Design and Volatile Compound Profiling of Starter Cultures for Yogurt Preparation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Determination of Biocompatibility between the Selected Strains
2.3. Preparation of Symbiotic Starter Cultures from Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus for Traditional Bulgarian Yogurt
2.4. HS-SPME-GC-MS Analysis
2.5. Lyophilization of the Resulting Symbiotic Starter Cultures
2.6. Determination of the Concentration of Viable Cells
2.7. Determination of Titratable Acidity
2.8. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Characterization of Symbiotic Starter Cultures from Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarus subsp. thermophilus for Traditional Bulgarian Yogurt
3.2. Determination of the Metabolic Profiles of the Obtained Symbiotic Starter Cultures
- Aldehyde components
- Ketone components
- Organic acids
- Alcohol components
- Ester components
- Aromatic hydrocarbons
3.3. Effect of the Pre-Cooling Stage on the Volatile Compound Profiles of the Starter Cultures
3.4. Influence of the Fat Content of Milk on the Volatile Compound Profiles of the Starter Cultures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tamime, A.Y.; Robinson, R.K. Yoghurt Science and Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Metchnikoff, E. The Prolongation of Life; William Heinemann: London, UK, 1907. [Google Scholar]
- BDS 12:2010; Bulgarian State Standard; Bulgarian Yogurt. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2010.
- Liu, Z.; Xu, Z.; Han, M.; Ben-Heng Guo, B.-H. Efficacy of pasteurised yoghurt in improving chronic constipation: A randomised, double-blind, placebo-controlled trial. Int. Dairy J. 2015, 40, 1–5. [Google Scholar] [CrossRef]
- Savaiano, D.A. First global summit on the health benefits of yogurt: Lactose digestion from yogurt: Mechanism and relevance. Am. J. Clin. Nutr. 2014, 99, 1251S–1255S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prentice, A.M. Dairy products in global health. Am. J. Clin. Nutr. 2014, 99, 1212S–1216S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, N.P.; Champagne, C. Cultured milk and yogurt. In Dairy Processing and Quality Assurance, 2nd ed.; Chandan, R.C., Kilara, A., Shah, N.P., Eds.; Wiley-Blackwell Publishing: Ames, IA, USA, 2016; pp. 235–265. [Google Scholar]
- Round, J.L.; Mazmanian, S.K. The gut microbiota shapes intestinal immune response during health and disease. Nat. Rev. Immunol. 2009, 9, 313–323. [Google Scholar] [CrossRef]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef]
- Khuropakhonphong, R.; Whanmek, K.; Purttiponthanee, S.; Chathiran, W.; Srichamnong, W.; Santivarangkna, C.; Trachootham, D. Bulgarian yogurt relieved symptoms and distress and increased fecal short-chain fatty acids in healthy constipated women: A randomized, blinded crossover controlled trial. NFS J. 2021, 22, 20–31. [Google Scholar] [CrossRef]
- Nagai, T.; Makino, S.; Ikegami, S.; Itoh, H.; Yamada, H. Effects of oral administration of yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1 and its exopolysaccharides against influenza virus infection in mice. Int. Immunopharmacol. 2011, 11, 2246–2250. [Google Scholar] [CrossRef]
- Ott, A.; Fay, L.B.; Chaintreau, A. Determination and origin of the aroma impact compounds of yogurt flavor. J. Agric. Food Chem. 1997, 45, 850–858. [Google Scholar] [CrossRef]
- Güler, Z. Changes in Salted Yoghurt during Storage. Int. J. Food Sci. Technol. 2007, 42, 235–245. [Google Scholar] [CrossRef]
- Imhof, R.; Bosset, J.O. Relationships between micro-organisms and formation of aroma compounds in fermented dairy products. Z. Lebensm. Unters. Forch. 1994, 198, 267–276. [Google Scholar] [CrossRef]
- Dan, T.; Jin, R.; Ren, W.; Li, T.; Chen, H.; Sun, T. Characteristics of milk fermented by Streptococcus thermophilus MGA45-4 and the profiles of associated volatile compounds during fermentation and storage. Molecules 2018, 23, 878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Settachaimongkon, S.; Nout, M.R.; Fernandes, E.C.A.; Hettinga, K.A.; Vervoort, J.M.; van Hooijdonk, T.C.; Zwietering, M.H.; Smid, E.J.; van Valenberg, H.J. Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt. Int. J. Food Microbiol. 2014, 177, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Reale, A.; Lanniello, R.G.; Ciocia, F.; Di Renzo, T.; Boscaino, F.; Ricciardi, A.; Coppola, R.; Parente, E.; Zotta, T.; McSweeney, P.L.H. Effect of respirative and catalase-positive Lactobacillus casei adjuncts on the production and quality of Cheddar-type cheese. Int. Dairy J. 2016, 63, 78–87. [Google Scholar] [CrossRef]
- Ruggirello, M.; Giordano, M.; Bertolino, M.; Ferrocino, I.; Cocolin, L.; Dolci, P. Study of Lactococcus lactis during advanced ripening stages of model cheeses characterized by GC-MS. Food Microbiol. 2018, 74, 132–142. [Google Scholar] [CrossRef]
- Li, N.; Zheng, F.; Chen, H.; Liu, S.; Gu, C.; Song, Z.; Sun, B. Identification of volatile components in Chinese Sinkiang fermented camel milk using SAFE, SDE, and HS-SPME-GC/MS. Food Chem. 2011, 129, 1242–1252. [Google Scholar] [CrossRef]
- Reale, A.; Di Renzo, T.; Zotta, T.; Preziuso, M.; Boscaino, F.; Lanniello, R.; Storti, L.V.; Tremonte, P.; Coppola, R. Effect of respirative cultures of Lactobacillus casei on model sourdough fermentation. LWT Food Sci. Technol. 2016, 73, 622–629. [Google Scholar] [CrossRef]
- Di Renzo, T.; Reale, A.; Boscaino, F.; Messia, M.C. Flavoring production in Kamut®, quinoa and wheat doughs fermented by Lactobacillus paracasei, Lactobacillus plantarum, and Lactobacillus brevis: A SPME-GC/MS study. Front. Microbiol. 2018, 9, 429. [Google Scholar] [CrossRef] [Green Version]
- Glushanova, N.A. Experimental Substantiation of New Approaches to the Correction of Intestinal Microbiocenosis. Ph.D. Thesis, G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology, Moscow, Russia, 2005. (In Russian). [Google Scholar]
- BDS 1111:1980; Bulgarian State Standard; Milk and Dairy Products. Determination of titratable Acidity. Bulgarian Institute for Standardization: Sofia, Bulgaria, 1980.
- ISO 6091:2010; Dried Milk—Determination of Titratable Acidity (Reference Method). International Organization for Standardization: Geneva, Switzerland, 2010.
