Effect of Yogurt Addition on the Stability of Anthocyanin during Cold Storage of Strawberry, Raspberry, and Blueberry Smoothies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Production of Smoothie
2.3. Extraction and Purification of Anthocyanins from Fruits
2.4. Model Experiments
2.5. Analytical Methods
2.5.1. The Physicochemical Analysis
2.5.2. Determination of Sugars and Organic Acids
2.5.3. Vitamin C Determination
2.5.4. Determination of Hydrogen Peroxide Content
2.5.5. Enumeration of Viable Bacteria
2.5.6. Analysis of Anthocyanins
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Parameters of Semi-Products Used in the Production of Smoothies
3.2. Changes in the Counts of Lactic Acid Bacteria during Storage of Smoothies
3.3. Anthocyanin Composition of Fruit Smoothie
3.4. Differences in Anthocyanin Stability in Fruit Smoothies Depending on the Raw Material Used
3.5. Effect of Yogurt Addition on Anthocyanin Stability during Cold Storage of Smoothie
3.6. Role of pH, H2O2 and Addition of Cell-Free Extracts on Stability of Anthocyanins in the Model System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kidoń, M.; Uwineza, P.A. New Smoothie Products Based on Pumpkin, Banana, and Purple Carrot as a Source of Bioactive Compounds. Molecules 2022, 27, 3049. [Google Scholar] [CrossRef] [PubMed]
- Muntean, M.V.; Fărcaş, A.C.; Medeleanu, M.; Salanţă, L.C.; Borşa, A. A Sustainable Approach for the Development of Innovative Products from Fruit and Vegetable By-Products. Sustainability 2022, 14, 10862. [Google Scholar] [CrossRef]
- Fernandez, M.A.; Marette, A. Potential Health Benefits of Combining Yogurt and Fruits Based on Their Probiotic and Prebiotic Properties. Adv. Nutr. 2017, 8, 155S–164S. [Google Scholar] [CrossRef] [PubMed]
- Waszkiewicz, M.; Sokół-Łętowska, A.; Pałczyńska, A.; Kucharska, A.Z. Fruit Smoothies Enriched in a Honeysuckle Berry Extract—An Innovative Product with Health-Promoting Properties. Foods 2023, 12, 3667. [Google Scholar] [CrossRef] [PubMed]
- Razola-Díaz, M.D.C.; Guerra-Hernández, E.J.; García-Villanova, B.; Verardo, V. New Insight on Phenolic Composition and Evaluation of the Vitamin C and Nutritional Value of Smoothies Sold on the Spanish Market. Molecules 2022, 27, 8229. [Google Scholar] [CrossRef] [PubMed]
- Merecz-Sadowska, A.; Sitarek, P.; Kowalczyk, T.; Zajdel, K.; Jęcek, M.; Nowak, P.; Zajdel, R. Food Anthocyanins: Malvidin and Its Glycosides as Promising Antioxidant and Anti-Inflammatory Agents with Potential Health Benefits. Nutrients 2023, 15, 3016. [Google Scholar] [CrossRef]
- Luna-Vital, D.; Li, Q.; West, L.; West, M.; Gonzalez de Mejia, E. Anthocyanin Condensed Forms Do Not Affect Color or Chemical Stability of Purple Corn Pericarp Extracts Stored under Different PHs. Food Chem. 2017, 232, 639–647. [Google Scholar] [CrossRef]
- Duan, C.; Xiao, X.; Yu, Y.; Xu, M.; Zhang, Y.; Liu, X.; Dai, H.; Pi, F.; Wang, J. In Situ Raman Characterization of the Stability of Blueberry Anthocyanins in Aqueous Solutions under Perturbations in Temperature, UV, PH. Food Chem. 2024, 431, 137155. [Google Scholar] [CrossRef]
- Sasaki, Y.; Horiuchi, H.; Kawashima, H.; Mukai, T.; Yamamoto, Y. NADH Oxidase of Streptococcus thermophilus 1131 Is Required for the Effective Yogurt Fermentation with Lactobacillus delbrueckii subsp. Bulgaricus 2038. Biosci. Microbiota Food Health 2014, 33, 31–40. [Google Scholar] [CrossRef]
- Özkan, M.; Yemenicioǧlu, A.; Cemeroǧlu, B. Degradation of Various Fruit Juice Anthocyanins by Hydrogen Peroxide. Food Res. Int. 2005, 38, 1015–1021. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Adhikari, B.; Fang, Z. Fermentation Transforms the Phenolic Profiles and Bioactivities of Plant-Based Foods. Biotechnol. Adv. 2021, 49, 107763. [Google Scholar] [CrossRef]
- Acar, Ç.B.; Yüksekdağ, Z. Beta-Glycosidase Activities of Lactobacillus spp. and Bifidobacterium spp. and The Effect of Different Physiological Conditions on Enzyme Activity. Nat. Eng. Sci. 2023, 8, 1–17. [Google Scholar] [CrossRef]
- Li, J.; Wang, B.; He, Y.; Wen, L.; Nan, H.; Zheng, F.; Liu, H.; Lu, S.; Wu, M.; Zhang, H. A Review of the Interaction between Anthocyanins and Proteins. Food Sci. Technol. Int. 2021, 27, 470–482. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.; Rojanasasithara, T.; Mutilangi, W.; McClements, D.J. Stability Improvement of Natural Food Colors: Impact of Amino Acid and Peptide Addition on Anthocyanin Stability in Model Beverages. Food Chem. 2017, 218, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.C.; Giusti, M.M. Determination of Color, Pigment, and Phenolic Stability in Yogurt Systems Colored with Nonacylated Anthocyanins from Berberis boliviana L. as Compared to Other Natural/Synthetic Colorants. J. Food Sci. 2008, 73, C241–C248. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Chitrakar, B.; Chen, J.; Islam, M.N.; Wei, B.; Wang, B.; Zhou, C.; Ma, H.; Xu, B. Effect of Multi-Mode Thermosonication on the Microbial Inhibition and Quality Retention of Strawberry Clear Juice during Storage at Varied Temperatures. Foods 2022, 11, 2593. [Google Scholar] [CrossRef]
- Aaby, K.; Amundsen, M.R. The Stability of Phenolic Compounds and the Colour of Lingonberry Juice with the Addition of Different Sweeteners during Thermal Treatment and Storage. Heliyon 2023, 9, 1–13. [Google Scholar] [CrossRef]
- Alsubhi, N.H.; Al-Quwaie, D.A.; Alrefaei, G.I.; Alharbi, M.; Binothman, N.; Aljadani, M.; Qahl, S.H.; Jaber, F.A.; Huwaikem, M.; Sheikh, H.M.; et al. Pomegranate Pomace Extract with Antioxidant, Anticancer, Antimicrobial, and Antiviral Activity Enhances the Quality of Strawberry-Yogurt Smoothie. Bioengineering 2022, 9, 735. [Google Scholar] [CrossRef]
- ISO 19662; Milk—Determination of Fat Content—Acido-Butyrometric (Gerber Method). ISO: Geneva, Switzerland, 2018.
