Evaluating Rice Bran Oil as a Dietary Energy Source on Production Performance, Nutritional Properties and Fatty Acid Deposition of Breast Meat in Broiler Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Diets
2.2. Growth Performance Data
2.3. Carcass Traits
2.4. Meat Quality
2.5. Nutritional Properties and Fatty-Acid Deposition of the Breast Meat Samples
2.6. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Carcass Characteristics
3.3. Physical Parameters of Meat
3.4. Nutritional Properties of the Breast Meat
3.5. Fatty-Acid Deposition of the Breast Meat
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noy, Y.; Sklan, D. Digestion and absorption in the young chick. Poult. Sci. 1995, 74, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Nitsan, Z.; Dvorin, A.; Zoref, Z.; Mokady, S. Effect of added soyabean oil and dietary energy on metabolisable and net energy of broiler diets. Br. Poult. Sci. 1997, 38, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Orczewska-Dudek, S.; Pietras, M. The effect of dietary Camelina sativa oil or cake in the diets of broiler chickens on growth performance, fatty acid profile, and sensory quality of meat. Animals 2019, 9, 734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, D.J.; Goggin, K.; Paterson, R.R.M. Oil palm in the 2020s and beyond: Challenges and solutions. CABI Agric. Biosci. 2021, 2, 1–22. [Google Scholar] [CrossRef] [PubMed]
- May, C.Y.; Nesaretnam, K. Research advancements in palm oil nutrition. Eur. J. Lipid Sci. Technol. 2014, 116, 1301–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smink, W.; Gerrits, W.J.J.; Hovenier, R.; Geelen, M.J.H.; Lobee, H.W.J.; Verstegen, M.W.A.; Beynen, A.C. Fatty acid digestion and deposition in broiler chickens fed diets containing either native or randomized palm oil. Poult. Sci. 2008, 87, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Dunford, N.T. Chemistry of rice bran oil. In Rice Bran and Rice Bran Oil; AOCS Press: Urbana IL, USA, 2019; pp. 1–18. [Google Scholar]
- Kahlon, T.S. Rice Bran: Production, Composition, Functionality and Food Applications, Physiological Benefits; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2009; pp. 305–322. [Google Scholar]
- Lai, M.H.; Chen, Y.T.; Chen, Y.Y.; Chang, J.H.; Cheng, H.H. Effects of rice bran oil on the blood lipids profiles and insulin resistance in type 2 diabetes patients. J. Clin. Biochem. Nutr. 2012, 51, 15–18. [Google Scholar] [CrossRef] [Green Version]
- Bumrungpert, A.; Chongsuwat, R.; Phosat, C.; Butacnum, A. Rice-bran oil containing gamma-oryzanol improves lipid profiles and antioxidant status in hyperlipidemic subjects: A randomized double-blind controlled trial. J. Altern. Complement Med. 2019, 25, 353–358. [Google Scholar] [CrossRef]
- De Moraes, M.L.; Ribeiro, A.M.L.; Kessler, A.D.M.; Cortés, M.M.; Ledur, V.S.; Cura, E. Comparison of the effects of semi-refined rice oil and soybean oil on meat oxidative stability, carcass yield, metabolism, and performance of broilers. Braz. J. Poult. Sci. 2009, 11, 161–167. [Google Scholar] [CrossRef]
