J. Am. Soc. Brew. Chem. 2017, 75, 136–144. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, C.; Ding, X.; Zheng, J.; Zhou, R. Characterisation of microbial communities in Chinese liquor fermentation starters Daqu using nested PCR-DGGE. World J. Microbiol. Biotechnol. 2014, 30, 3055–3063. [Google Scholar] [CrossRef]
- Jin, Y.; Li, D.; Ai, M.; Tang, Q.; Huang, J.; Ding, X.; Wu, C.; Zhou, R. Correlation between volatile profiles and microbial communities: A metabonomic approach to study Jiang-flavor liquor Daqu. Food Res. Int. 2019, 121, 422–432. [Google Scholar] [CrossRef]
- Cai, W.; Wang, Y.; Wang, W.; Shu, N.; Hou, Q.; Tang, F.; Shan, C.; Yang, X.; Guo, Z. Insights into the Aroma Profile of Sauce-Flavor Baijiu by GC-IMS Combined with Multivariate Statistical Analysis. J. Anal. Methods Chem. 2022, 2022, 4614330. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, L.; Du, X.; Zhao, J.; Gao, G.; Zhang, X. Dynamic analysis of physicochemical and biochemical indices and microbial communities of light-flavor Daqu during storage. J. Am. Soc. Brew. Chem. 2019, 77, 287–294. [Google Scholar] [CrossRef]
- Xie, M.; Lv, F.; Ma, G.; Farooq, A.; Li, H.; Du, Y.; Liu, Y. High throughput sequencing of the bacterial composition and dynamic succession in Daqu for Chinese sesame flavour liquor. J. Inst. Brew. 2020, 126, 98–104. [Google Scholar] [CrossRef]
- Tian, N.; Guo, X.; Wang, M.; Chen, C.; Cui, H.; Zhang, L.; Tang, H. Bacterial community diversity of shilixiang baijiu Daqu based on metagenomics. J. Food Biochem. 2020, 44, e13410. [Google Scholar] [CrossRef]
- Jiang, Q.; Wu, X.; Xu, Y.; Zhang, Y.; Wang, Z.; Shen, L.; Yang, W.; Sun, J.; Liu, Y. Microbial composition and dynamic succession during the Daqu production process of Northern Jiang-flavored liquor in China. 3 Biotech 2021, 11, 224. [Google Scholar] [CrossRef]
- Chen, Y.; Li, K.; Liu, T.; Li, R.; Fu, G.; Wan, Y.; Zheng, F. Analysis of difference in microbial community and physicochemical indices between surface and central parts of Chinese special-flavor Baijiu Daqu. Front. Microbiol. 2021, 11, 592421. [Google Scholar] [CrossRef]
- Cai, W.; Wang, Y.; Ni, H.; Liu, Z.; Liu, J.; Zhong, J.; Hou, Q.; Shan, C.; Yang, X.; Guo, Z. Diversity of microbiota, microbial functions, and flavor in different types of low-temperature Daqu. Food Res. Int. 2021, 150, 110734. [Google Scholar] [CrossRef]
- Hui, W.; Hou, Q.; Cao, C.; Xu, H.; Zhen, Y.; Kwok, L.; Sun, T.; Zhang, H.; Zhang, W. Identification of microbial profile of koji using single molecule, real-time sequencing technology. J. Food Sci. 2017, 82, 1193–1199. [Google Scholar] [CrossRef]