- ISO 1871; Food and Feed Products—General Guidelines for the Determination of Nitrogen by Kjeldahl Method. ISO: Geneva, Switzerland, 2009.
- Veigas, J.M.; Narayan, M.S.; Laxman, P.M.; Neelwarne, B. Chemical Nature, Stability and Bioefficacies of Anthocyanins from Fruit Peel of Syzygium Cumini Skeels. Food Chem. 2007, 105, 619–627. [Google Scholar] [CrossRef]
- Wang, E.; Yin, Y.; Xu, C.; Liu, J. Isolation of High-Purity Anthocyanin Mixtures and Monomers from Blueberries Using Combined Chromatographic Techniques. J. Chromatogr. A 2014, 1327, 39–48. [Google Scholar] [CrossRef]
- Gao, X.; Bjork, L.; Trajkovski, V.; Uggla, M. Evaluation of Antioxidant Activities of Rosehip Ethanol Extracts in Different Test Systems. J. Sci. Food Agric. 2000, 80, 2021–2027. [Google Scholar] [CrossRef]
- Amirdivani, S.; Baba, A.S.H. Green Tea Yogurt: Major Phenolic Compounds and Microbial Growth. J. Food Sci. Technol. 2015, 52, 4652–4660. [Google Scholar] [CrossRef] [PubMed]
- Usenik, V.; Fabčič, J.; Štampar, F. Sugars, Organic Acids, Phenolic Composition and Antioxidant Activity of Sweet Cherry (Prunus avium L.). Food Chem. 2008, 107, 185–192. [Google Scholar] [CrossRef]
- Flores, P.; Hellín, P.; Fenoll, J. Determination of Organic Acids in Fruits and Vegetables by Liquid Chromatography with Tandem-Mass Spectrometry. Food Chem. 2012, 132, 1049–1054. [Google Scholar] [CrossRef]
- Chebrolu, K.K.; Jayaprakasha, G.K.; Yoo, K.S.; Jifon, J.L.; Patil, B.S. An Improved Sample Preparation Method for Quantification of Ascorbic Acid and Dehydroascorbic Acid by HPLC. LWT 2012, 47, 443–449. [Google Scholar] [CrossRef]
- Yap, P.S.; Gilliland, S.E. Comparison of Newly Isolated Strains of Lactobacillus delbrueckii subsp. Lactis for Hydrogen Peroxide Production at 5 °C. J. Dairy Sci. 2000, 83, 628–632. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, J.; Guo, Z.; Tan, H.; Zhu, X. A Simple Colorimetric Method for Determination of Hydrogen Peroxide in Plant Tissues. Plant Growth Regul. 2006, 49, 113–118. [Google Scholar] [CrossRef]
- ISO 7889; Yogurt—Enumeration of Characteristic Microorganisms—Colony-Count Technique at 37 Degrees C. ISO: Geneva, Switzerland, 2007.
- Ścibisz, I.; Ziarno, M.; Mitek, M.; Zareba, D. Effect of Probiotic Cultures on the Stability of Anthocyanins in Blueberry Yoghurts. LWT 2012, 49, 208–212. [Google Scholar] [CrossRef]
- Talcott, S.T. Chemical Components of Berry Fruits. In Berry Fruit, Value-Added Products for Health Promotion; Zhao, Y., Ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2007; pp. 51–71. [Google Scholar]
- Eisele, T.A.; Drake, S.R. The Partial Compositional Characteristics of Apple Juice from 175 Apple Varieties. J. Food Compos. Anal. 2005, 18, 213–221. [Google Scholar] [CrossRef]
- Ohlsson, J.A.; Johansson, M.; Hansson, H.; Abrahamson, A.; Byberg, L.; Smedman, A.; Lindmark-Månsson, H.; Lundh, Å. Lactose, Glucose and Galactose Content in Milk, Fermented Milk and Lactose-Free Milk Products. Int. Dairy J. 2017, 73, 151–154. [Google Scholar] [CrossRef]
- Kailasapathy, K.; Harmstorf, I.; Phillips, M. Survival of Lactobacillus Acidophilus and Bifidobacterium animalis ssp. Lactis in Stirred Fruit Yogurts. LWT 2008, 41, 1317–1322. [Google Scholar] [CrossRef]
- Shah, N.P. Probiotic bacteria: Selective Enumeration and Survival in Dairy Foods. J. Dairy Sci. 2000, 83, 894–907. [Google Scholar] [CrossRef]
- Lim, E.S. Preparation and Functional Properties of Probiotic and Oat-Based Synbiotic Yogurts Fermented with Lactic Acid Bacteria. Appl. Biol. Chem. 2018, 61, 25–37. [Google Scholar] [CrossRef]