- Sbardella, M.; Berenchtein, B.; de Andrade, C.; do Prado Perina, D.; de Almeida, V.V.; Miyada, V.S. Rice oil as a soybean oil replacement in weanling pig diets. Livest. Sci. 2012, 145, 21–27. [Google Scholar] [CrossRef]
- Song, M.; Zhao, F.; Ye, X.; Xie, J.; Sa, R.; Zhang, G.; Wang, Y. A comparative evaluation on the energetic values and digestibility of fatty acids in rice bran oil and palm oil for broilers. Poult. Sci. 2022, 101, 101954. [Google Scholar] [CrossRef] [PubMed]
- Del Puerto, M.; Cabrera, M.C.; Saadoun, A. A note on fatty acids profile of meat from broiler chickens supplemented with inorganic or organic selenium. Int. J. Food Sci. 2017, 2017, 7613069. [Google Scholar] [CrossRef] [Green Version]
- El-Bahr, S.M.; Shousha, S.; Alfattah, M.A.; Al-Sultan, S.; Khattab, W.; Sabeq, I.I.; Ahmed-Farid, O.; El-Garhy, O.; Albusadah, K.A.; Alhojaily, S.; et al. Enrichment of broiler chickens’ meat with dietary linseed oil and lysine mixtures: Influence on nutritional value, carcass characteristics and oxidative stress biomarkers. Foods 2021, 10, 618. [Google Scholar] [CrossRef] [PubMed]
- Vlaicu, P.A.; Untea, A.E.; Turcu, R.P.; Saracila, M.; Panaite, T.D.; Cornescu, G.M. Nutritional composition and bioactive compounds of basil, thyme and sage plant additives and their functionality on broiler thigh meat quality. Foods 2022, 11, 1105. [Google Scholar] [CrossRef] [PubMed]
- Janiszewski, P.; Lisiak, D.; Borzuta, K.; Grześkowiak, E.; Schwarz, T.; Siekierko, U.; Andres, K.; Świątkiewicz, S. The effect of feeding chicken and geese broilers with different cereals on the fatty acids profile in meat. Foods 2021, 10, 2879. [Google Scholar] [CrossRef]
- Matshogo, T.B.; Mnisi, C.M.; Mlambo, V. Effect of pre-treating dietary green seaweed with proteolytic and fibrolytic enzymes on physiological and meat quality parameters of broiler chickens. Foods 2021, 10, 1862. [Google Scholar] [CrossRef]
- Zhong, X.; Gao, S.; Wang, J.J.; Dong, L.; Huang, J.; Zhang, L.L.; Wang, T. Effects of linseed oil and palm oil on growth performance, tibia fatty acid and biomarkers of bone metabolism in broilers. Br. Poult. Sci. 2014, 55, 335–342. [Google Scholar] [CrossRef]
- Long, S.; Xu, Y.; Wang, C.; Li, C.; Liu, D.; Piao, X. Effects of dietary supplementation with a combination of plant oils on performance, meat quality and fatty acid deposition of broilers. Asian-Australas J. Anim. Sci. 2018, 31, 1773–1780. [Google Scholar] [CrossRef]
- Khatun, J.; Loh, T.C.; Foo, H.L.; Akit, H.; Khan, K.I. Growth performance, cytokine expression, and immune responses of broiler chickens fed a dietary palm oil and sunflower oil blend supplemented with L-Arginine and varying concentrations of vitamin E. Front. Vet. Sci. 2020, 7, 619. [Google Scholar] [CrossRef]
- Verge-Mèrida, G.; Solà-Oriol, D.; Tres, A.; Verdú, M.; Farré, G.; Garcés-Narro, C.; Barroeta, A.C. Olive pomace oil and acid oil as alternative fat sources in growing-finishing broiler chicken diets. Poult. Sci. 2022, 101, 102079. [Google Scholar] [CrossRef]
- AgGuide. Guide for the Care and Use of Agricultural Animals in Research and Teaching. 2020. Available online: https://www.aaalac.org/pub/?id=E900BDB6-CCCF-AB13-89B6-DA98A4B52218 (accessed on 14 November 2022).