- Wang, X.D.; Ban, S.D.; Qiu, S.Y. Analysis of the mould microbiome and exogenous enzyme production in Moutai-flavor Daqu. J. Inst. Brew. 2018, 124, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Wang, X.; Zhang, Y.; Xu, Y. Exploring the impacts of raw materials and environments on the microbiota in Chinese Daqu starter. Int. J. Food Microbiol. 2019, 297, 32–40. [Google Scholar] [CrossRef]
- Fan, G.; Sun, B.; Fu, Z.; Xia, Y.; Huang, M.; Xu, C.; Li, X. Analysis of physicochemical indices, volatile flavor components, and microbial community of a light-flavor Daqu. J. Am. Soc. Brew. Chem. 2018, 76, 209–218. [Google Scholar] [CrossRef]
- Le, V.D.; Zheng, X.W.; Chen, J.Y.; Han, B.Z. Characterization of volatile compounds in Fen-Daqu–a traditional Chinese liquor fermentation starter. J. Inst. Brew. 2012, 118, 107–113. [Google Scholar] [CrossRef]
- Sun, L.L.; Li, L.L.; Hu, P.; Tian, Y.; Ma, Y.Y.; Yuan, Z.S. Analysis of Microbial Community structure and Flavor Composition of Maotai-flavor Daqu. Mod. Food Sci. Technol. 2020, 36, 299–306. [Google Scholar]
- He, M.; Jin, Y.; Zhou, R.; Zhao, D.; Zheng, J.; Wu, C. Dynamic succession of microbial community in Nongxiangxing Daqu and microbial roles involved in flavor formation. Food Res. Int. 2022, 159, 111559. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Fu, Z.; Teng, C.; Wu, Q.; Liu, P.; Yang, R.; Minhazul, K.; Li, X. Comprehensive analysis of different grades of roasted-sesame-like flavored Daqu. Int. J. Food Prop. 2019, 22, 1205–1222. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.; Yang, Y.; Lu, Z.M.; Chai, L.J.; Zhang, X.J.; Wang, S.T.; Shen, C.H.; Shi, J.S.; Xu, Z.H. Daqu microbiota exhibits species-specific and periodic succession features in Chinese baijiu fermentation process. Food Microbiol. 2021, 98, 103766. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, X.; Liu, Y.; Yang, H. Characterization of key aroma compounds in Xiaoqu liquor and their contributions to the sensory flavor. Beverages 2020, 6, 42. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Liao, P.; Chen, L.; Sun, J.; Sun, B.; Zhao, D.; Wang, B.; Li, H. HS-SPME Combined with GC-MS/O to Analyze the Flavor of Strong Aroma Baijiu Daqu. Foods 2022, 11, 116. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ao, Z.; Chui, W.Q.; Shen, C.H.; Tao, W.Y.; Zhang, S.Y. Characterization of the aroma-active compounds in Daqu: A tradition Chinese liquor starter. Eur. Food Res. Technol. 2012, 234, 69–76. [Google Scholar] [CrossRef]
- Fan, H.; Fan, W.; Xu, Y. Characterization of key odorants in Chinese chixiang aroma-type liquor by gas chromatography–olfactometry, quantitative measurements, aroma recombination, and omission studies. J. Agric. Food Chem. 2015, 63, 3660–3668. [Google Scholar] [CrossRef]