- Mani-López, E.; Palou, E.; López-Malo, A. Probiotic Viability and Storage Stability of Yogurts and Fermented Milks Prepared with Several Mixtures of Lactic Acid Bacteria. J. Dairy Sci. 2014, 97, 2578–2590. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, K.; Mustapha, A.; Grün, I.U.; Fernando, L. Viability of Microencapsulated Bifidobacteria in Set Yogurt During Refrigerated Storage. J. Dairy Sci. 2000, 83, 1946–1951. [Google Scholar] [CrossRef] [PubMed]
- Towiwat, P.; Li, Z.G. The Association of Vitamin C, Alcohol, Coffee, Tea, Milk and Yogurt with Uric Acid and Gout. Int. J. Rheum. Dis. 2015, 18, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.H.; Liu, F.; Luo, S.Z.; Luo, J.P. Pomegranate Juice Powder as Sugar Replacer Enhanced Quality and Function of Set Yogurts: Structure, Rheological Property, Antioxidant Activity and In Vitro Bioaccessibility. LWT 2019, 115, 108479. [Google Scholar] [CrossRef]
- Dave, R.I.; Shahb, N.P. Effectiveness of Ascorbic Acid as an Oxygen Scavenger in Improving Viability of Probiotic Bacteria in Yoghurts Made with Commercial Starter Cultures. Int. Dairy J. 1997, 7, 435443. [Google Scholar] [CrossRef]
- Ng, E.W.; Yeung, M.; Tong, P.S. Effects of Yogurt Starter Cultures on the Survival of Lactobacillus Acidophilus. Int. J. Food Microbiol. 2011, 145, 169–175. [Google Scholar] [CrossRef]
- Villegas, E.; Gilliland, S.E. Hydrogen Peroxide Production by Lactobacillus delbrueckii subsp. Lactis I at 5 °C. J. Food Sci. 1998, 63, 1070–1074. [Google Scholar] [CrossRef]
- Vicente, A.R.; Martínez, G.A.; Chaves, A.R.; Civello, P.M. Effect of Heat Treatment on Strawberry Fruit Damage and Oxidative Metabolism during Storage. Postharvest Biol. Technol. 2006, 40, 116–122. [Google Scholar] [CrossRef]
- Boatright, W.L. Oxygen Dependency of One-Electron Reactions Generating Ascorbate Radicals and Hydrogen Peroxide from Ascorbic Acid. Food Chem. 2016, 196, 1361–1367. [Google Scholar] [CrossRef] [PubMed]
- Vinderola, C.G.; Bailo, N.; Reinheimer, J.A. Survival of Probiotic Microflora in Argentinian Yoghurts during Refrigerated Storage. Food Res. Int. 2000, 33, 97–102. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Viškelis, P.; Šarkinas, A.; Venskutonis, P.R. Phytochemical Composition, Antioxidant and Antimicrobial Properties of Raspberry Fruit, Pulp, and Marc Extracts. CyTA—J. Food 2013, 11, 334–342. [Google Scholar] [CrossRef]
- Goiffon, J.-P.; Mouly, P.P.; Gaydou, E.M. Anthocyanic Pigment Determination in Red Fruit Juices, Concentrated Juices and Syrups Using Liquid Chromatography. Anal. Chim. Acta 1999, 382, 39–50. [Google Scholar] [CrossRef]
- Smith, A.N.; do Nascimento Nunes, M.C. Physicochemical Quality, Polyphenol Profiles, and Postharvest Performance of Florida Pearl® ‘FL 16.78-109’ White Strawberries Compared to the Red Cultivar ‘Florida Brilliance’. Foods 2023, 12, 3143. [Google Scholar] [CrossRef]
- da Silva, F.L.; Escribano-Bailón, M.T.; Pérez Alonso, J.J.; Rivas-Gonzalo, J.C.; Santos-Buelga, C. Anthocyanin Pigments in Strawberry. LWT 2007, 40, 374–382. [Google Scholar] [CrossRef]
- Oey, I.; Lille, M.; Van Loey, A.; Hendrickx, M. Effect of High-Pressure Processing on Colour, Texture and Flavour of Fruit- and Vegetable-Based Food Products: A Review. Trends Food Sci. Technol. 2008, 19, 320–328. [Google Scholar] [CrossRef]
- Borges, G.; Roowi, S.; Rouanet, J.-M.; Duthie, G.G.; Lean, M.E.J.; Crozier, A. The Bioavailability of Raspberry Anthocyanins and Ellagitannins in Rats. Mol. Nutr. Food Res. 2007, 51, 714–725. [Google Scholar] [CrossRef]