- Horwitz, W. International A: Official Methods of Analysis of the AOAC International; The Association: Arlington, VA, USA, 2000. [Google Scholar]
- Azzam, M.M.; Qaid, M.M.; Al-Mufarrej, S.I.; Al-Garadi, M.A.; Albaadani, H.H.; Alhidary, I.A. Rumex nervosus leaves meal improves body weight gain, duodenal morphology, serum thyroid hormones, and cecal microflora of broiler chickens during the starter period. Poult. Sci. 2020, 99, 5572–5581. [Google Scholar] [CrossRef] [PubMed]
- Agnew, M.P.; Craigie, C.R.; Weralupitiya, G.; Reis, M.M.; Johnson, P.L.; Reis, M.G. Comprehensive evaluation of parameters affecting one-step method for quantitative analysis of fatty acids in meat. Metabolites 2019, 9, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussein, E.O.S.; Suliman, G.M.; Al-Owaimer, A.N.; Ahmed, S.H.; Abudabos, A.M.; Abd El-Hack, M.E.; Taha, A.E.; Saadeldin, I.M.; Swelum, A.A. Effects of stock, sex, and muscle type on carcass characteristics and meat quality attributes of parent broiler breeders and broiler chickens. Poult. Sci. 2019, 98, 6586–6592. [Google Scholar] [CrossRef]
- Al-Abdullatif, A.A.; Al-Sagan, A.A.; Hussein, E.O.; Saadeldin, I.M.; Suliman, G.M.; Azzam, M.M.; Al-Mufarrej, S.I.; Alhotan, R.A. Betaine could help ameliorate transport associated water deprivation stress in broilers by reducing the expression of stress-related transcripts and modulating water channel activity. Ital. J. Anim. Sci. 2021, 20, 14–25. [Google Scholar] [CrossRef]
- SPSS Inc. SPSS for Windows: IBM; Version 24; SPSS Inc.: Armonk, NY, USA; Chicago, IL, USA, 2016. [Google Scholar]
- United Nations. Department of Economic and Social Affairs. 2017. Available online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html (accessed on 5 December 2022).
- Marangoni, F.; Corsello, G.; Cricelli, C.; Ferrara, N.; Ghiselli, A.; Lucchin, L.; Poli, A. Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: An Italian consensus document. Food Nutr. Res. 2015, 59, 27606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobedo del Bosque, C.I.; Altmann, B.A.; Ciulu, M.; Halle, I.; Jansen, S.; Nolte, T.; Weigend, S.; Mörlein, D. Meat quality parameters and sensory properties of one high-performing and two local chicken breeds fed with Vicia faba. Foods 2020, 9, 1052. [Google Scholar] [CrossRef]
- Baião, N.C.; Lara, L.J.C. Oil and fat in broiler nutrition. Rev. Bras. Cienc. Avic. 2005, 7, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Atteh, J.O.; Leeson, S. Effects of dietary fatty acids and calcium levels on performance and mineral metabolism of broiler chickens. Poul. Sci. 1983, 62, 2412–2419. [Google Scholar] [CrossRef]