- Moreno, M.R.F.; Sarantinopoulos, P.; Tsakalidou, E.; De Vuyst, L. The role and application of enterococci in food and health. Int. J. Food Microbiol. 2006, 106, 1–24. [Google Scholar] [CrossRef]
- Stackebrandt, E. The family Lachnospiraceae. Prokaryotes 2014, 197–201. [Google Scholar] [CrossRef]
- Fu, G.M.; Deng, M.F.; Chen, Y.; Chen, Y.R.; Wu, S.W.; Lin, P.; Huang, B.J.; Liu, C.M.; Wan, Y. Analysis of microbial community, physiochemical indices, and volatile compounds of Chinese te-flavor baijiu Daqu produced in different seasons. J. Sci. Food Agric. 2021, 101, 6525–6532. [Google Scholar] [CrossRef]
- Hanan, A.E.; Ehab, A.B.; Gehan, M.A.E.; Nermeen, A.E.S. Achromobacter sp. and Virgibacilluspantothenticus as models of thermo-tolerant lipase-producing marine bacteria from North Delta sediments (Egypt). Afr. J. Microbiol. Res. 2015, 9, 1001–1011. [Google Scholar] [CrossRef]
- Wade, M.E.; Strickland, M.T.; Osborne, J.P.; Edwards, C.G. Role of Pediococcus in winemaking. Aust. J. Grape Wine Res. 2019, 25, 7–24. [Google Scholar] [CrossRef] [Green Version]
- Sayed, A.M.; Abdel-Wahab, N.M.; Hassan, H.M.; Abdelmohsen, U.R. Saccharopolyspora: An underexplored source for bioactive natural products. J. Appl. Microbiol. 2020, 128, 314–329. [Google Scholar] [CrossRef] [Green Version]
- Björkroth, J.; Dicks, L.M.T.; Endo, A.; Holzapfel, W.H. The genus Leuconostoc . In Lactic Acid Bacteria: Biodivers; John Wiley & Sons, Ltd.: New York, NY, USA, 2014; pp. 391–404. [Google Scholar] [CrossRef]
- Batt, C.A. Lactobacillus|Introduction. In Encyclopedia of Food Microbiology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 409–411. [Google Scholar]
- Du, C.; Webb, C. Cellular systems. In Comprehensive Biotechnology; Elsevier Inc.: Amsterdam, The Netherlands, 2011; pp. 11–23. [Google Scholar]
- Huang, T.; Tan, H.; Chen, G.; Wang, L.; Wu, Z. Rising temperature stimulates the biosynthesis of water-soluble fluorescent yellow pigments and gene expression in Monascusruber CGMCC10910. AMB Express 2017, 7, 134. [Google Scholar] [CrossRef]
Bacteria | Fungi | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Effective CCS | Chao1 | Simpson | Shannon | Coverage | Effective CCS | Chao1 | Simpson | Shannon | Coverage | |
ZQ1 | 6278 | 95.375 | 0.841 | 4.252 | 0.999 | 6069 | 18.000 | 0.213 | 0.766 | 0.999 |
ZQ2 | 5150 | 37.429 | 0.775 | 2.885 | 0.999 | 6600 | 14.000 | 0.060 | 0.277 | 0.999 |
ZQ3 | 6163 | 38.143 | 0.811 | 2.910 | 0.998 | 7410 | 17.500 | 0.214 | 0.821 | 0.999 |
ZQ4 | 6181 | 49.333 | 0.739 | 2.726 | 0.998 | 7114 | 20.333 | 0.153 | 0.604 | 0.999 |