- Georgiev, M.; Goranov, B.; Ilyazova, A.; Ibrahim, S.; Krastanov, A. Solid-phase micro extraction coupled with GC–MS for determination of the metabolite profile of newly isolated strains of Lactobacillus delbrueckii ssp. bulgaricus. Food Sci. Appl. Biotechnol. 2021, 4, 38–47. [Google Scholar] [CrossRef]
- Geirnaert, A.; Calatayud, M.; Grootaert, C.; Laukens, D.; Devriese, S.; Smagghe, G.; Van de Wiele, T. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci. Rep. 2017, 7, 11450. [Google Scholar] [CrossRef] [Green Version]
- Vaseji, N.; Mojgani, N.; Amirinia, C.; Iranmanesh, M. Comparison of butyric acid concentrations in ordinary and probiotic yogurt samples in Iran. Iran. J. Microbiol. 2012, 4, 87–93. Available online: https://ijm.tums.ac.ir/index.php/ijm/article/view/706 (accessed on 10 January 2023).
- Bai, Y.; Mansell, T.J. Production and sensing of butyrate in a probiotic Escherichia coli strain. Int. J. Mol. Sci. 2020, 21, 3615. [Google Scholar] [CrossRef] [PubMed]
- Ott, A.; Germond, J.-E.; Baumgartner, M.; Chaintreau, A. Aroma comparisons of traditional and mild yogurts: Headspace Gas Chromatography quantification of volatiles and origin of α-diketones. J. Agric. Food Chem. 1999, 47, 2379–2385. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Mi, S.; Liu, R.; Sang, Y.; Wang, X. Evaluation of volatile compounds in milks fermented using traditional starter cultures and probiotics based on odor activity value and chemometric techniques. Molecules 2020, 25, 1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papaioannou, G.; Kosma, I.; Badeka, A.V.; Kontominas, M.G. Profile of volatile compounds in dessert yogurts prepared from cow and goat milk, using different starter cultures and probiotics. Foods 2021, 10, 3153. [Google Scholar] [CrossRef]
- Duran, F.E.; Özdemir, N.; Güneşer, O.; Kök-Taş, T. Prominent strains of kefir grains in the formation of volatile compound profile in milk medium; the role of Lactobacillus kefiranofaciens subsp. kefiranofaciens, Lentilactobacillus kefiri and Lentilactobacillus parakefiri. Eur. Food Res. Technol. 2022, 248, 975–989. [Google Scholar] [CrossRef]
- Pan, D.D.; Wu, Z.; Peng, T.; Zeng, X.Q.; Li, H. Volatile organic compounds profile during milk fermentation by Lactobacillus pentosus and correlations between volatiles flavor and carbohydrate metabolism. J. Dairy Sci. 2014, 97, 624–631. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Li, X.; Xiao, R.; Dudu, O.E.; Yang, L.; Ma, Y. Impact of Lactobacillus paracasei IMC502 in coculture with traditional starters on volatile and non-volatile metabolite profiles in yogurt. Process Biochem. 2020, 99, 61–69. [Google Scholar] [CrossRef]
- Zaręba, D.; Ziarno, M.; Ścibisz, I.; Gawron, J. The importance of volatile compound profile in the assessment of fermentation conducted by Lactobacillus casei DN-114 001. Int. Dairy J. 2014, 35, 11–14. [Google Scholar] [CrossRef]
- Hlaing, M.; Wood, B.; McNaughton, D.; Ying, D.; Dumsday, G.; Augustin, M.A. Effect of drying methods on protein and DNA conformation changes in Lactobacillus rhamnosus GG cells by Fourier Transform Infrared Spectroscopy. J. Agric. Food Chem. 2017, 65, 1724–1731. [Google Scholar] [CrossRef]
- Hlaing, M.; Wood, B.; McNaughton, D.; Ying, D.; Augustin, M.A. Raman spectroscopic analysis of Lactobacillus rhamnosus GG in response to dehydration reveals DNA conformation changes. J. Biophotonics 2017, 10, 589–597. [Google Scholar] [CrossRef]
- Coulibaly, I.; Kouassi, E.; N’guessan, E.; Destain, J.; Béra, F.; Thonart, P. Lyophilization (Drying Method) cause serious damages to the cell viability of lactic acid bacteria. Annu. Res. Rev. Biol. 2018, 24, 1–15. [Google Scholar] [CrossRef]
- Brauss, M.S.; Linforth, R.S.T.; Cayeux, I.; Harvey, B.; Taylor, A.J. Altering the fat content affects flavor release in a model yogurt system. J. Agric. Food Chem. 1999, 47, 2055–2059. [Google Scholar] [CrossRef]