- Rodriguez-Sanchez, R.; Tres, A.; Sala, R.; Soler, M.D.; Guardiola, F.; Barroeta, A.C. Effects of free-fatty-acid content and saturation degree of the dietary oil sources on lipid-class content and fatty-acid digestibility along the gastrointestinal tract in broilers from 22 to 37 days of age. Poul. Sci. 2021, 100, 101261. [Google Scholar] [CrossRef]
- Selim, S.; Hussein, E.; Abdel-Megeid, N.S.; Melebary, S.J.; Al-Harbi, M.S.; Saleh, A.A. Growth performance, antioxidant activity, immune status, meat quality, liver fat content, and liver histomorphology of broiler chickens fed rice bran oil. Animals 2021, 11, 3410. [Google Scholar] [CrossRef]
- Kang, H.K.; Kim, C.H. Effects of dietary supplementation with rice bran oil on the growth performance, blood parameters, and immune response of broiler chickens. J. Anim. Sci. Technol. 2016, 58, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayed, H.B.; Attia, H.; Ennouri, M. Effect of oil supplemented diet on growth performance and meat quality of broiler chickens. Adv. Tech. Biol. Med. 2015, 4, 156. [Google Scholar] [CrossRef] [Green Version]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef]
- Lopez-Ferrer, S.; Baucells, M.D.; Barroeta, A.C.; Galobart, J.; Grashorn, M. n-3 enrichment of chicken meat 2. Use of precursors of long-chain polyunsaturated fatty acids: Linseed oil. Poult. Sci. 2001, 80, 753–761. [Google Scholar] [CrossRef]
- Kalmar, I.D.; Cools, A.; Verstegen, M.W.; Huyghebaert, G.; Buyse, J.; Roose, P.; Janssens, G.P.J. Dietary supplementation with dimethylglycine affects broiler performance and plasma metabolites depending on dose and dietary fatty acid profile. J. Anim. Physiol. Anim. 2011, 95, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Bowker, B.; Zhuang, H. Relationship between water-holding capacity and protein denaturation in broiler breast meat. Poult. Sci. 2015, 94, 1657–1664. [Google Scholar] [CrossRef]
- Warner, R. Measurement of meat quality j measurements of water-holding capacity and color: Objective and subjective. In Encyclopedia of Meat Sciences, 2nd ed.; Devine, C., Dikeman, M., Eds.; Academic Press: Oxford, UK, 2014. [Google Scholar]
- Aaslyng, M.D.; Bejerholm, C.; Ertbjerg, P.; Bertram, H.C.; Andersen, H.J. Cooking loss and juiciness of pork in relation to raw meat quality and cooking procedure. Food Qual. Prefer. 2003, 14, 277–288. [Google Scholar] [CrossRef]
- Tang, J.Y.; He, Z.; Liu, Y.G.; Jia, G.; Liu, G.M.; Chen, X.L.; Tian, G.; Cai, J.Y.; Kang, B.; Zhao, H. Effect of supplementing hydroxy selenomethionine on meat quality of yellow feather broiler. Poult. Sci. 2021, 100, 101389. [Google Scholar] [CrossRef]
- Daszkiewicz, T.; Bąk, T.; Denaburski, J. Quality of pork with a different intramuscular fat (IMF) content. Pol. J. Food Nutr. Sci. 2005, 55, 31–36. [Google Scholar]
- Huff-Lonergan, E.; Baas, T.J.; Malek, M.; Dekkers, J.C.; Prusa, K.; Rothschild, M.F. Correlations among selected pork quality traits. J. Anim. Sci. 2002, 80, 617–627. [Google Scholar] [CrossRef] [Green Version]