ZQ5 | 6321 | 88.500 | 0.943 | 5.090 | 0.999 | 7530 | 48.091 | 0.148 | 0.711 | 0.999 |
Mean | 6019 | 61.756 | 0.8218 | 3.5726 | 0.9986 | 6944.6 | 23.5848 | 0.1576 | 0.6358 | 0.999 |
Number | Category | Compound Name | Retention Time (min) | CAS | ZQ1 | ZQ2 | ZQ3 | ZQ4 | ZQ5 | Average |
---|---|---|---|---|---|---|---|---|---|---|
Alcohols | ||||||||||
1 | (2R,3R)-(-)-2,3-Butanediol | 4.397 | 24347-58-8 | - | - | 0.74 | 1.44 | 0.77 | 0.59 ± 0.54 | |
2 | 1-Octen-3-ol | 9.507 | 3391-86-4 | 0.63 | 1.06 | 0.37 | 0.52 | 0.42 | 0.60 ± 0.24 | |
3 | 3,5-Octadien-2-ol | 11.335 | 69668-82-2 | 0.74 | 1.06 | 0.54 | 0.64 | - | 0.59 ± 0.34 | |
4 | 1-Octanol | 12.371 | 111-87-5 | - | - | 0.15 | 0.20 | 0.42 | 0.15 ± 0.15 | |
5 | 1-Decanol | 12.410 | 112-30-1 | 0.29 | 0.26 | - | - | - | 0.27 ± 0.01 | |
6 | Phenethyl Alcohol | 13.730 | 60-12-8 | 1.82 | 3.44 | 5.63 | 7.36 | 3.30 | 4.31 ± 1.95 | |
7 | 2-propyl-1-Heptanol | 16.694 | 10042-59-8 | 0.18 | - | - | 0.33 | 0.43 | 0.18 ± 0.17 | |
8 | 2-hexyl-1-Decanol | 20.549 | 2425-77-6 | 0.22 | 0.14 | - | - | - | 0.18 ± 0.04 | |
9 | Palustrol | 28.128 | 5986-49-2 | 0.18 | 0.56 | 0.15 | 0.24 | 0.25 | 0.27 ± 0.14 | |
10 | 1-Hexadecanol | 30.618 | 36653-82-4 | - | - | 0.11 | 0.57 | - | 0.13 ± 0.22 | |
11 | Ledol | 31.098 | 577-27-5 | - | 1.65 | - | - | - | 0.33 ± 0.66 | |
Subtotal | 4.06 | 8.17 | 7.69 | 11.30 | 5.59 | 7.63 ± 2.46 | ||||
Aldehydes | ||||||||||
12 | Hexanal | 4.797 | 66-25-1 | 0.96 | 1.74 | 0.97 | 1.39 | 1.54 | 1.32 ± 0.31 | |
13 | (E)-2-Heptenal | 8.850 | 18829-55-5 | - | 0.16 | 0.11 | 0.14 | 0.22 | 0.12 ± 0.07 | |
14 | Benzaldehyde | 9.033 | 100-52-7 | 0.69 | 0.99 | 0.75 | 1.04 | 1.01 | 0.89 ± 0.14 | |
15 | Phenylacetaldehyde | 11.541 | 122-78-1 | - | 0.28 | 0.49 | 0.59 | - | 0.27 ± 0.24 | |
16 | (E)-2-Octenal | 11.982 | 2548-87-0 | 0.39 | 0.54 | 0.38 | 0.46 | 0.65 | 0.48 ± 0.10 | |
17 | Nonanal | 13.439 | 124-19-6 | 1.69 | 1.66 | 1.15 | 1.60 | 2.66 | 1.75 ± 0.49 | |
18 | (E)-2-Nonenal | 15.173 | 18829-56-6 | 0.22 | 0.37 | 0.35 | 0.36 | 0.54 | 0.36 ± 0.10 | |
19 | Decanal | 16.585 | 112-31-2 | 0.48 | 0.56 | 0.44 | 0.46 | 0.59 | 0.50 ± 0.05 | |
20 | 2-Butyl-2-octenal | 21.421 | 13019-16-4 | - | 2.59 | - | - | - | 0.51 ± 1.03 | |
Subtotal | 4.43 | 8.89 | 4.64 | 6.04 | 7.21 | 6.24 ± 1.66 | ||||
Esters | ||||||||||
21 | Methyl hexanoate | 7.847 | 106-70-7 | 3.01 | 0.88 | 0.75 | 0.43 | 1.08 | 1.23 ± 0.91 | |
22 | Methyl heptanoate | 10.863 | 106-73-0 | 0.57 | 0.18 | 0.25 | 0.06 | - | 0.21 ± 0.19 | |
23 | Methyl octanoate | 14.012 | 111-11-5 | 2.95 | 1.97 | 2.29 | 1.70 | 2.39 | 2.26 ± 0.42 | |