- Vítová, E.; Babák, L.; Mokáňová, R.; Hýsková, E.; Zemanová, J. The content of sensory active compounds and flavour of several types of yogurts. Acta Univ. Agric. Silvic. Mendel. Brun. 2010, 58, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Bao, Z.; Xiong, J.; Lin, W.; Ye, J. Profiles of free fatty acids, free amino acids, and volatile compounds of milk bases fermented by Lactobacillus casei GBHM-21 with different fat levels. CyTA—J. Food 2016, 14, 10–17. [Google Scholar] [CrossRef]
Tested Strain | L. bulgaricus MG1 | L. bulgaricus MG2 | L. bulgaricus MG3 | L. bulgaricus MG4 | L. bulgaricus MG5 | L. bulgaricus MG6 | L. bulgaricus MG7 | L. bulgaricus MG8 | L. bulgaricus MG9 |
---|---|---|---|---|---|---|---|---|---|
S. thermophilus T1 | − | − | + | − | − | − | + | − | ± |
S. thermophilus T2 | − | − | + | − | − | − | − | − | − |
S. thermophilus T3 | − | − | − | − | − | − | − | − | − |
S. thermophilus T4 | − | − | − | − | − | − | − | − | − |
S. thermophilus T5 | − | − | − | − | − | − | − | − | − |
S. thermophilus T6 | − | − | − | − | − | − | ± | − | ± |
S. thermophilus T7 | − | − | − | − | − | − | − | − | − |
S. thermophilus T8 | − | − | − | − | − | − | − | − | − |
Metabolic Profile of the Starter Cultures | |||||||
---|---|---|---|---|---|---|---|
No. | Volatile Compound | Chemical Formula | RT (min) | Starter Culture * | |||
KM1 | KM2 | KM3 | KM4 | ||||
Aldehyde Compounds | |||||||
1 | Acetaldehyde | C2H4O | 1.89 | 0.3075 | 0.2000 | 0.2231 | 0.0944 |
2 | Furaldehyde | C5H4O2 | 9.53 | 0.1076 | 0.0893 | 0.0593 | 0.0942 |
3 | 3-Hydroxybutanal | C4H8O2 | 13.23 | 0.0216 | 0.0102 | 0.0144 | 0.0096 |
4 | Benzaldehyde | C7H6O | 15.22 | 1.0967 | 1.0695 | 1.2591 | 1.1134 |
5 | Benzacetaldehyde | C8H8O | 18.65 | 0.0150 | 0.0041 | 0.0054 | 0.0089 |
6 | Ethylbenzaldehyde | C9H10O | 23.97 | 0.0152 | 0.0104 | 0.0120 | 0.0162 |
7 | 2-Octenal | C8H14O | 29.3 | 0.0499 | 0.0266 | 0.0484 | 0.0343 |
8 | Decanal | C10H20O | 40.91 | ND | ND | ND | 0.0084 |
Ketone Compounds | |||||||
9 | 2-Pentanone | C5H10O | 2.52 | 0.6280 | 0.4769 | 0.6371 | 0.1781 |
10 | Acetoin | C4H8O2 | 4.89 | 0.7122 | 0.5955 | 0.6422 | 0.9376 |
11 | 2,3-Butanedione | C4H6O2 | 11.86 | 0.1624 | 0.1408 | 0.1609 | 0.1588 |
12 | 2-Acetylfuran | C6H6O2 | 12.88 | 0.0064 | 0.0087 | 0.0029 | 0.0083 |
13 | 2-Nonanone | C9H18O | 20.3 | 0.1164 | ND | 0.1237 | 0.1242 |
14 | 2-Heptanone | C7H14O | 24.13 | 0.0172 | 0.0132 | 0.0234 | 0.0148 |
15 | 3-Methyl-2-butanone | C5H10O | 27.43 | ND | 0.0022 | 0.0034 | 0.0030 |
16 | 2-Undecanone | C11H22O | 27.73 | 0.0377 | 0.0266 | 0.0500 | 0.0300 |
Acid Compounds | |||||||
17 | Formic acid | CH2O2 | 3.79 | 0.0304 | 0.0219 | 0.0338 | 0.1109 |
18 | Butyric acid | C4H8O2 | 7.54 | 0.0060 | 0.0093 | 0.0031 | 0.0102 |
19 | Acetic acid | C2H4O2 | 14.21 | 0.2068 | 0.1990 | 0.2415 | 0.2066 |
20 | Hexanoic acid | C6H12O2 | 15.88 | 0.1380 | 0.1258 | 0.1406 | 0.2632 |
21 | Pentanoic acid | C5H10O2 | 16.35 | 0.0057 | 0.0060 | 0.0189 | 0.0102 |
22 | Benzoic acid | C7H6O2 | 23.08 | 0.0157 | 0.0119 | 0.0159 | 0.0190 |
23 | Octanoic acid | C8H16O2 | 23.29 | 0.0151 | 0.0143 | 0.0186 | 0.0174 |
24 | 1,2-Benzenedicarboxylic acid | C8H6O4 | 28.82 | 0.0269 | 0.0187 | 0.0317 | 0.0196 |
Alcohol Compounds | |||||||
25 | 2-Furanmethanol | C5H6O2 | 10.32 | 0.4998 | 0.4663 | 0.5328 | 0.5452 |
26 | Ethanol, 2-(octyloxy)- | C10H22O2 | 19.17 | 0.1142 | 0.0835 | 0.1234 | 0.0793 |
27 | 3-Methyl-2-butanol | C5H12O | 20.06 | 0.2526 | 0.1043 | 0.3017 | 0.2572 |
28 | 2-Undecanol | C11H24O | 28.04 | 0.0086 | 0.0031 | 0.0197 | 0.0028 |
Ester Compounds | |||||||
29 | Propanoic acid, ethenyl ester | C5H8O2 | 4.09 | 0.0129 | 0.0330 | 0.0504 | 0.0327 |
30 | 2(5H)-Furanone, 5-methyl- | C5H6O2 | 11.22 | ND | 0.0047 | ND | ND |
31 | Benzoic acid, 2-ethylhexyl ester | C15H22O2 | 19.55 | 0.0227 | 0.0178 | 0.0251 | 0.0262 |
32 | 3-Methyl-2-butenoic acid, tridec-2-ynyl ester | C18H30O2 | 28.86 | 0.0105 | 0.0042 | 0.0171 | 0.0032 |
33 | Ethanone, 1-(2,4-dimethylphenyl)- | C10H12O | 29.65 | 0.0196 | 0.0171 | 0.0448 | 0.0156 |
34 | 4-Ethylbenzoic acid, methyl ester | C10H12O2 | 29.79 | 0.0224 | 0.0180 | 0.0260 | 0.0173 |
Aromatic Hydrocarbons | |||||||
35 | 3-Carene | C10H16 | 13.45 | 0.0038 | 0.0035 | 0.0022 | 0.0076 |
36 | Undecane | C11H24 | 18.52 | 0.0067 | ND | 0.0051 | 0.0091 |
37 | Tridecane | C13H28 | 26.76 | 0.0035 | 0.0036 | 0.0040 | 0.0053 |