- de Souza Vilela, J.; Alvarenga, T.I.; Andrew, N.R.; McPhee, M.; Kolakshyapati, M.; Hopkins, D.L.; Ruhnke, I. Technological quality, amino acid and fatty acid profile of broiler meat enhanced by dietary inclusion of black soldier fly larvae. Foods 2021, 10, 297. [Google Scholar] [CrossRef] [PubMed]
- Panpipat, W.; Chaijan, M.; Karnjanapratum, S.; Keawtong, P.; Tansakul, P.; Panya, A.; Phonsatta, N.; Aoumtes, K.; Quan, T.H.; Petcharat, T. Quality characterization of different parts of broiler and Ligor hybrid chickens. Foods 2022, 11, 1929. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Kim, H.Y. Effects of marketing ages on the physicochemical properties and sensory aspects of cured broiler chicken breast meat. Foods 2021, 10, 2152. [Google Scholar] [CrossRef] [PubMed]
- Kanner, J. Oxidative processes in meat and meat products: Quality implications. Meat Sci. 1994, 36, 169–189. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, P.A.; Sheehy, P.J.A.; Galvin, K.; Kerry, J.P.; Buckley, D.J. Lipid stability in meat and meat products. Meat Sci. 1998, 49, S73–S86. [Google Scholar] [CrossRef]
- Carvalho, R.H.; Ida, E.I.; Madruga, M.S.; Martínez, S.L.; Shimokomaki, M.; Estévez, M. Underlying connections between the redox system imbalance, protein oxidation and impaired quality traits in pale, soft and exudative (PSE) poultry meat. Food Chem. 2017, 215, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Arner, A.; Puolanne, E.; Ertbjerg, P. On the water-holding of myofibrils: Effect of sarcoplasmic protein denaturation. Meat Sci. 2016, 119, 32–40. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Cartoni Mancinelli, A.; Vaudo, G.; Cavallo, M.; Castellini, C.; Mattioli, S. Indexing of fatty acids in poultry meat for its characterization in healthy human nutrition: A comprehensive application of the scientific literature and new proposals. Nutrients 2022, 14, 3110. [Google Scholar] [CrossRef]
- Kim, M.; Voy, B.H. Fighting fat with fat: N-3 polyunsaturated fatty acids and adipose deposition in broiler chickens. Front. Physiol. 2021, 12, 755317. [Google Scholar] [CrossRef]
Ingredients, % | Starter Diet (d 1–21) | Finisher Diet (d 22–38) | ||||
---|---|---|---|---|---|---|
PO | PO-RBO | RBO | PO | PO-RBO | RBO 1 | |
T1 | T2 | T3 | T1 | T2 | T3 | |
Yellow corn | 57.40 | 57.40 | 57.40 | 60.00 | 60.00 | 60.00 |
Soybean meal, 48% | 34.40 | 34.40 | 34.40 | 31.00 | 31.00 | 31.00 |
Di-calcium phosphate | 1.70 | 1.70 | 1.70 | 1.63 | 1.63 | 1.63 |
Limestone | 1.00 | 1.00 | 1.00 | 0.91 | 0.91 | 0.91 |
NaCl | 0.50 | 0.50 | 0.50 | 0.47 | 0.47 | 0.47 |
L-Lys | 0.10 | 0.10 | 0.10 | 0.11 | 0.11 | 0.11 |
Dl-Meth | 0.27 | 0.27 | 0.27 | 0.25 | 0.25 | 0.25 |
L-Thr | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