24 | Octyl acetate | 16.692 | 112-14-1 | - | 0.25 | 0.24 | - | - | 0.09 ± 0.12 | |
25 | Methyl nonanoate | 17.083 | 1731-84-6 | 2.81 | 0.76 | 1.30 | 0.39 | 0.78 | 1.20 ± 0.85 | |
26 | Decanoic acid, methyl ester | 20.030 | 110-42-9 | 1.13 | 0.81 | 1.30 | 0.68 | 0.82 | 0.94 ± 0.22 | |
27 | 2(3H)-Furanone, dihydro-5-penty | 21.087 | 104-61-0 | - | - | 0.26 | 0.27 | 0.40 | 0.18 ± 0.15 | |
28 | 2-(2-Butoxyethoxy)ethyl acetate | 21.089 | 124-17-4 | 0.77 | 0.77 | - | - | - | 0.30 ± 0.37 | |
29 | Ethyl (E)-4-decenoate | 21.585 | 76649-16-6 | - | 0.39 | 0.29 | 0.42 | - | 0.22 ± 0.18 | |
30 | Heneicosanoic acid, methyl ester | 21.989 | 6064-90-0 | - | - | 0.39 | - | - | 0.07 ± 0.15 | |
31 | Methyl laurate | 26.297 | 111-82-0 | 0.49 | - | 0.65 | - | - | 0.22 ± 0.28 | |
32 | Methyl 10-Methylundecanoate | 26.299 | 5129-56-6 | - | - | - | 0.29 | 0.47 | 0.38 ± 0.09 | |
33 | Methyl tetradecanoate | 32.507 | 124-10-7 | 1.97 | - | 1.38 | 0.54 | 0.84 | 0.94 ± 0.67 | |
34 | Methyl pentadecanoate | 34.172 | 7132-64-1 | 1.00 | 0.73 | 0.57 | 0.17 | 0.28 | 0.55 ± 0.30 | |
35 | Methyl oleate | 34.371 | 112-62-9 | - | - | 0.31 | - | - | 0.06 ± 0.12 | |
36 | Diisobutyl phthalate | 35.935 | 84-69-5 | 1.24 | 1.00 | - | - | - | 0.44 ± 0.55 | |
37 | Methyl hexadec-9-enoate | 36.844 | 10030-74-7 | 0.82 | - | 0.53 | 0.20 | - | 0.31 ± 0.32 | |
38 | Methyl (Z)-hexadec-9-enoate | 36.969 | 1120-25-8 | 0.54 | 0.35 | 1.14 | 0.46 | - | 0.49 ± 0.37 | |
39 | Methyl hexadecanoate | 37.502 | 112-39-0 | 14.99 | 9.99 | 8.21 | 9.79 | 6.35 | 9.86 ± 2.87 | |
40 | Dibutyl phthalate | 38.135 | 84-74-2 | 2.34 | 1.99 | - | - | - | 0.86 ± 1.06 | |
41 | Ethyl hexadecanoate | 38.973 | 628-97-7 | 0.10 | 0.27 | 0.28 | 0.44 | 0.20 | 0.25 ± 0.11 | |
42 | Methyl linoleate | 41.073 | 112-63-0 | 8.04 | 7.33 | 17.46 | 10.29 | 4.34 | 9.49 ± 4.41 | |
43 | Methyl trans-9-Octadecenoate | 41.206 | 1937-62-8 | 7.21 | 4.90 | 9.62 | 5.46 | 3.19 | 6.07 ± 2.18 | |
44 | Methyl stearate | 41.725 | 112-61-8 | 0.54 | 0.23 | 0.43 | 0.16 | - | 0.27 ± 0.19 | |
45 | Ethyl linoleate | 42.386 | 544-35-4 | - | 0.17 | 0.23 | 0.30 | - | 0.14 ± 0.12 | |
Subtotal | 50.52 | 32.97 | 47.88 | 32.05 | 21.14 | 37.14 ± 10.89 | ||||
Acids | ||||||||||
46 | Isovaleric acid | 6.219 | 503-74-2 | 0.00 | 0.32 | 0.19 | 0.45 | 0.00 | 0.19 ± 0.17 | |
47 | 2-Methylbutyric acid | 6.447 | 116-53-0 | 0.00 | 0.49 | 0.05 | 0.27 | 0.42 | 0.24 ± 0.19 | |
48 | Octanoic acid | 15.756 | 124-7-2 | 0.00 | 0.11 | 0.00 | 0.07 | 0.00 | 0.03 ± 0.04 | |
Subtotal | 0.00 | 0.92 | 0.24 | 0.79 | 0.42 | 0.47 ± 0.34 | ||||
Hydrocarbons | ||||||||||
49 | 1,3,5,7-Cyclooctatetraene | 6.988 | 629-20-9 | 0.63 | 0.64 | 0.38 | 0.58 | 1.34 | 0.71 ± 0.32 | |