38 | 3-Heptene, 2,2,4,6,6-pentamethyl- | C12H24 | 28.18 | 0.0023 | 0.0017 | 0.0074 | 0.0032 |
39 | 2-Methylundecane | C12H26 | 28.39 | 0.0269 | 0.0187 | 0.0317 | 0.0196 |
40 | 2-Pentene, 2,4,4-trimethyl | C8H16 | 29.22 | 0.0338 | 0.0114 | 0.0646 | 0.0106 |
41 | Tetradecane | C14H30 | 31.12 | 0.0415 | 0.0393 | 0.0500 | 0.0448 |
42 | 2,4,6-Trimethyldecane | C13H28 | 31.21 | 0.0032 | 0.0023 | 0.0055 | 0.0028 |
43 | Nonadecane | C19H40 | 34.9 | 0.0080 | 0.0074 | 0.0092 | 0.0097 |
44 | Pentadecane | C15H32 | 35.02 | 0.0038 | 0.0021 | 0.0029 | 0.0017 |
45 | Hexadecane | C16H34 | 39.02 | 0.0045 | 0.0045 | 0.0040 | 0.0139 |
46 | Octadecane, 3-ethyl-5-(2-ethylbutyl) | C26H54 | 40.21 | 0.0020 | 0.0039 | 0.0048 | 0.0040 |
47 | Octadecane | C18H38 | 41.1 | 0.0093 | 0.0083 | 0.0092 | 0.0096 |
Metabolic Profile of the Starter Cultures (Liquid and Lyophilized) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No. | Volatile Compound | Chemical Formula | RT (min) | Starter Culture * | |||||||
KM1 Liquid | KM1 Lyophilized | KM2 Liquid | KM2 Lyophilized | KM3 Liquid | KM3 Lyophilized | KM4 Liquid | KM4 Lyophilized | ||||
Aldehyde Compounds | |||||||||||
1 | Acetaldehyde | C2H4O | 1.89 | 0.3075 | 0.1919 | 0.2000 | 0.1206 | 0.2231 | 0.1767 | 0.0944 | 0.0361 |
2 | Furaldehyde | C5H4O2 | 9.53 | 0.1076 | 0.0739 | 0.0893 | 0.0610 | 0.0593 | 0.0436 | 0.0942 | 0.0810 |
3 | 3-Hydroxybutanal | C4H8O2 | 13.23 | 0.0216 | 0.0172 | 0.0102 | 0.0085 | 0.0144 | 0.0126 | 0.0096 | 0.0066 |
4 | Benzaldehyde | C7H6O | 15.22 | 1.0967 | 0.8991 | 1.0695 | 1.1038 | 1.2591 | 1.1697 | 1.1134 | 1.0092 |
5 | Benzacetaldehyde | C8H8O | 18.65 | 0.0150 | 0.0100 | 0.0041 | 0.0038 | 0.0054 | 0.0036 | 0.0089 | 0.063 |
6 | Ethylbenzaldehyde | C9H10O | 23.97 | 0.0152 | 0.0125 | 0.0104 | 0.0070 | 0.0120 | 0.0011 | 0.0162 | 0.0021 |
7 | 2-Octenal | C8H14O | 29.3 | 0.0499 | 0.0496 | 0.0266 | 0.0206 | 0.0484 | 0.0166 | 0.0343 | 0.0149 |
8 | Decanal | C10H20O | 40.91 | ND | ND | ND | ND | ND | ND | 0.0084 | 0.0053 |
Ketone Compounds | |||||||||||
9 | 2-Pentanone | C5H10O | 2.52 | 0.6280 | 0.4357 | 0.4769 | 0.3342 | 0.6371 | 0.6208 | 0.1781 | 0.1363 |
10 | Acetoin | C4H8O2 | 4.89 | 0.7122 | 0.5421 | 0.5955 | 0.3088 | 0.6422 | 0.5043 | 0.9376 | 0.4762 |
11 | 2,3-Butanedione | C4H6O2 | 11.86 | 0.1624 | 0.1003 | 0.1408 | 0.1215 | 0.1609 | 0.1346 | 0.1588 | 0.1322 |
12 | 2-Acetylfuran | C6H6O2 | 12.88 | 0.0064 | 0.0045 | 0.0087 | 0.0036 | 0.0029 | 0.0026 | 0.0083 | 0.0042 |
13 | 2-Nonanone | C9H18O | 20.3 | 0.1164 | ND | ND | ND | 0.1237 | ND | 0.1242 | ND |
14 | 2-Heptanone | C7H14O | 24.13 | 0.0172 | 0.0141 | 0.0132 | 0.0117 | 0.0234 | 0.0217 | 0.0148 | 0.0113 |
15 | 3-Methyl-2-butanone | C5H10O | 27.43 | ND | ND | 0.0022 | 0.0021 | 0.0034 | 0.0032 | 0.0030 | 0.0024 |
16 | 2-Undecanone | C11H22O | 27.73 | 0.0377 | 0.0349 | 0.0266 | 0.0203 | 0.0500 | 0.0430 | 0.0300 | 0.0251 |
Acid Compounds | |||||||||||
17 | Formic acid | CH2O2 | 3.79 | 0.0304 | 0.0090 | 0.0219 | 0.0084 | 0.0338 | 0.0206 | 0.1109 | 0.0294 |
18 | Butyric acid | C4H8O2 | 7.54 | 0.0060 | 0.0017 | 0.0093 | ND | 0.0031 | ND | 0.0102 | ND |
19 | Acetic acid | C2H4O2 | 14.21 | 0.2068 | 0.1298 | 0.1990 | 0.1500 | 0.2415 | 0.1847 | 0.2066 | 0.1995 |
20 | Hexanoic acid | C6H12O2 | 15.88 | 0.1380 | 0.1091 | 0.1258 | 0.0601 | 0.1406 | 0.1257 | 0.2632 | 0.1387 |
21 | Pentanoic acid | C5H10O2 | 16.35 | 0.0057 | 0.0018 | 0.0060 | 0.0022 | 0.0189 | 0.0112 | 0.0102 | 0.0045 |
22 | Benzoic acid | C7H6O2 | 23.08 | 0.0157 | 0.0050 | 0.0119 | 0.0019 | 0.0159 | 0.0076 | 0.0190 | 0.0112 |
23 | Octanoic acid | C8H16O2 | 23.29 | 0.0151 | 0.0105 | 0.0143 | 0.0071 | 0.0186 | 0.0148 | 0.0174 | 0.0147 |
24 | 1,2-Benzenedicarboxylic acid | C8H6O4 | 28.82 | 0.0269 | ND | 0.0187 | 0.0048 | 0.0317 | 0.0156 | 0.0196 | 0.0137 |
Alcohol Compounds | |||||||||||
25 | 2-Furanmethanol | C5H6O2 | 10.32 | 0.4998 | 0.3922 | 0.4663 | 0.3549 | 0.5328 | 0.3863 | 0.5452 | 0.3649 |
26 | Ethanol, 2-(octyloxy)- | C10H22O2 | 19.17 | 0.1142 | 0.0562 | 0.0835 | 0.0621 | 0.1234 | 0.0928 | 0.0793 | 0.0743 |
27 | 3-Methyl-2-butanol | C5H12O | 20.06 | 0.2526 | 0.1267 | 0.1043 | 0.0836 | 0.3017 | 0.2603 | 0.2572 | 0.1916 |