- Li, D.; Meng, X.; Li, B. Profiling of Anthocyanins from Blueberries Produced in China Using HPLC-DAD-MS and Exploratory Analysis by Principal Component Analysis. J. Food Compos. Anal. 2016, 47, 1–7. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Tao, Y.; Li, D.; Han, Y.; Show, P.L.; Wen, G.; Zhou, J. Fermentation of Blueberry and Blackberry Juices Using Lactobacillus Plantarum, Streptococcus Thermophilus and Bifidobacterium Bifidum: Growth of Probiotics, Metabolism of Phenolics, Antioxidant Capacity In Vitro and Sensory Evaluation. Food Chem. 2021, 348, 129083. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Xu, M.; Zeng, M.; Qin, F.; Chen, J. Interactions of Milk α- And β-Casein with Malvidin-3-O-Glucoside and Their Effects on the Stability of Grape Skin Anthocyanin Extracts. Food Chem. 2016, 199, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K.; O’Donnell, C.P.; Patras, A.; Brunton, N.; Cullen, P.J. Stability of Anthocyanins and Ascorbic Acid in Sonicated Strawberry Juice during Storage. Eur. Food Res. Technol. 2009, 228, 717–724. [Google Scholar] [CrossRef]
- Yuan, J.-P.; Chen, F. Degradation of Ascorbic Acid in Aqueous Solution. J. Agric. Food Chem. 1998, 46, 5078–5082. [Google Scholar] [CrossRef]
- Brenes, C.H.; Del Pozo-Insfran, D.; Talcott, S.T. Stability of Copigmented Anthocyanins and Ascorbic Acid in a Grape Juice Model System. J. Agric. Food Chem. 2005, 53, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Eiro, M.J.; Heinonen, M. Anthocyanin Color Behavior and Stability during Storage: Effect of Intermolecular Copigmentation. J. Agric. Food Chem. 2002, 50, 7461–7466. [Google Scholar] [CrossRef]
- Pangestu, N.P.; Miyagusuku-Cruzado, G.; Giusti, M.M. Copigmentation with Chlorogenic and Ferulic Acid Affected Color and Anthocyanin Stability in Model Beverages Colored with Sambucus Peruviana, Sambucus Nigra, and Daucus Carota during Storage. Foods 2020, 9, 1476. [Google Scholar] [CrossRef]
- Garzón, G.A.; Wrolstad, R.E. Comparison of the Stability of Pelargonidin-Based Anthocyanins in Strawberry Juice and Concentrate. J. Food Sci. 2002, 67, 1288–1299. [Google Scholar] [CrossRef]
- Chen, J.Y.; Du, J.; Li, M.L.; Li, C.M. Degradation Kinetics and Pathways of Red Raspberry Anthocyanins in Model and Juice Systems and Their Correlation with Color and Antioxidant Changes during Storage. LWT 2020, 128, 109448. [Google Scholar] [CrossRef]
- Reque, P.M.; Steffens, R.S.; Jablonski, A.; Flôres, S.H.; Rios, A.D.O.; de Jong, E.V. Cold Storage of Blueberry (Vaccinium spp.) Fruits and Juice: Anthocyanin Stability and Antioxidant Activity. J. Food Compos. Anal. 2014, 33, 111–116. [Google Scholar] [CrossRef]
- Antonio-Gómez, M.V.; Salinas-Moreno, Y.; Hernández-Rosas, F.; Herrera-Corredor, J.A.; Contreras-Oliva, A. Color and Stability of Anthocyanins of Chagalapoli (Ardisia compressa K.) Fruit Added to an Isotonic Beverage as Microcapsules and as Free Extract. Foods 2023, 12, 2009. [Google Scholar] [CrossRef]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef] [PubMed]
- Garzón, G.A.; Wrolstad, R.E. The Stability of Pelargonidin-Based Anthocyanins at Varying Water Activity. Food Chem. 2001, 75, 185–196. [Google Scholar] [CrossRef]
- Moldovan, B.; David, L.; Chisbora, C.; Cimpoiu, C. Degradation Kinetics of Anthocyanins from European Cranberrybush (Viburnum opulus L.) Fruit Extracts. Effects of Temperature, PH and Storage Solvent. Molecules 2012, 17, 11655–11666. [Google Scholar] [CrossRef]
- Matsufuji, H.; Kido, H.; Misawa, H.; Yaguchi, J.; Otsuki, T.; Chino, M.; Takeda, M.; Yamagata, K. Stability to Light, Heat, and Hydrogen Peroxide at Different PH Values and DPPH Radical Scavenging Activity of Acylated Anthocyanins from Red Radish Extract. J. Agric. Food Chem. 2007, 55, 3692–3701. [Google Scholar] [CrossRef]