50 | D-Limonene | 11.112 | 5989-27-5 | 0.69 | 0.73 | 0.56 | 0.67 | 1.86 | 0.90 ± 0.48 | |
51 | Undecane | 13.320 | 1120-21-4 | 0.55 | 0.58 | 0.33 | 0.61 | 1.05 | 0.62 ± 0.23 | |
52 | 9-methylheptadecane | 15.504 | 26741-18-4 | - | - | - | 0.55 | - | 0.11 ± 0.22 | |
53 | 3,8-Dimethyldecane | 15.515 | 17312-55-9 | - | 0.32 | - | 0.23 | - | 0.11 ± 0.13 | |
54 | Dodecane | 16.441 | 112-40-3 | 5.31 | 5.50 | 3.95 | 5.87 | 7.63 | 5.65 ± 1.18 | |
55 | 2,6,10-Trimethyldodecane | 16.798 | 3891-98-3 | - | 0.14 | 0.10 | 0.13 | 0.21 | 0.14 ± 0.04 | |
56 | 1,7-Dioxaspiro[5.5]undec-2-ene | 18.282 | 78013-58-8 | - | 0.37 | 0.24 | 0.34 | - | 0.31 ± 0.05 | |
57 | 1-Tridecene | 19.137 | 2437-56-1 | - | - | - | 0.56 | - | 0.11 ± 0.22 | |
58 | Tetradecane | 19.429 | 629-59-4 | 8.62 | 8.96 | 6.63 | 8.61 | 12.11 | 8.98 ± 1.76 | |
59 | 7-Methylheptadecane | 20.351 | 20959-33-5 | 0.24 | - | 0.22 | 0.34 | 0.40 | 0.30 ± 0.07 | |
60 | Heneicosane | 20.375 | 629-94-7 | 0.85 | 2.80 | 1.06 | 0.92 | 2.67 | 1.66 ± 0.88 | |
61 | 3,5-Dimethyldodecane | 20.452 | 107770-99-0 | 0.15 | - | 0.17 | - | 0.24 | 0.18 ± 0.03 | |
62 | (1-Propylnonyl)cyclohexane | 20.694 | 13151-84-3 | - | - | 0.60 | 0.71 | - | 0.26 ± 0.32 | |
63 | 2-Cyclohexyldodecane | 20.697 | 13151-82-1 | 0.55 | - | - | - | 0.80 | 0.67 ± 0.12 | |
64 | 2,6,11,15-Tetramethylhexadecane | 21.241 | 504-44-9 | 0.27 | 0.35 | 0.23 | 0.34 | 0.45 | 0.32 ± 0.07 | |
65 | 2-Methyltetracosane | 21.391 | 1560-78-7 | 2.28 | - | 1.48 | 1.95 | - | 1.14 ± 0.96 | |
66 | α-Copaene | 21.659 | 3856-25-5 | - | 0.12 | 0.11 | 0.13 | 0.20 | 0.14 ± 0.03 | |
67 | 3-Methylidenetridecane | 21.778 | 19780-34-8 | 0.29 | - | 0.29 | 0.40 | 0.52 | 0.30 ± 0.17 | |
68 | Longifolene | 22.728 | 475-20-7 | 0.18 | 0.27 | 0.19 | 0.22 | 0.40 | 0.25 ± 0.08 | |
69 | Caryophyllene | 23.001 | 87-44-5 | 1.23 | 3.55 | 0.56 | 0.48 | 0.90 | 1.34 ± 1.13 | |
70 | Decylcyclopentane | 23.784 | 1795-21-7 | 0.41 | 0.40 | 0.39 | 0.53 | 0.67 | 0.48 ± 0.10 | |
71 | 2,6,10-Trimethyltridecane | 24.072 | 3891-99-4 | 0.16 | 0.16 | 0.15 | 0.16 | - | 0.15 ± 0.00 | |
72 | Cyclooctacosane | 25.232 | 297-24-5 | - | - | - | 0.48 | - | 0.09 ± 0.19 | |
73 | Pentadecane | 25.525 | 629-62-9 | - | - | 0.29 | 0.19 | 0.43 | 0.18 ± 0.16 | |
74 | Heptadecane | 25.557 | 629-78-7 | 0.82 | 0.45 | - | - | - | 0.25 ± 0.33 | |
75 | 8-Hexylpentadecane | 26.581 | 13475-75-7 | 0.33 | 0.69 | 0.46 | 0.67 | 1.09 | 0.64 ± 0.25 | |
76 | Octadecane | 26.734 | 593-45-3 | 0.13 | - | - | 0.19 | - | 0.16 ± 0.03 | |
77 | n-Nonylcyclohexane | 27.442 | 2883-2-5 | 0.09 | 0.16 | 0.13 | 0.17 | 0.24 | 0.15 ± 0.04 | |
78 | Eicosane | 27.750 | 112-95-8 | 0.26 | 0.94 | 0.56 | 0.67 | 2.53 | 0.99 ± 0.79 | |