28 | 2-Undecanol | C11H24O | 28.04 | 0.0086 | 0.0021 | 0.0031 | 0.0027 | 0.0097 | 0.0097 | 0.0028 | 0.0018 |
Ester Compounds | |||||||||||
29 | Propanoic acid, ethenyl ester | C5H8O2 | 4.09 | 0.0129 | 0.0045 | 0.0330 | 0.0103 | 0.0504 | 0.0427 | 0.0327 | 0.0061 |
30 | 2(5H)-Furanone, 5-methyl- | C5H6O2 | 11.22 | ND | ND | 0.0047 | 0.0032 | ND | ND | ND | ND |
31 | Benzoic acid, 2-ethylhexyl ester | C15H22O2 | 19.55 | 0.0227 | 0.0171 | 0.0178 | 0.0132 | 0.0251 | 0.0209 | 0.0262 | 0.0253 |
32 | 3-Methyl-2-butenoic acid, tridec-2-ynyl ester | C18H30O2 | 28.86 | 0.0105 | ND | 0.0042 | 0.0028 | 0.0171 | 0.0156 | 0.0032 | 0.0023 |
33 | Ethanone, 1-(2,4-dimethylphenyl)- | C10H12O | 29.65 | 0.0196 | ND | 0.0171 | 0.0155 | 0.0448 | 0.0398 | 0.0156 | 0.0078 |
34 | 4-Ethylbenzoic acid, methyl ester | C10H12O2 | 29.79 | 0.0224 | 0.0159 | 0.0180 | 0.0108 | 0.0260 | 0.0200 | 0.0173 | 0.0147 |
Aromatic Hydrocarbons | |||||||||||
35 | 3-Carene | C10H16 | 13.45 | 0.0038 | ND | 0.0035 | ND | 0.0022 | 0.0017 | 0.0076 | ND |
36 | Undecane | C11H24 | 18.52 | 0.0067 | 0.0031 | ND | ND | 0.0051 | 0.0040 | 0.0091 | 0.0056 |
37 | Tridecane | C13H28 | 26.76 | 0.0035 | 0.0036 | 0.0036 | ND | 0.0040 | 0.0040 | 0.0053 | 0.0034 |
38 | 3-Heptene, 2,2,4,6,6-pentamethyl- | C12H24 | 28.18 | 0.0023 | ND | 0.0017 | ND | 0.0074 | ND | 0.0032 | ND |
39 | 2-Methylundecane | C12H26 | 28.39 | 0.0269 | 0.0134 | 0.0187 | 0.0060 | 0.0317 | 0.0157 | 0.0196 | 0.0142 |
40 | 2-Pentene, 2,4,4-trimethyl | C8H16 | 29.22 | 0.0338 | 0.0128 | 0.0114 | 0.0089 | 0.0646 | 0.0442 | 0.0106 | 0.0095 |
41 | Tetradecane | C14H30 | 31.12 | 0.0415 | 0.0377 | 0.0393 | 0.0257 | 0.0500 | 0.0505 | 0.0448 | 0.0486 |
42 | 2,4,6-Trimethyldecane | C13H28 | 31.21 | 0.0032 | ND | 0.0023 | 0.0017 | 0.0055 | 0.0046 | 0.0028 | 0.0027 |
43 | Nonadecane | C19H40 | 34.9 | 0.0080 | 0.0072 | 0.0074 | 0.0035 | 0.0092 | 0.0074 | 0.0097 | 0.0075 |
44 | Pentadecane | C15H32 | 35.02 | 0.0038 | 0.0028 | 0.0021 | ND | 0.0029 | 0.0016 | 0.0017 | ND |
45 | Hexadecane | C16H34 | 39.02 | 0.0045 | 0.036 | 0.0045 | 0.0031 | 0.0040 | 0.0026 | 0.0139 | 0.0057 |
46 | Octadecane, 3-ethyl-5-(2-ethylbutyl) | C26H54 | 40.21 | 0.0020 | ND | 0.0039 | 0.0026 | 0.0048 | 0.0037 | 0.0040 | 0.0031 |
47 | Octadecane | C18H38 | 41.1 | 0.0093 | 0.0055 | 0.0083 | 0.0075 | 0.0092 | 0.0064 | 0.0096 | 0.0086 |
Metabolic Profiles of the Starter Cultures with or without Pre-Cooling | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No. | Volatile Compound | Chemical Formula | RT (min) | Starter Culture * | |||||||
KM1+ | KM1− | KM2+ | KM2− | KM3+ | KM3− | KM4+ | KM4− | ||||
Aldehyde Compounds | |||||||||||
1 | Acetaldehyde | C2H4O | 1.89 | 0.3075 | 0.2471 | 0.2000 | 0.0719 | 0.2231 | 0.1872 | 0.0944 | 0.0854 |
2 | Furaldehyde | C5H4O2 | 9.53 | 0.1076 | 0.1006 | 0.0893 | 0.0802 | 0.0593 | 0.0529 | 0.0942 | 0.0669 |
3 | 3-Hydroxybutanal | C4H8O2 | 13.23 | 0.0216 | 0.0156 | 0.0102 | 0.0065 | 0.0144 | 0.0142 | 0.0096 | 0.0055 |
4 | Benzaldehyde | C7H6O | 15.22 | 1.0967 | 1.0422 | 1.0695 | 1.0291 | 1.2591 | 1.1197 | 1.1134 | 1.0274 |
5 | Benzacetaldehyde | C8H8O | 18.65 | 0.0150 | 0.0105 | 0.0041 | 0.0032 | 0.0054 | 0.0040 | 0.0089 | 0.0075 |
6 | Ethylbenzaldehyde | C9H10O | 23.97 | 0.0152 | 0.0139 | 0.0104 | ND | 0.0120 | 0.0104 | 0.0162 | 0.0143 |
7 | 2-Octenal | C8H14O | 29.3 | 0.0499 | 0.0446 | 0.0266 | 0.0182 | 0.0484 | 0.0435 | 0.0343 | 0.0340 |
8 | Decanal | C10H20O | 40.91 | ND | ND | ND | ND | ND | ND | 0.0084 | 0.0025 |
Ketone Compounds | |||||||||||
9 | 2-Pentanone | C5H10O | 2.52 | 0.6280 | 0.5034 | 0.4769 | 0.3231 | 0.6371 | 0.6211 | 0.1781 | 0.1041 |
10 | Acetoin | C4H8O2 | 4.89 | 0.7122 | 0.6191 | 0.5955 | 0.5628 | 0.6422 | 0.6238 | 0.9376 | 0.5897 |
11 | 2,3-Butanedione | C4H6O2 | 11.86 | 0.1624 | 0.1212 | 0.1408 | 0.1340 | 0.1609 | 0.1598 | 0.1588 | 0.1496 |
12 | 2-Acetylfuran | C6H6O2 | 12.88 | 0.0064 | 0.0021 | 0.0087 | 0.0079 | 0.0029 | 0.0024 | 0.0083 | 0.0079 |
13 | 2-Nonanone | C9H18O | 20.3 | 0.1164 | 0.1062 | ND | ND | 0.1237 | ND | 0.1242 | 0.1002 |
14 | 2-Heptanone | C7H14O | 24.13 | 0.0172 | 0.0144 | 0.0132 | 0.0090 | 0.0234 | 0.0198 | 0.0148 | 0.0125 |