- Braga, A.R.C.; de Souza Mesquita, L.M.; Martins, P.L.G.; Habu, S.; de Rosso, V.V. Lactobacillus Fermentation of Jussara Pulp Leads to the Enzymatic Conversion of Anthocyanins Increasing Antioxidant Activity. J. Food Compos. Anal. 2018, 69, 162–170. [Google Scholar] [CrossRef]
- Stamatovska, V.; Karakasova, L.; Babanovska-Milenkovska, F.; Nakov, G.; Blazevska, T.; Durmishi, N. Production and Characterization of Plum Jams with Different Sweeteners. J. Hyg. Eng. Des. 2017, 19, 67–77. [Google Scholar]
- Buchweitz, M.; Speth, M.; Kammerer, D.R.; Carle, R. Stabilisation of Strawberry (Fragaria × Ananassa Duch.) Anthocyanins by Different Pectins. Food Chem. 2013, 141, 2998–3006. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, X.; Yang, T.; Wang, Z.; Chen, Q.; Zeng, M.; Qin, F.; Chen, J.; He, Z. Effects of Whey Protein Isolate and Ferulic Acid/Phloridzin/Naringin/Cysteine on the Thermal Stability of Mulberry Anthocyanin Extract at Neutral PH. Food Chem. 2023, 425, 136494. [Google Scholar] [CrossRef]
- Huang, J.; Hu, Z.; Chin, Y.; Pei, Z.; Yao, Q.; Chen, J.; Li, D.; Hu, Y. Improved Thermal Stability of Roselle Anthocyanin by Co-Pigmented with Oxalic Acid: Preparation, Characterization and Enhancement Mechanism. Food Chem. 2023, 410, 135407. [Google Scholar] [CrossRef]
- Alexandre, E.M.C.; Brandão, T.R.S.; Silva, C.L.M. Efficacy of Non-Thermal Technologies and Sanitizer Solutions on Microbial Load Reduction and Quality Retention of Strawberries. J. Food Eng. 2012, 108, 417–426. [Google Scholar] [CrossRef]
- Ruenroengklin, N.; Yang, B.; Lin, H.; Chen, F.; Jiang, Y. Degradation of Anthocyanin from Litchi Fruit Pericarp by H2O2 and Hydroxyl Radical. Food Chem. 2009, 116, 995–998. [Google Scholar] [CrossRef]
- Ricci, A.; Levante, A.; Cirlini, M.; Calani, L.; Bernini, V.; Del Rio, D.; Galaverna, G.; Neviani, E.; Lazzi, C. The Influence of Viable Cells and Cell-Free Extracts of Lactobacillus casei on Volatile Compounds and Polyphenolic Profile of Elderberry Juice. Front. Microbiol. 2018, 9, 2784. [Google Scholar] [CrossRef]
- Ávila, M.; Hidalgo, M.; Sánchez-Moreno, C.; Pelaez, C.; Requena, T.; Pascual-Teresa, S. de Bioconversion of Anthocyanin Glycosides by Bifidobacteria and Lactobacillus. Food Res. Int. 2009, 42, 1453–1461. [Google Scholar] [CrossRef]
- Pham, P.L.; Dupont, I.; Roy, D.; Lapointe, G.; Cerning, J. Production of Exopolysaccharide by Lactobacillus rhamnosus R and Analysis of Its Enzymatic Degradation during Prolonged Fermentation. Appl. Environ. Microbiol. 2000, 66, 2302–2310. [Google Scholar] [CrossRef]
- Michlmayr, H.; Schümann, C.; Wurbs, P.; da Silva, N.M.B.B.; Rogl, V.; Kulbe, K.D.; del Hierro, A.M. A β-Glucosidase from Oenococcus Oeni ATCC BAA-1163 with Potential for Aroma Release in Wine: Cloning and Expression in E. coli. World J. Microbiol. Biotechnol. 2010, 26, 1281–1289. [Google Scholar] [CrossRef]
Semiproducts | Strawberry Smoothie | Raspberry Smoothie | Blueberry Smoothie | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
yogurt | 0 | 100 g | 200 g | 300 g | 0 | 100 g | 200 g | 300 g | 0 | 100 g | 200 g | 300 g |
strawberry puree | 400 g | 400 g | 400 g | 400 g | - | - | - | - | - | - | - | - |
raspberry puree | - | - | - | - | 400 g | 400 g | 400 g | 400 g | - | - | - | - |
blueberry puree | - | - | - | - | - | - | - | - | 400 g | 400 g | 400 g | 400 g |
apple puree | 300 g | 250 g | 200 g | 150 g | 300 g | 250 g | 200 g | 150 g | 300 g | 250 g | 200 g | 150 g |
apple juice | 300 g | 250 g | 200 g | 150 g | 300 g | 250 g | 200 g | 150 g | 300 g | 250 g | 200 g | 150 g |
Parameters | Strawberry Puree | Raspberry Puree | Blueberry Puree | Apple Puree | Apple Juice | Yogurt |
---|---|---|---|---|---|---|
Soluble solids (°Bix) | 9.1 D ± 0.1 | 11.6 B ± 0.4 | 12.8 A ± 0.6 | 11.3 B ± 0.2 | 10.4 C ± 0.5 | nt |