79 | Phytane | 34.686 | 638-36-8 | 0.21 | 0.26 | 0.15 | 0.09 | 0.51 | 0.24 ± 0.14 | |
80 | Dotriacontane | 39.274 | 544-85-4 | - | - | - | 3.29 | 0.50 | 0.75 ± 1.28 | |
81 | Hexatriacontane | 46.994 | 630-6-8 | - | 1.30 | 3.70 | 0.69 | 3.22 | 1.78 ± 1.43 | |
Subtotal | 24.25 | 28.69 | 22.93 | 30.77 | 39.97 | 30.17 ± 6.04 | ||||
Ketones | ||||||||||
82 | 2-Nonanone | 12.994 | 821-55-6 | 0.36 | 0.39 | 0.29 | 0.39 | 0.87 | 0.46 ± 0.20 | |
83 | 6-Dodecanone | 18.498 | 6064-27-3 | 0.25 | - | 0.17 | 0.22 | - | 0.12 ± 0.10 | |
84 | 6-Undecanone | 18.518 | 927-49-1 | - | 0.32 | - | - | - | 0.06 ± 0.12 | |
85 | trans-3-Nonen-2-one | 20.530 | 18402-83-0 | - | 0.27 | 0.35 | 0.44 | - | 0.21 ± 0.18 | |
86 | (Z)-Oxacyclopentadec-6-en-2-one | 30.271 | 63958-52-1 | 0.92 | 1.04 | 1.58 | 2.27 | 1.27 | 1.41 ± 0.48 | |
87 | 6,10,14-Trimethyl-2-pentadecanon | 35.525 | 502-69-2 | 0.17 | 0.25 | 0.17 | 0.17 | 0.25 | 0.20 ± 0.03 | |
Subtotal | 1.70 | 2.27 | 2.56 | 3.49 | 2.39 | 2.48 ± 0.58 | ||||
Ethers | ||||||||||
88 | 1,2-Dimethoxybenzene | 14.621 | 91-16-7 | 0.10 | 0.21 | 0.09 | 0.14 | 0.16 | 0.14 ± 0.04 | |
89 | 5-Isopropyl-2-methylanisole | 17.572 | 6379-73-3 | - | 0.10 | 0.09 | 0.12 | 0.19 | 0.10 ± 0.06 | |
Subtotal | 0.10 | 0.31 | 0.18 | 0.26 | 0.35 | 0.24 ± 0.09 | ||||
Aromatics | ||||||||||
90 | p-Cymene | 10.907 | 99-87-6 | - | - | 0.24 | 0.27 | - | 0.10 ± 0.12 | |
91 | o-Cymene | 10.954 | 527-84-4 | 0.31 | 0.25 | - | - | 0.70 | 0.42 ± 0.19 | |
92 | Eugenol | 12.371 | 97-53-0 | - | - | 0.24 | 0.37 | - | 0.12 ± 0.15 | |
93 | Naphthalene | 16.015 | 91-20-3 | 0.38 | 0.47 | 0.26 | - | 0.49 | 0.32 ± 0.17 | |
94 | 4-Ethyl-1,2-dimethoxybenzene | 19.904 | 5888-51-7 | 0.32 | 0.55 | 0.34 | 0.46 | - | 0.33 ± 0.18 | |
95 | Butylated Hydroxytoluene | 25.654 | 128-37-0 | 2.61 | 5.64 | 3.07 | 4.22 | 6.33 | 4.37 ± 1.43 | |
Subtotal | 3.62 | 6.91 | 4.15 | 5.32 | 7.52 | 5.67 ± 1.51 | ||||
Pyrazines | ||||||||||
96 | 2,5-Dimethyl pyrazine | 7.503 | 123-32-0 | - | - | 0.13 | 0.21 | - | 0.06 ± 0.08 | |
97 | 2,3,5-Trimethylpyrazine | 10.201 | 14667-55-1 | - | 0.33 | 0.60 | 0.64 | - | 0.31 ± 0.27 | |
98 | Tetramethylpyrazine | 12.798 | 1124-11-4 | 3.16 | 2.05 | 3.05 | 4.22 | 1.14 | 2.72 ± 1.04 | |
99 | 2-Ethyl-3,5,6-trimethylpyrazine | 15.041 | 17398-16-2 | 0.21 | 0.12 | 0.14 | 0.20 | - | 0.13 ± 0.07 | |
Subtotal | 3.37 | 2.50 | 3.92 | 5.27 | 1.14 | 3.24 ± 1.38 | ||||
Others | ||||||||||
100 | 2-Pentylfuran | 9.810 | 3777-69-3 | 1.19 | 0.22 | 0.45 | 0.56 | 1.35 | 0.75 ± 0.43 | |
101 | 2-Acetylpyrrole | 12.221 | 1072-83-9 | - | - | 0.21 | 0.31 | - | 0.10 ± 0.13 | |
Subtotal | 1.19 | 0.22 | 0.66 | 0.87 | 1.35 |