15 | 3-Methyl-2-butanone | C5H10O | 27.43 | ND | ND | 0.0022 | ND | 0.0034 | ND | 0.0030 | ND |
16 | 2-Undecanone | C11H22O | 27.73 | 0.0377 | 0.0281 | 0.0266 | 0.0207 | 0.0500 | 0.0374 | 0.0300 | 0.0302 |
Acid Compounds | |||||||||||
17 | Formic acid | CH2O2 | 3.79 | 0.0304 | 0.0773 | 0.0219 | 0.0228 | 0.0338 | 0.0370 | 0.1109 | 0.0392 |
18 | Butyric acid | C4H8O2 | 7.54 | 0.0060 | 0.0059 | 0.0093 | 0.0024 | 0.0031 | 0.0030 | 0.0102 | 0.0048 |
19 | Acetic acid | C2H4O2 | 14.21 | 0.2068 | 0.2377 | 0.1990 | 0.1854 | 0.2415 | 0.2593 | 0.2066 | 0.1940 |
20 | Hexanoic acid | C6H12O2 | 15.88 | 0.1380 | 0.1224 | 0.1258 | 0.0539 | 0.1406 | 0.1417 | 0.2632 | 0.2537 |
21 | Pentanoic acid | C5H10O2 | 16.35 | 0.0057 | 0.0048 | 0.0060 | 0.0053 | 0.0189 | 0.0129 | 0.0102 | 0.0086 |
22 | Benzoic acid | C7H6O2 | 23.08 | 0.0157 | 0.0134 | 0.0119 | 0.0126 | 0.0159 | 0.0164 | 0.0190 | 0.0157 |
23 | Octanoic acid | C8H16O2 | 23.29 | 0.0151 | 0.0144 | 0.0143 | 0.0120 | 0.0186 | 0.0190 | 0.0174 | 0.0168 |
24 | 1,2-Benzenedicarboxylic acid | C8H6O4 | 28.82 | 0.0269 | 0.0259 | 0.0187 | 0.0137 | 0.0317 | 0.0261 | 0.0196 | 0.0184 |
Alcohol Compounds | |||||||||||
25 | 2-Furanmethanol | C5H6O2 | 10.32 | 0.4998 | 0.4177 | 0.4663 | 0.4277 | 0.5328 | 0.5350 | 0.5452 | 0.5172 |
26 | Ethanol, 2-(octyloxy)- | C10H22O2 | 19.17 | 0.1142 | 0.0191 | 0.0835 | 0.1005 | 0.1234 | 0.1106 | 0.0793 | 0.0771 |
27 | 3-Methyl-2-butanol | C5H12O | 20.06 | 0.2526 | 0.2174 | 0.1043 | 0.0890 | 0.3017 | 0.2376 | 0.2572 | 0.2453 |
28 | 2-Undecanol | C11H24O | 28.04 | 0.0086 | 0.0081 | 0.0031 | 0.0091 | 0.0097 | 0.0055 | 0.0028 | 0.0029 |
Ester Compounds | |||||||||||
29 | Propanoic acid, ethenyl ester | C5H8O2 | 4.09 | 0.0129 | 0.0653 | 0.0330 | ND | 0.0504 | 0.0256 | 0.0327 | 0.0275 |
30 | 2(5H)-Furanone, 5-methyl- | C5H6O2 | 11.22 | ND | ND | 0.0047 | ND | ND | ND | ND | ND |
31 | Benzoic acid, 2-ethylhexyl ester | C15H22O2 | 19.55 | 0.0227 | 0.0204 | 0.0178 | 0.0136 | 0.0251 | 0.0235 | 0.0262 | 0.0260 |
32 | 3-Methyl-2-butenoic acid, tridec-2-ynyl ester | C18H30O2 | 28.86 | 0.0105 | 0.0083 | 0.0042 | 0.0031 | 0.0171 | 0.0092 | 0.0032 | 0.0040 |
33 | Ethanone, 1-(2,4-dimethylphenyl)- | C10H12O | 29.65 | 0.0196 | 0.0172 | 0.0171 | 0.0165 | 0.0448 | 0.0298 | 0.0156 | 0.0155 |
34 | 4-Ethylbenzoic acid, methyl ester | C10H12O2 | 29.79 | 0.0224 | 0.0203 | 0.0180 | 0.0152 | 0.0260 | 0.0233 | 0.0173 | 0.0169 |
Aromatic Hydrocarbons | |||||||||||
35 | 3-Carene | C10H16 | 13.45 | 0.0038 | 0.0014 | 0.0035 | 0.0010 | 0.0022 | ND | 0.0076 | 0.0071 |
36 | Undecane | C11H24 | 18.52 | 0.0067 | 0.0059 | ND | ND | 0.0051 | 0.0045 | 0.0091 | 0.0088 |
37 | Tridecane | C13H28 | 26.76 | 0.0035 | 0.0033 | 0.0036 | 0.0036 | 0.0040 | 0.0039 | 0.0053 | 0.0042 |
38 | 3-Heptene, 2,2,4,6,6-pentamethyl- | C12H24 | 28.18 | 0.0023 | 0.0022 | 0.0017 | 0.0019 | 0.0074 | 0.0034 | 0.0032 | 0.0035 |
39 | 2-Methylundecane | C12H26 | 28.39 | 0.0269 | 0.0053 | 0.0187 | 0.0068 | 0.0317 | 0.0044 | 0.0196 | 0.0012 |
40 | 2-Pentene, 2,4,4-trimethyl | C8H16 | 29.22 | 0.0338 | 0.0229 | 0.0114 | 0.0099 | 0.0646 | 0.0213 | 0.0106 | 0.0059 |
41 | Tetradecane | C14H30 | 31.12 | 0.0415 | 0.0338 | 0.0393 | 0.0402 | 0.0500 | 0.0529 | 0.0448 | 0.0419 |
42 | 2,4,6-Trimethyldecane | C13H28 | 31.21 | 0.0032 | 0.0039 | 0.0023 | 0.0038 | 0.0055 | 0.0039 | 0.0028 | 0.0033 |
43 | Nonadecane | C19H40 | 34.9 | 0.0080 | 0.0069 | 0.0074 | 0.0070 | 0.0092 | 0.0092 | 0.0097 | 0.0088 |
44 | Pentadecane | C15H32 | 35.02 | 0.0038 | 0.0036 | 0.0021 | ND | 0.0029 | 0.0023 | 0.0017 | ND |
45 | Hexadecane | C16H34 | 39.02 | 0.0045 | 0.0039 | 0.0045 | 0.0039 | 0.0040 | 0.0033 | 0.0139 | 0.0042 |
46 | Octadecane, 3-ethyl-5-(2-ethylbutyl) | C26H54 | 40.21 | 0.0020 | 0.0020 | 0.0039 | 0.0031 | 0.0048 | 0.0047 | 0.0040 | 0.0024 |
47 | Octadecane | C18H38 | 41.1 | 0.0093 | 0.0091 | 0.0083 | 0.0077 | 0.0092 | 0.0088 | 0.0096 | 0.0074 |
Metabolic Profiles of the Starter Cultures at Different Crude Fat Contents | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | Volatile Compound | Chemical Formula | RT (min) | Starter Culture * | |||||||||||