Choline chloride | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Premix 2 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Palm oil | 4.00 | 2.00 | -3 | 5.00 | 2.50 | -3 |
Rice bran oil 4 | - | 2.00 | 4.00 | -3 | 2.50 | 5.00 |
Total | 100 | 100 | 100 | 100 | 100 | 100 |
Calculated nutrient level% | ||||||
Crude protein | 21.30 | 21.30 | 21.30 | 19.00 | 19.00 | 19.00 |
Digestible Lys | 1.12 | 1.12 | 1.12 | 0.99 | 0.99 | 0.99 |
Digestible Met + Cys | 0.85 | 0.85 | 0.85 | 0.77 | 0.77 | 0.77 |
Digestible Thr | 0.75 | 0.75 | 0.75 | 0.68 | 0.68 | 0.68 |
Calcium | 0.91 | 0.91 | 0.91 | 0.83 | 0.83 | 0.83 |
Non-phytate P | 0.44 | 0.44 | 0.44 | 0.42 | 0.42 | 0.42 |
ME, Kcal/Kg | 3100 | 3090 | 3080 | 3190 | 3170 | 3160 |
Analyzed nutrient level% | ||||||
Dry matter | 92.26 | 91.81 | 92.01 | 91.39 | 91.82 | 91.91 |
Crude protein | 22.2 | 21.75 | 21.3 | 19. 32 | 19.11 | 19.54 |
Ether extract | 6.71 | 6.99 | 7.33 | 7.91 | 7.87 | 7.99 |
Total crude fiber | 1.69 | 1.7 | 1.7 | 1.82 | 1.47 | 1.56 |
GE, Kcal/Kg | 4216 | 4281 | 4258 | 4315 | 4322 | 4308 |
Fatty Acids, g/100 g | Starter Diet (d 1–21) | Finisher Diet (d 22–38) | ||||
---|---|---|---|---|---|---|
PO | PO-RBO | RBO | PO | PO-RBO | RBO 1 | |
T1 | T2 | T3 | T1 | T2 | T3 | |
C11:0 | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
C12:0 | 0.82 | 0.56 | 1.10 | 0.59 | 0.43 | 1.08 |
C14:0 | 0.61 | 0.70 | 0.36 | 0.69 | 0.44 | 0.54 |
C16:0 | 28.37 | 23.50 | 17.08 | 30.39 | 24.24 | 18.37 |
C16:1 (n-7) | 0.16 | 0.19 | 0.17 | 0.21 | 0.16 | 0.31 |
C17:0 | 0.00 | 0.31 | 0.00 | 0.17 | 0.10 | 0.28 |
C18:0 | 3.66 | 3.26 | 2.35 | 3.73 | 3.17 | 2.78 |
C18:1 (n-9) | 37.05 | 37.89 | 37.72 | 38.70 | 39.04 | 38.34 |
C18:1 (n-7) | 0.75 | 0.88 | 0.86 | 0.87 | 0.84 | 1.03 |
C18:2 (n-6) | 26.5 | 29.88 | 37.98 | 22.57 | 29.20 | 33.95 |
C18:2 (n-4) | 0.17 | 0.13 | 0.14 | 0.16 | 0.16 | 0.17 |
C18:3 (n-3) | 1.02 | 1.19 | 1.4 | 0.78 | 1.04 | 1.26 |
C18:4 (n-1) | 0.00 | 0.00 | 0.00 | 0.41 | 0.00 | 0.00 |
C20:0 | 0.43 | 0.56 | 0.76 | 0.52 | 0.63 | 0.87 |
C20:1 (n-9) | 0.16 | 0.29 | 0.38 | 0.23 | 0.27 | 0.47 |
C22:0 | 0.18 | 0.14 | 0.24 | 0.15 | 0.29 | 0.54 |
C22:1 (n-9) | 0.00 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 |
∑SFA | 34.2 | 29.16 | 21.89 | 36.24 | 29.3 | 24.46 |
∑MUFA | 38.12 | 38.96 | 39.13 | 40.13 | 40.31 | 40.15 |
∑n-3 | 1.02 | 1.19 | 1.40 | 0.78 | 1.04 | 1.26 |
∑n-6 | 26.5 | 29.88 | 37.98 | 22.57 | 29.20 | 33.95 |
∑PUFA | 27.52 | 31.07 | 39.38 | 23.35 | 30.24 | 35.21 |
n-6:n-3 | 25.98 | 25.11 | 27.12 | 28.94 | 28.08 | 26.94 |
n-3:n-6 | 0.038 | 0.039 | 0.036 | 0.035 | 0.036 | 0.037 |
∑n-9 | 37.21 | 38.18 | 38.1 | 39.05 | 39.31 | 38.81 |
∑UFA | 65.64 | 70.03 | 78.51 | 63.48 | 70.55 | 75.36 |
UFA:SFA | 1.92 | 2.40 | 3.58 | 1.75 | 2.40 | 3:00 |
Items | PO | PO-RBO | RBO 3 | SEM | p-Value |
---|---|---|---|---|---|
T1 | T2 | T3 | |||