Number | Category | Compound Name | CAS | Odor Threshold (μg/m3) | ROAV |
---|---|---|---|---|---|
Alcohols | |||||
1 | 1-Octen-3-ol | 3391-86-4 | 1 | 14.59 | |
2 | 1-Octanol | 111-87-5 | 22 | 0.17 | |
3 | Phenethyl Alcohol | 60-12-8 | 12 | 8.74 | |
Aldehydes | |||||
4 | Hexanal | 66-25-1 | 230 | 0.14 | |
5 | (E)-2-Heptenal | 18829-55-5 | 2800 | - | |
6 | Benzaldehyde | 100-52-7 | 85 | 0.26 | |
7 | Phenylacetaldehyde | 122-78-1 | 1.7 | 3.89 | |
8 | (E)-2-Octenal | 2548-87-0 | 2.7 | 4.36 | |
9 | Nonanal | 124-19-6 | 3.1 | 13.75 | |
10 | (E)-2-Nonenal | 18829-56-6 | 0.09 | 100.00 | |
11 | Decanal | 112-31-2 | 2.6 | 4.73 | |
Esters | |||||
12 | Methyl heptanoate | 106-73-0 | 290 | 0.02 | |
13 | Octyl acetate | 112-14-1 | 140 | 0.02 | |
14 | Methyl nonanoate | 1731-84-6 | 40 | 0.73 | |
15 | Dibutyl phthalate | 84-74-2 | 260 | 0.08 | |
16 | Methyl laurate | 111-82-0 | 1.5 | 3.70 | |
Acids | |||||
17 | Isovaleric acid | 503-74-2 | 1.8 | 2.59 | |
18 | 2-Methylbutyric acid | 116-53-0 | 20 | 0.30 | |
19 | Octanoic acid | 124-7-2 | 5.1 | 0.17 | |
Hydrocarbons | |||||
20 | D-Limonene | 5989-27-5 | 45 | 0.49 | |
21 | Undecane | 1120-21-4 | 5600 | - | |
22 | Dodecane | 112-40-3 | 770 | 0.18 | |
23 | Tetradecane | 629-59-4 | 5000 | 0.04 | |
24 | Caryophyllene | 87-44-5 | 11000 | - | |
25 | Octadecane | 593-45-3 | 20 | 0.19 | |
Ketones | |||||
26 | 2-Nonanone | 821-55-6 | 32 | 0.35 | |
Aromatics | |||||
27 | Naphthalene | 91-20-3 | 450 | 0.02 | |
28 | p-Cymene | 99-87-6 | 7200 | - | |
29 | Eugenol | 97-53-0 | 0.61 | 4.86 | |
Pyrazines | |||||
30 | 2,3,5-Trimethylpyrazine | 14667-55-1 | 50 | 0.15 | |
31 | Tetramethylpyrazine | 1124-11-4 | 2000 | 0.03 | |
32 | 2,5-Dimethyl pyrazine | 123-32-0 | 1820 | - | |
Others | |||||
33 | 2-Pentylfuran | 3777-69-3 | 19 | 0.97 | |
34 | 2-Acetylpyrrole | 1072-83-9 | 2000 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Qiao, H.; Zhang, R.; Zhang, W.; Wen, P. Microbial Diversity and Volatile Flavor Compounds in Tibetan Flavor Daqu. Foods 2023, 12, 324. https://doi.org/10.3390/foods12020324
Li Y, Qiao H, Zhang R, Zhang W, Wen P. Microbial Diversity and Volatile Flavor Compounds in Tibetan Flavor Daqu. Foods. 2023; 12(2):324. https://doi.org/10.3390/foods12020324
Chicago/Turabian StyleLi, Yaping, Haijun Qiao, Rui Zhang, Weibing Zhang, and Pengcheng Wen. 2023. "Microbial Diversity and Volatile Flavor Compounds in Tibetan Flavor Daqu" Foods 12, no. 2: 324. https://doi.org/10.3390/foods12020324
APA StyleLi, Y., Qiao, H., Zhang, R., Zhang, W., & Wen, P. (2023). Microbial Diversity and Volatile Flavor Compounds in Tibetan Flavor Daqu. Foods, 12(2), 324. https://doi.org/10.3390/foods12020324