KM1 | KM2 | KM3 | KM4 | ||||||||||||
0.1% | 1.5% | 3% | 0.1% | 1.5% | 3% | 0.1% | 1.5% | 3% | 0.1% | 1.5% | 3% | ||||
Aldehyde Compounds | |||||||||||||||
1 | Acetaldehyde | C2H4O | 1.89 | 0.3075 | 0.3956 | 0.2551 | 0.2000 | 0.1770 | 0.4361 | 0.2231 | 0.6182 | 0.4466 | 0.0944 | 0.4821 | 0.3514 |
2 | Furaldehyde | C5H4O2 | 9.53 | 0.1076 | 0.1192 | 0.1536 | 0.0893 | 0.0928 | 0.1025 | 0.0593 | 0.0636 | 0.0760 | 0.0942 | 0.0995 | 0.1124 |
3 | 3-Hydroxybutanal | C4H8O2 | 13.23 | 0.0216 | 0.0234 | 0.0335 | 0.0102 | 0.0143 | 0.213 | 0.0144 | 0.0180 | 0.0202 | 0.0096 | 0.0121 | 0.0154 |
4 | Benzaldehyde | C7H6O | 15.22 | 1.0967 | 1.2824 | 1.3938 | 1.0695 | 1.2008 | 1.8039 | 1.2591 | 2.0811 | 2.5617 | 1.1134 | 1.5791 | 2.2774 |
5 | Benzacetaldehyde | C8H8O | 18.65 | 0.0150 | 0.0147 | 0.0135 | 0.0041 | 0.0034 | 0.0056 | 0.0054 | 0.0102 | 0.0092 | 0.0089 | 0.0081 | 0.0087 |
6 | Ethylbenzaldehyde | C9H10O | 23.97 | 0.0152 | 0.0211 | 0.0198 | 0.0104 | 0.0122 | 0.0141 | 0.0120 | 0.0138 | 0.0129 | 0.0162 | 0.0185 | 0.0192 |
7 | 2-Octenal | C8H14O | 29.3 | 0.0499 | 0.0682 | 0.0745 | 0.0266 | 0.0364 | 0.1018 | 0.0484 | 0.1557 | 0.1616 | 0.0343 | 0.0463 | 0.0564 |
8 | Decanal | C10H20O | 40.91 | ND | ND | ND | ND | ND | ND | ND | ND | ND | 0.0084 | 0.0090 | 0.0106 |
Ketone Compounds | |||||||||||||||
9 | 2-Pentanone | C5H10O | 2.52 | 0.6280 | 0.7872 | 0.8306 | 0.4769 | 0.6838 | 0.7701 | 0.6371 | 0.7808 | 0.7898 | 0.1781 | 0.5844 | 0.5773 |
10 | Acetoin | C4H8O2 | 4.89 | 0.7122 | 0.9432 | 0.9029 | 0.5955 | 0.7883 | 0.8701 | 0.6422 | 0.7442 | 0.7996 | 0.9376 | 0.9914 | 0.9687 |
11 | 2,3-Butanedione | C4H6O2 | 11.86 | 0.1624 | 0.4123 | 0.6678 | 0.1408 | 0.2844 | 0.6021 | 0.1609 | 0.4795 | 1.0110 | 0.1588 | 0.5498 | 0.5963 |
12 | 2-Acetylfuran | C6H6O2 | 12.88 | 0.0064 | 0.0084 | 0.0090 | 0.0087 | 0.0102 | 0.0124 | 0.0029 | 0.0041 | 0.0048 | 0.0083 | 0.0092 | 0.0114 |
13 | 2-Nonanone | C9H18O | 20.3 | 0.1164 | 0.1812 | 0.2542 | ND | 0.1341 | 0.2006 | 0.1237 | 0.3307 | 0.3619 | 0.1242 | 0.2580 | 0.2942 |
14 | 2-Heptanone | C7H14O | 24.13 | 0.0172 | 0.0061 | 0.0105 | 0.0132 | 0.0047 | 0.0078 | 0.0234 | 0.0033 | 0.0101 | 0.0148 | 0.0167 | 0.0189 |
15 | 3-Methyl-2-butanone | C5H10O | 27.43 | ND | ND | ND | 0.0022 | 0.0031 | 0.0022 | 0.0034 | 0.0033 | 0.0037 | 0.0030 | 0.0031 | 0.0025 |
16 | 2-Undecanone | C11H22O | 27.73 | 0.0377 | 0.0305 | 0.0346 | 0.0266 | 0.0261 | 0.0306 | 0.0500 | 0.0617 | 0.0572 | 0.0300 | 0.0365 | 0.0369 |
Acid Compounds | |||||||||||||||
17 | Formic acid | CH2O2 | 3.79 | 0.0304 | 0.0674 | 0.0938 | 0.0219 | 0.0272 | 0.0724 | 0.0338 | 0.0710 | 0.0900 | 0.1109 | 0.1672 | 0.2204 |
18 | Butyric acid | C4H8O2 | 7.54 | 0.0060 | 0.0084 | 0.0113 | 0.0093 | 0.0127 | 0.0151 | 0.0031 | 0.0045 | 0.0066 | 0.0102 | 0.0126 | 0.0152 |
19 | Acetic acid | C2H4O2 | 14.21 | 0.2068 | 0.2883 | 0.2973 | 0.1990 | 0.2372 | 0.2821 | 0.2415 | 0.4441 | 0.4157 | 0.2066 | 0.3332 | 0.2686 |
20 | Hexanoic acid | C6H12O2 | 15.88 | 0.1380 | 0.2350 | 0.2005 | 0.1258 | 0.1682 | 0.4515 | 0.1406 | 0.4193 | 0.7167 | 0.2632 | 0.4023 | 0.4530 |
21 | Pentanoic acid | C5H10O2 | 16.35 | 0.0057 | 0.0086 | 0.0121 | 0.0060 | 0.076 | 0.0078 | 0.0189 | 0.0196 | 0.0191 | 0.0102 | 0.0095 | 0.0090 |
22 | Benzoic acid | C7H6O2 | 23.08 | 0.0157 | 0.0168 | 0.0146 | 0.0119 | 0.0176 | 0.0140 | 0.0159 | 0.0116 | 0.0104 | 0.0190 | 0.0114 | 0.0078 |
23 | Octanoic acid | C8H16O2 | 23.29 | 0.0151 | 0.0138 | 0.0122 | 0.0143 | 0.0079 | 0.0109 | 0.0186 | 0.0121 | 0.0247 | 0.0174 | 0.0110 | 0.0168 |
24 | 1,2-Benzenedicarboxylic acid | C8H6O4 | 28.82 | 0.0269 | 0.0134 | 0.0145 | 0.0187 | 0.0156 | 0.0156 | 0.0317 | 0.0279 | 0.0215 | 0.0196 | 0.0317 | 0.0254 |
Alcohol Compounds | |||||||||||||||
25 | 2-Furanmethanol | C5H6O2 | 10.32 | 0.4998 | 0.5490 | 0.6410 | 0.4663 | 0.5300 | 0.6135 | 0.5328 | 0.5680 | 0.6154 | 0.5452 | 0.5680 | 0.6404 |
26 | Ethanol, 2-(octyloxy)- | C10H22O2 | 19.17 | 0.1142 | 0.1173 | 0.1204 | 0.0835 | 0.0851 | 0.104 | 0.1234 | 0.2560 | 0.2894 | 0.0793 | 0.1004 | 0.1047 |
27 | 3-Methyl-2-butanol | C5H12O | 20.06 | 0.2526 | 0.2542 | 0.2843 | 0.1043 | 0.2213 | 0.4164 | 0.3017 | 0.6576 | 0.5994 | 0.2572 | 0.2548 | 0.2483 |