Fructose (g/100 g) | 3.3 D ± 0.2 | 4.0 C ± 0.1 | 5.5 B ± 0.3 | 6.1 A ± 0.1 | 5.8 B ± 0.0 | nd |
Glucose (g/100 g) | 3.1 B ± 0.3 | 3.5 B ± 0.5 | 5.1 A ± 0.5 | 1.5 C ± 0.2 | 1.5 C ± 0.1 | 0.02 D ± 0.0 |
Saccharose (g/100 g) | 0.6 C ± 0.1 | 1.4 B ± 0.2 | nd | 2.2 A ± 0.4 | 2.5 A ± 0.3 | nd |
Lactose (g/100 g) | nd | nd | nd | nd | nd | 3.8 |
Galactose (g/100 g) | nd | nd | nd | nd | nd | 1.7 |
Titratable acidy (g/100 g) * | 0.80 B ± 0.02 | 1.20 A ± 0.04 | 0.45 D ± 0.04 | 0.50 CD ± 0.01 | 0.54 C ± 0.04 | 0.76 B ± 0.04 |
pH | 3.38 D ± 0.05 | 3.19 E ± 0.08 | 3.61 B ± 0.09 | 3.44 C ± 0.04 | 3.45 C ± 0.03 | 4.17 A ± 0.04 |
Citric acid (g/100 g) | 0.62 B ± 0.03 | 1.08 A ± 0.10 | 0.41 C ± 0.07 | 0.04 E ± 0.00 | 0.04 E ± 0.00 | 0.11 D ± 0.02 |
Malic acid (g/100 g) | 0.12 B ± 0.03 | 0.10 B ± 0.02 | 0.02 C ± 0.00 | 0.47 A ± 0.07 | 0.45 A ± 0.04 | nd |
Lactic acid (g/100 g) | nd | nd | nd | nd | nd | 0.62 |
Vitamin C (mg/100 g) | 22.6 A ± 1.4 | 10.8 B ± 0.9 | 2.8 C ± 0.2 | 2.7 C ± 0.3 | 2.2 D ± 0.2 | 0.3 E ± 0.0 |
Phenolic content (mg/100 g) | 235.7 C ± 7.7 | 289.1 B ± 9.0 | 338.6 A ± 12.2 | 167.7 D ± 6.8 | 124.0 E ± 2.1 | 5.6 F ± 0.8 |
Hydrogen peroxide content (µg/g) | 2.4 B ± 0.3 | 1.8 B ± 0.3 | 1.1 C ± 0.2 | 1.2 C ± 0.1 | 1.2 C ± 0.2 | 5.90 A ± 0.8 |
Type of Smoothie | Addition of Yogurt | L. delbrueckii subsp. bulgaricus | S. thermophilus | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Storage Time (Week) | Storage Time (Week) | ||||||||||
0 | 1 | 2 | 3 | 4 | 0 | 1 | 2 | 3 | 4 | ||
Strawberry smoothie | 10% | 4.4 Ab ± 0.1 | 4.2 Bb ± 0.1 | 4.1 BCb ± 0.0 | 4.1 BCb ± 0.1 | 4.0 Cb ± 0.1 | 7.4 Ab ± 0.1 | 7.3 Ab ± 0.1 | 6.9 Bb ± 0.1 | 6.5 Cb ± 0.1 | 5.9 Db ± 0.2 |
20% | 4.6 Aab ± 0.2 | 4.6 Aa ± 0.1 | 4.5 Aab ± 0.1 | 4.5 Aab ± 0.0 | 4.3 Bab ± 0.1 | 7.8 Aa ± 0.1 | 7.4 Bb ± 0.0 | 7.3 Bab ± 0.1 | 6.8 Cab ± 0.2 | 6.1 Dab ± 0.1 | |
30% | 4.9 Aa ± 0.2 | 4.7 ABa ± 0.1 | 4.7 ABa ± 0.1 | 4.9 Aa ± 0.1 | 4.5 Ba ± 0.2 | 8.0 Aa ± 0.2 | 7.7 Ba ± 0.1 | 7.4 Ca ± 0.1 | 7.0 Da ± 0.1 | 6.4 Ea ± 0.2 | |
Raspberry smoothie | 10% | 4.6 Ab ± 0.2 | 3.6 Bb ± 0.1 | 3.1 Cb ± 0.2 | 2.4 Db ± 0.1 | 2.3 Db ± 0.1 | 7.2 Ab ± 0.2 | 6.4 Bb ± 0.1 | 6.1 Cb ± 0.1 | 5.8 Db ± 0.1 | 5.5 Eb ± 0.2 |
20% | 5.0 Aa ± 0.1 | 3.7 Bb ± 0.1 | 3.3 Cb ± 0.1 | 2.4 Db ± 0.0 | 2.4 Dab ± 0.1 | 7.6 Aa ± 0.1 | 6.5 Bb ± 0.2 | 6.2 Cb ± 0.1 | 6.1 Cb ± 0.1 | 5.6 Db ± 0.2 | |
30% | 5.2 Aa ± 0.2 | 4.0 Ba ± 0.1 | 3.7 Ca ± 0.1 | 2.8 Da ± 0.2 | 2.7 Da ± 0.2 | 7.8 Aa ± 0.1 | 6.9 Ba ± 0.1 | 6.5 Ca ± 0.1 | 6.2 Da ± 0.1 | 6.0 Da ± 0.1 | |
Blueberry smoothie | 10% | 5.1 Ab ± 0.1 | 4.7 Bb ± 0.1 | 4.6 BCc ± 0.1 | 4.5 Cb ± 0.1 | 4.0 Db ± 0.2 | 7.5 Ab ± 0.1 | 7.2 Bc ± 0.1 | 7.2 Bc ± 0.0 | 7.2 Bc ± 0.1 | 7.1 Bc ± 0.0 |
20% | 5.3 Aab ± 0.0 | 4.9 Bab ± 0.2 | 4.9 Bb ± 0.1 | 4.6 Cb ± 0.1 | 4.3 Dab ± 0.1 | 7.6 Ab ± 0.1 | 7.6 Ab ± 0.0 | 7.5 Ab ± 0.1 | 7.5 Ab ± 0.1 | 7.5 Ab ± 0.1 | |
30% | 5.4 Aa ± 0.1 | 5.1 Ba ± 0.1 | 5.0 Ba ± 0.1 | 4.9 Ba ± 0.1 | 4.5 Ca ± 0.2 | 7.9 Aa ± 0.2 | 7.8 Aa ± 0.1 | 7.9 Aa ± 0.1 | 7.7 Aa ± 0.0 | 7.7 Aa ± 0.1 |
Anthocyanins | Addition of Yogurt | Storage Time (Week) | ||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | ||
cyanidin-3-O-glucoside | 0% | 0.51 Aa ± 0.02 | 0.48 ABa ± 0.02 | 0.45 BCa ± 0.02 | 0.43 CDa ± 0.01 | 0.41 Da ± 0.01 |
10% | 0.49 Aa ± 0.03 | 0.46 ABab ± 0.02 | 0.44 BCab ± 0.01 | 0.44 BCa ± 0.00 | 0.42 Ca ± 0.01 | |
20% | 0.50 Aa ± 0.03 | 0.44 Bb ± 0.02 | 0.40 BCbc ± 0.02 | 0.38 CDb ± 0.01 | 0.36 Db ± 0.02 | |
30% | 0.50 Aa ± 0.04 | 0.43 Bb ± 0.03 | 0.39 BCc ± 0.01 | 0.37 CDb ± 0.02 | 0.34 Db ± 0.02 | |
pelargonidin-3-O-glucoside | 0% | 7.38 Aa ± 0.2 | 6.93 Ba ± 0.3 | 6.68 BCa ± 0.1 | 6.49 Ca ± 0.2 | 6.40 Ca ± 0.2 |
10% | 7.31 Aa ± 0.1 | 6.70 Ba ± 0.2 | 6.38 BCa ± 0.2 | 6.08 Ca ± 0.3 | 5.99 Ca ± 0.2 | |