d 1–21 (Starter phase) | |||||
Initial body weight, g (d 1) | 41.81 | 41.77 | 41.81 | 0.056 | 0.69 |
Body weight, g | 837 | 835 | 826 | 34.40 | 0.94 |
Body weight gain, g | 795 | 793 | 784 | 34.38 | 0.94 |
Feed intake, g/b | 1006 | 962 | 958 | 39.34 | 0.41 |
FCR, g/g | 1.265 | 1.213 | 1.222 | 0.029 | 0.16 |
d 22–38 (Finisher phase) | |||||
Body weight gain, g | 1511 | 1516 | 1538 | 75.79 | 0.93 |
Feed intake, g/b | 2401 a | 2243 b | 2267 ab | 59.04 | 0.03 |
FCR, g/g | 1.589 | 1.479 | 1.474 | 0.056 | 0.10 |
d 1–38 (Over growth period) | |||||
Body weight, g | 2348 | 2351 | 2364 | 70.146 | 0.97 |
Body weight gain, g | 2306 | 2309 | 2322 | 70.155 | 0.97 |
Feed intake, g/b | 3407 a | 3205 b | 3225 ab | 72.257 | 0.020 |
FCR, g/g | 1.48 a | 1.39 b | 1.39 b | 0.033 | 0.017 |
PRC 2, % | −6 | −6 |
Items | PO | PO-RBO | RBO 2 | SEM | p-Value |
---|---|---|---|---|---|
T1 | T2 | T3 | |||
Absolute weights (g) | |||||
Hot carcass 3 | 2169 | 2163 | 2039 | 89.30 | 0.27 |
Cold carcass | 2121 | 2114 | 1992 | 88.03 | 0.27 |
Breast meat | 663 | 670 | 623 | 38.19 | 0.42 |
Legs meat | 552 | 550 | 547 | 26.61 | 0.98 |
Wings meat | 147 | 146 | 145 | 8.16 | 0.97 |
Fat pad | 31.85 | 31.15 | 31.85 | 5.14 | 0.98 |
Yield (g/100 g) | |||||
Hot carcass | 75.21 | 75.00 | 74.43 | 0.61 | 0.43 |
Cold carcass | 73.53 | 73.28 | 72.71 | 0.58 | 0.37 |
Breast meat | 22.99 | 23.28 | 22.73 | 0.96 | 0.84 |
Legs meat | 19.15 | 19.07 | 20.00 | 0.56 | 0.21 |
Wings meat | 5.09 | 5.04 | 5.29 | 0.19 | 0.42 |
Fat pad | 1.11 | 1.07 | 1.15 | 0.17 | 0.91 |
Physical Traits | PO | PO-RBO | RBO 2 | SEM | p-Value |
---|---|---|---|---|---|
T1 | T2 | T3 | |||
Pectoralis major | |||||
Cooking loss, % | 17.60 b | 19.86 b | 31.30 a | 2.666 | <0.001 |
Meat pH | |||||
pH20min | 6.51 a | 6.11 b | 6.08 b | 0.080 | <0.001 |
pH24hr | 6.15 a | 6.09 b | 6.03 b | 0.023 | <0.001 |
Thigh meat | |||||
Cooking loss, % | 32.67 a | 23.64 b | 31.32 a | 1.724 | <0.001 |
Meat pH | |||||
pH20min | 6.50 a | 6.25 b | 6.23 b | 0.055 | <0.001 |
pH24hr | 6.27 a | 6.15 b | 6.12 b | 0.032 | <0.001 |
Proximate Composition, % | PO | PO-RBO | RBO 2 | SEM | p-Value |
---|---|---|---|---|---|
T1 | T2 | T3 | |||
Moisture | 74.08 | 74.25 | 73.66 | 0.228 | 0.050 |
Protein | 24.17 a | 23.55 b | 23.45 b | 0.206 | 0.007 |
Fat | 0.45 c | 0.77 b | 1.63 a | 0.069 | <0.001 |
Ash | 1.15 | 1.18 | 1.18 | 0.090 | 0.93 |
Fatty Acids Composition, g/100 g of FAME | PO | PO-RBO | RBO 2 | SEM | p-Value |
---|---|---|---|---|---|
T1 | T2 | T3 | |||
SFA | |||||
Lauric acid, C12 | 0.33 | 0.39 | 0.56 | 0.11 | 0.19 |
Myristic acid, C14 | 0.54 | 0.53 | 0.51 | 0.07 | 0.93 |
Palmitic acid, C16 | 24.80 a | 23.48 ab | 21.96 b | 0.72 | 0.02 |
Heptadecanoic acid, C17 | 0.18 | 0.14 | 0.31 | 0.07 | 0.13 |
Stearic acid, C18 | 7.72 | 7.00 | 7.52 | 0.68 | 0.58 |