28 | 2-Undecanol | C11H24O | 28.04 | 0.0086 | 0.0025 | 0.0034 | 0.0031 | 0.0043 | 0.0025 | 0.0097 | 0.0114 | 0.0032 | 0.0028 | 0.054 | 0.0049 |
Ester Compounds | |||||||||||||||
29 | Propanoic acid, ethenyl ester | C5H8O2 | 4.09 | 0.0129 | 0.0274 | 0.0447 | 0.0330 | 0.0721 | 0.0981 | 0.0504 | 0.0810 | 0.0683 | 0.0327 | 0.0672 | 0.0860 |
30 | 2(5H)-Furanone, 5-methyl- | C5H6O2 | 11.22 | ND | ND | ND | 0.0047 | 0.0052 | 0.0053 | ND | ND | ND | ND | ND | ND |
31 | Benzoic acid, 2-ethylhexyl ester | C15H22O2 | 19.55 | 0.0227 | 0.0237 | 0.0264 | 0.0178 | 0.0175 | 0.0194 | 0.0251 | 0.0329 | 0.0329 | 0.0262 | 0.0249 | 0.0250 |
32 | 3-Methyl-2-butenoic acid, tridec-2-ynyl ester | C18H30O2 | 28.86 | 0.0105 | 0.0134 | 0.0145 | 0.0042 | 0.0156 | 0.0156 | 0.0171 | 0.0239 | 0.0215 | 0.0032 | 0.0117 | 0.0154 |
33 | Ethanone, 1-(2,4-dimethylphenyl)- | C10H12O | 29.65 | 0.0196 | 0.0204 | 0.0200 | 0.0171 | 0.0219 | 0.0199 | 0.0448 | 0.0487 | 0.0469 | 0.0156 | 0.0136 | 0.0148 |
34 | 4-Ethylbenzoic acid, methyl ester | C10H12O2 | 29.79 | 0.0224 | 0.0285 | 0.0290 | 0.0180 | 0.0178 | 0.0194 | 0.0260 | 0.0607 | 0.0588 | 0.0173 | 0.0292 | 0.0228 |
Aromatic Hydrocarbons | |||||||||||||||
35 | 3-Carene | C10H16 | 13.45 | 0.0038 | 0.0047 | 0.0067 | 0.0035 | 0.0041 | 0.0050 | 0.0022 | 0.0033 | 0.0050 | 0.0076 | 0.0089 | 0.0087 |
36 | Undecane | C11H24 | 18.52 | 0.0067 | 0.0102 | 0.0098 | ND | ND | ND | 0.0051 | 0.0092 | 0.0087 | 0.0091 | 0.0134 | 0.0125 |
37 | Tridecane | C13H28 | 26.76 | 0.0035 | 0.0048 | 0.0054 | 0.0036 | 0.0044 | 0.0047 | 0.0040 | 0.0063 | 0.0059 | 0.0053 | 0.0080 | 0.0084 |
38 | 3-Heptene, 2,2,4,6,6-pentamethyl- | C12H24 | 28.18 | 0.0023 | 0.0059 | 0.0071 | 0.0017 | 0.0040 | 0.0054 | 0.0074 | 0.0124 | 0.0148 | 0.0032 | 0.0123 | 0.0151 |
39 | 2-Methylundecane | C12H26 | 28.39 | 0.0269 | 0.0321 | 0.0346 | 0.0187 | 0.0219 | 0.0306 | 0.0317 | 0.0355 | 0.0572 | 0.0196 | 0.0241 | 0.0369 |
40 | 2-Pentene, 2,4,4-trimethyl | C8H16 | 29.22 | 0.0338 | 0.0322 | 0.0381 | 0.0114 | 0.0140 | 0.0178 | 0.0646 | 0.0748 | 0.0790 | 0.0106 | 0.0154 | 0.0166 |
41 | Tetradecane | C14H30 | 31.12 | 0.0415 | 0.0358 | 0.0359 | 0.0393 | 0.0295 | 0.0385 | 0.0500 | 0.0682 | 0.0694 | 0.0448 | 0.0633 | 0.0568 |
42 | 2,4,6-Trimethyldecane | C13H28 | 31.21 | 0.0032 | 0.0031 | 0.0034 | 0.0023 | 0.0026 | 0.0031 | 0.0055 | 0.0058 | 0.0064 | 0.0028 | 0.0055 | 0.0058 |
43 | Nonadecane | C19H40 | 34.9 | 0.0080 | 0.0082 | 0.0083 | 0.0074 | 0.0086 | 0.0091 | 0.0092 | 0.0105 | 0.0121 | 0.0097 | 0.0094 | 0.0104 |
44 | Pentadecane | C15H32 | 35.02 | 0.0038 | 0.0051 | 0.0058 | 0.0021 | 0.0027 | 0.0035 | 0.0029 | 0.0052 | 0.0064 | 0.0017 | 0.0031 | 0.0035 |
45 | Hexadecane | C16H34 | 39.02 | 0.0045 | 0.0041 | 0.0048 | 0.0045 | 0.0049 | 0.0047 | 0.0040 | 0.0049 | 0.0067 | 0.0139 | 0.0134 | 0.0133 |
46 | Octadecane, 3-ethyl-5-(2-ethylbutyl) | C26H54 | 40.21 | 0.0020 | 0.0024 | 0.0023 | 0.0039 | 0.0033 | 0.0031 | 0.0048 | 0.0037 | 0.0036 | 0.0040 | 0.0026 | 0.0037 |
47 | Octadecane | C18H38 | 41.1 | 0.0093 | 0.0137 | 0.0132 | 0.0083 | 0.0097 | 0.0149 | 0.0092 | 0.0191 | 0.0215 | 0.0096 | 0.0102 | 0.0098 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krastanov, A.; Georgiev, M.; Slavchev, A.; Blazheva, D.; Goranov, B.; Ibrahim, S.A. Design and Volatile Compound Profiling of Starter Cultures for Yogurt Preparation. Foods 2023, 12, 379. https://doi.org/10.3390/foods12020379
Krastanov A, Georgiev M, Slavchev A, Blazheva D, Goranov B, Ibrahim SA. Design and Volatile Compound Profiling of Starter Cultures for Yogurt Preparation. Foods. 2023; 12(2):379. https://doi.org/10.3390/foods12020379
Chicago/Turabian StyleKrastanov, Albert, Marin Georgiev, Aleksandar Slavchev, Denica Blazheva, Bogdan Goranov, and Salam A. Ibrahim. 2023. "Design and Volatile Compound Profiling of Starter Cultures for Yogurt Preparation" Foods 12, no. 2: 379. https://doi.org/10.3390/foods12020379
APA StyleKrastanov, A., Georgiev, M., Slavchev, A., Blazheva, D., Goranov, B., & Ibrahim, S. A. (2023). Design and Volatile Compound Profiling of Starter Cultures for Yogurt Preparation. Foods, 12(2), 379. https://doi.org/10.3390/foods12020379