20% | 7.32 Aa ± 0.4 | 6.28 Bb ± 0.2 | 5.72 Cb ± 0.2 | 5.37 Db ± 0.2 | 5.15 Db ± 0.3 | |
30% | 7.30 Aa ± 0.0 | 6.01 Bb ± 0.2 | 5.58 Cb ± 0.2 | 5.10 Db ± 0.2 | 4.83 Eb ± 0.1 | |
pelargonidin-3-O-rutinoside | 0% | 0.26 Aa ± 0.02 | 0.24 Aa ± 0.02 | 0.23 Aa ± 0.02 | 0.23 Aa ± 0.01 | 0.20 Aa ± 0.02 |
10% | 0.24 Aab ± 0.04 | 0.22 Aab ± 0.02 | 0.21 Aa ± 0.01 | 0.20 Ab ± 0.02 | 0.20 Aa ± 0.02 | |
20% | 0.22 Ab ± 0.01 | 0.21 Ab ± 0.01 | 0.21 Aa ± 0.02 | 0.20 Ab ± 0.01 | 0.20 Aa ± 0.01 | |
30% | 0.22 Ab ± 0.02 | 0.18 ABc ± 0.02 | 0.17 Bb ± 0.01 | 0.16 Bc ± 0.02 | 0.15 Bb ± 0.02 | |
pelargonidin 3-malonyl-glucoside | 0% | 0.92 Aa ± 0.02 | 0.88 Ba ± 0.01 | 0.86 BCa ± 0.02 | 0.85 Ca ± 0.01 | 0.83 Ca ± 0.03 |
10% | 0.90 Aa ± 0.01 | 0.86 Ba ± 0.02 | 0.83 BCa ± 0.01 | 0.80 CDb ± 0.02 | 0.77 Dab ± 0.03 | |
20% | 0.91 Aa ± 0.03 | 0.82 Bb ± 0.01 | 0.77 Cb ± 0.02 | 0.74 CDc ± 0.02 | 0.72 Dbc ± 0.02 | |
30% | 0.89 Aa ± 0.03 | 0.79 Bb ± 0.02 | 0.74 Cb ± 0.01 | 0.71 CDc ± 0.02 | 0.68 Dc ± 0.02 | |
Total | 0% | 9.07 Aa ± 0.2 | 8.53 Ba ± 0.2 | 8.22 Ca ± 0.1 | 8.00 CDa ± 0.3 | 7.84 Da ± 0.2 |
10% | 8.94 Aa ± 0.4 | 8.24 Ba ± 0.1 | 7.86 Ca ± 0.2 | 7.52 CDa ± 0.2 | 7.38 Da ± 0.3 | |
20% | 8.95 Aa ± 0.4 | 7.75 Bb ± 0.3 | 7.10 Cb ± 0.2 | 6.69 Db ± 0.2 | 6.43 Db ± 0.3 | |
30% | 8.91 Aa ± 0.5 | 7.41 Bb ± 0.3 | 6.88 Cb ± 0.2 | 6.34 Db ± 0.2 | 6.00 Eb ± 0.1 |
Anthocyanins | Addition of Yogurt | Storage Time (Week) | ||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | ||
cyanidin-3-O-sophoroside | 0% | 8.27 Aa ± 0.1 | 8.04 Ba ± 0.1 | 7.84 BCa ± 0.2 | 7.71 CDa ± 0.1 | 7.54 Da ± 0.1 |
10% | 8.22 Aa ± 0.1 | 7.94 Bab ± 0.1 | 7.70 Cab ± 0.1 | 7.54 CDab ± 0.2 | 7.33 Dab ± 0.1 | |
20% | 8.20 Aa ± 0.2 | 7.61 Bbc ± 0.1 | 7.45 Cbc ± 0.0 | 7.27 CDbc ± 0.2 | 7.06 Dbc ± 0.2 | |
30% | 8.20 Aa ± 0.3 | 7.52 Bc ± 0.2 | 7.31 BCc ± 0.2 | 7.07 CDc ± 0.1 | 6.89 Dc ± 0.2 | |
cyanidin-3-O-glucosylrutinoside | 0% | 0.12 Aa ± 0.02 | 0.12 Aa ± 0.02 | 0.12 Aa ± 0.01 | 0.11 Aa ± 0.01 | 0.11 Aa ± 0.01 |
10% | 0.11 Aa ± 0.02 | 0.11 Aa ± 0.00 | 0.11 Aa ± 0.00 | 0.10 Aa ± 0.02 | 0.10 Aa ± 0.02 | |
20% | 0.12 Aa ± 0.01 | 0.12 Aa ± 0.01 | 0.11 Aa ± 0.01 | 0.10 Aa ± 0.01 | 0.10 Aa ± 0.01 | |
30% | 0.12 Aa ± 0.03 | 0.11 Aa ± 0.01 | 0.11 Aa ± 0.01 | 0.10 Aa ± 0.01 | 0.10 Aa ± 0.01 | |
cyanidin-3-O-glucoside | 0% | 2.47 Aa ± 0.1 | 2.40 Aa ± 0.0 | 2.38 Aa ± 0.0 | 2.33 ABa ± 0.1 | 2.27 Ba ± 0.0 |
10% | 2.45 Aa ± 0.1 | 2.34 ABa ± 0.0 | 2.29 BCa ± 0.0 | 2.21 CDb ± 0.0 | 2.15 Db ± 0.0 | |
20% | 2.46 Aa ± 0.1 | 2.24 Bb ± 0.0 | 2.18 BCb ± 0.0 | 2.11 CDc ± 0.0 | 2.02 Dc ± 0.1 | |
30% | 2.42 Aa ± 0.1 | 2.17 Bb ± 0.0 | 2.16 Bb ± 0.0 | 2.15 Bc ± 0.0 | 2.00 Cc ± 0.0 | |
cyanidin-3-O-rutinoside | 0% | 0.25 Aa ± 0.01 | 0.24 Aa ± 0.02 | 0.24 Aa ± 0.02 | 0.23 Aa ± 0.02 | 0.23 Aa ± 0.01 |
10% | 0.24 Aa ± 0.01 | 0.23 Aa ± 0.02 | 0.23 Aab ± 0.01 | 0.23 Aa ± 0.01 | 0.23 Aa ± 0.01 | |
20% | 0.22 Aa ± 0.02 | 0.21 ABa ± 0.01 | 0.20 ABb ± 0.01 | 0.19 ABb ± 0.01 | 0.18 Bb ± 0.01 | |
30% | 0.22 Aa ± 0.02 | 0.22 Aa ± 0.00 | 0.21 Aab ± 0.01 | 0.20 Aab ± 0.00 | 0.19 Aab ± 0.02 | |
pelargonidin-3-O-glucosylrutinoside | 0% | 0.14 Aa ± 0.01 | 0.13 Aa ± 0.01 | 0.13 Aa ± 0.02 | 0.13 Aa ± 0.02 | 0.12 Aa ± 0.02 |
10% | 0.14 Aa ± 0.02 | 0.14 Aa ± 0.02 | 0.13 Aa ± 0.01 | 0.13 Aa ± 0.00 | 0.13 Aa ± 0.01 | |
20% | 0.12 Aa ± 0.03 | 0.12 Aa ± 0.01 | 0.11 Aa ± 0.02 | 0.10 Aa ± 0.02 | 0.10 Aa ± 0.02 | |
30% | 0.14 Aa ± 0.02 | 0.13 Aa ± 0.00 | 0.13 Aa ± 0.01 | 0.12 Aa ± 0.01 | 0.11 Aa ± 0.02 | |
Total | 0% | 11.25 Aa ± 0.1 | 10.93 Ba ± 0.1 | 10.71 BCa ± 0.1 | 10.51 CDa ± 0.2 | 10.27 Da ± 0.2 |
10% | 11.16 Aa ± 0.2 | 10.76 Ba ± 0.1 | 10.46 BCab ± 0.2 | 10.21 CDab ± 0.1 | 9.94 Dab ± 0.1 | |