Arachidic acid, C20 | 0.14 | 0.13 | 0.17 | 0.01 | 0.21 |
Lignoceric acid, C24 | 0.22 | 0.19 | 0.24 | 0.05 | 0.71 |
∑SFA | 33.95 a | 31.87 ab | 31.28 b | 0.78 | 0.03 |
MUFA | |||||
Palmitoleic acid, [C16:1 (n-7)] | 3.14 | 3.12 | 2.88 | 0.34 | 0.71 |
Vaccenic acid, [C18:1 (n-7)] | 1.88 | 1.76 | 1.92 | 0.14 | 0.55 |
Oleic acid, [C18:1 (n-9)] | 35.34 | 35.47 | 34.76 | 1.78 | 0.91 |
Gondoic acid, [C20:1 (n-9)] | 0.29 | 0.31 | 0.35 | 0.02 | 0.07 |
∑MUFA | 40.66 | 40.67 | 39.92 | 1.93 | 0.90 |
PUFA | |||||
Linoleic acid, [C18:2 (n-6)] | 17.35 b | 20.39 ab | 21.52 a | 1.10 | 0.02 |
Gamma-linolenic acid, [C18:3 (n-6)] | 0.19 | 0.2 | 0.23 | 0.03 | 0.43 |
Eicosadienoic acid, [C20:2 (n-6)] | 0.50 | 0.44 | 0.49 | 0.11 | 0.88 |
γ-linolenic acid [(DGLA) C20:3 (n-6)] | 0.67 | 0.62 | 0.55 | 0.10 | 0.52 |
Arachidonic acid, [C20:4 (n-6)] | 3.57 | 3.31 | 3.01 | 0.74 | 0.76 |
Docosatetraenoic acid, [C22:4 (n-6)] | 0.98 | 0.80 | 0.82 | 0.21 | 0.64 |
Docosapentaenoic acid, [C22:5 (n-6)] | 0.27 | 0.29 | 0.19 | 0.07 | 0.40 |
∑n-6 | 23.55 | 26.07 | 26.83 | 2.08 | 0.32 |
α-Linolenic acid [(ALA), C18:3 (n-3)] | 0.52 c | 0.717 b | 0.86 a | 0.013 | <0.001 |
Docosapentaenoic acid [(DPA), C22:5 (n-3)] | 0.25 | 0.27 | 0.27 | 0.067 | 0.96 |
Docosahexaenoic acid [(DHA), C22:6 (n-3)] | 0.20 | 0.17 | 0.2 | 0.028 | 0.44 |
∑n-3 | 0.98 b | 1.16 ab | 1.33 a | 0.08 | 0.01 |
∑PUFA | 24.53 | 27.23 | 28.17 | 2.15 | 0.28 |
n6/n3 | 24.01 a | 22.44 ab | 20.12 b | 1.19 | 0.046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Abdullatif, A.; Hussein, E.; Suliman, G.; Akasha, M.; Al-Badwi, M.; Ali, H.; Azzam, M. Evaluating Rice Bran Oil as a Dietary Energy Source on Production Performance, Nutritional Properties and Fatty Acid Deposition of Breast Meat in Broiler Chickens. Foods 2023, 12, 366. https://doi.org/10.3390/foods12020366
Al-Abdullatif A, Hussein E, Suliman G, Akasha M, Al-Badwi M, Ali H, Azzam M. Evaluating Rice Bran Oil as a Dietary Energy Source on Production Performance, Nutritional Properties and Fatty Acid Deposition of Breast Meat in Broiler Chickens. Foods. 2023; 12(2):366. https://doi.org/10.3390/foods12020366
Chicago/Turabian StyleAl-Abdullatif, Abdulaziz, Elsayed Hussein, Gamaleldin Suliman, Musab Akasha, Mohammed Al-Badwi, Hatem Ali, and Mahmoud Azzam. 2023. "Evaluating Rice Bran Oil as a Dietary Energy Source on Production Performance, Nutritional Properties and Fatty Acid Deposition of Breast Meat in Broiler Chickens" Foods 12, no. 2: 366. https://doi.org/10.3390/foods12020366
APA StyleAl-Abdullatif, A., Hussein, E., Suliman, G., Akasha, M., Al-Badwi, M., Ali, H., & Azzam, M. (2023). Evaluating Rice Bran Oil as a Dietary Energy Source on Production Performance, Nutritional Properties and Fatty Acid Deposition of Breast Meat in Broiler Chickens. Foods, 12(2), 366. https://doi.org/10.3390/foods12020366