20% | 11.12 Aa ± 0.1 | 10.30 Bb ± 0.3 | 10.05 BCbc ± 0.2 | 9.77 CDbc ± 0.3 | 9.46 Dbc ± 0.3 | |
30% | 11.10 Aa ± 0.3 | 10.15 Bb ± 0.2 | 9.92 BCc ± 0.2 | 9.64 Cc ± 0.1 | 9.29 Dc ± 0.1 |
Anthocyanins | Addition of Yogurt | Storage Time (Week) | ||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | ||
delphinidin derivatives 1 | 0% | 5.36 Aa ± 0.1 | 5.29 ABa ± 0.0 | 5.24 BCa ± 0.0 | 5.19 Ca ± 0.0 | 5.16 Ca ± 0.0 |
10% | 5.38 Aa ± 0.1 | 5.29 ABa ± 0.0 | 5.22 BCa ± 0.0 | 5.17 Ca ± 0.0 | 5.16 Ca ± 0.0 | |
20% | 5.30 Aa ± 0.1 | 5.21 ABab ± 0.1 | 5.14 BCab ± 0.0 | 5.08 CDab ± 0.0 | 5.03 Db ± 0.0 | |
30% | 5.24 Aa ± 0.1 | 5.15 ABb ± 0.0 | 5.07 BCb ± 0.0 | 5.00 CDb ± 0.0 | 4.93 Db ± 0.0 | |
cyanidin and peonidin derivatives 2 | 0% | 2.79 Aa ± 0.03 | 2.76 ABa ± 0.04 | 2.73 ABa ± 0.03 | 2.71 Ba ± 0.02 | 2.71 Ba ± 0.01 |
10% | 2.74 Aa ± 0.04 | 2.71 Aa ± 0.03 | 2.68 ABa ± 0.04 | 2.68 ABa ± 0.03 | 2.64 Bab ± 0.05 | |
20% | 2.66 Aa ± 0.05 | 2.61 ABb ± 0.02 | 2.56 BCb ± 0.04 | 2.52 Cb ± 0.03 | 2.50 Cc ± 0.06 | |
30% | 2.80 Aa ± 0.09 | 2.73 ABa ± 0.05 | 2.68 Ba ± 0.02 | 2.64 CBa ± 0.03 | 2.61 Cb ± 0.01 | |
petunidin derivatives 3 | 0% | 4.13 Aa ± 0.03 | 4.10 ABa ± 0.04 | 4.06 Ba ± 0.02 | 4.03 Ba ± 0.03 | 4.03 Ba ± 0.03 |
10% | 4.09 Aa ± 0.03 | 4.05 ABab ± 0.06 | 4.00 Bab ± 0.01 | 3.98 Bab ± 0.03 | 3.96 Ba ± 0.04 | |
20% | 4.16 Aa ± 0.04 | 4.11 ABa ± 0.03 | 4.06 BCa ± 0.02 | 4.03 BCa ± 0.01 | 3.99 Ca ± 0.03 | |
30% | 4.07 Aa ± 0.06 | 4.01 ABb ± 0.04 | 3.95 ABb ± 0.03 | 3.91 BCb ± 0.03 | 3.88 Cb ± 0.03 | |
malvidin derivatives 4 | 0% | 11.88 Aa ± 0.2 | 11.39 ABa ± 0.1 | 11.31 BCa ± 0.2 | 11.26 Ca ± 0.0 | 11.24 Ca ± 0.0 |
10% | 11.50 Aab ± 0.0 | 11.35 Ba ± 0.0 | 11.27 BCa ± 0.0 | 11.22 CDab ± 0.0 | 11.16 Db ± 0.0 | |
20% | 11.53 Aab ± 0.1 | 11.35 Ba ± 0.0 | 11.24 Ca ± 0.0 | 11.17 CDab ± 0.0 | 11.15 Db ± 0.0 | |
30% | 11.40 Ab ± 0.0 | 11.39 Aa ± 0.1 | 11.23 Ba ± 0.0 | 11.12 Cb ± 0.0 | 11.02 Dc ± 0.0 | |
acylated anthocyanins | 0% | 4.42 Aa ± 0.06 | 4.39 Aa ± 0.01 | 4.40 Aa ± 0.04 | 4.38 Aa ± 0.02 | 4.38 Aa ± 0.05 |
10% | 4.37 Aa ± 0.12 | 4.24 ABb ± 0.05 | 4.22 ABb ± 0.06 | 4.19 Bb ± 0.03 | 4.19 Bb ± 0.03 | |
20% | 4.41 Aa ± 0.03 | 4.37 ABa ± 0.03 | 4.35 BCa ± 0.02 | 4.33 BCa ± 0.03 | 4.31 Ca ± 0.02 | |
30% | 4.33 Aa ± 0.03 | 4.29 ABb ± 0.03 | 4.26 BCb ± 0.02 | 4.23 Cb ± 0.00 | 4.21 Cb ± 0.02 | |
Total | 0% | 28.38 Aa ± 0.3 | 27.92 ABa ± 0.2 | 27.73 BCa ± 0.0 | 27.58 CDa ± 0.2 | 27.52 Da ± 0.2 |
10% | 28.08 Aa ± 0.2 | 27.63 Bab ± 0.2 | 27.39 BCab ± 0.0 | 27.24 CDab ± 0.1 | 27.13 Dab ± 0.2 | |
20% | 28.06 Aa ± 0.2 | 27.65 Bab ± 0.1 | 27.36 BCab ± 0.1 | 27.13 CDab ± 0.2 | 26.98 Dab ± 0.2 | |
30% | 27.84 Aa ± 0.2 | 27.57 Bb ± 0.0 | 27.18 Cb ± 0.2 | 26.90 CDb ± 0.1 | 26.64 Db ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ścibisz, I.; Ziarno, M. Effect of Yogurt Addition on the Stability of Anthocyanin during Cold Storage of Strawberry, Raspberry, and Blueberry Smoothies. Foods 2023, 12, 3858. https://doi.org/10.3390/foods12203858
Ścibisz I, Ziarno M. Effect of Yogurt Addition on the Stability of Anthocyanin during Cold Storage of Strawberry, Raspberry, and Blueberry Smoothies. Foods. 2023; 12(20):3858. https://doi.org/10.3390/foods12203858
Chicago/Turabian StyleŚcibisz, Iwona, and Małgorzata Ziarno. 2023. "Effect of Yogurt Addition on the Stability of Anthocyanin during Cold Storage of Strawberry, Raspberry, and Blueberry Smoothies" Foods 12, no. 20: 3858. https://doi.org/10.3390/foods12203858
APA StyleŚcibisz, I., & Ziarno, M. (2023). Effect of Yogurt Addition on the Stability of Anthocyanin during Cold Storage of Strawberry, Raspberry, and Blueberry Smoothies. Foods, 12(20), 3858. https://doi.org/10.3390/foods12203858