The Genotyping Diversity and Hemolytic Activity of Cronobacter spp. Isolated from Plant-Based Food Products in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. MLST Analysis
2.3. Hemolytic activity of Cronobacter spp. Strains
3. Results and Discussion
3.1. MLST Analysis
3.2. Hemolytic Activity of Cronobacter spp.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO/WHO. Enterobacter sakazakii (Cronobacter spp.) in Powdered Follow-up Formulae. In Microbiological Risk Assessment Series No. 15. Food and Agriculture Organization of the United Nations; World Health Organization: Rome, Italy, 2008. [Google Scholar]
- Forsythe, S.J. Updates on the Cronobacter genus. Annu. Rev. Food Sci. Technol. 2018, 9, 23–44. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, G.G.; Calarga, A.P.; Zorgi, N.E.; Astudillo-Trujillo, C.A.; Pardini Gontijo, M.T.; Brocchi, M.; Giorgio, S.; Kabuki, D.Y. Virulence and DNA sequence analysis of Cronobacter spp. isolated from infant cereals. Int. J. Food Microbiol. 2022, 376, 109745. [Google Scholar] [CrossRef]
- Joseph, S.; Forsythe, S.J. Insights into the emergent bacterial pathogen Cronobacter spp., generated by multilocus sequence typing and analysis. Front. Microbiol. 2012, 3, 397. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.Y.; Kim, S.K.; Choi, S.Y.; You, D.H.; Lee, S.C.; Bang, W.S.; Yuk, H.G. Effect of acid, desiccation and heat stresses on the viability of Cronobacter sakazakii during rehydration of powdered infant formula and in simulated gastric fluid. Food Control 2015, 50, 336–341. [Google Scholar] [CrossRef]
- Shi, C.; Sun, Y.; Liu, Z.; Guo, D.; Sun, H.; Sun, Z.; Chen, S.; Zhnag, W.; Wen, Q.; Peng, X.; et al. Inhibition of Cronobacter sakazakii virulence factors by citral. Sci. Rep. 2017, 7, 43243. [Google Scholar] [CrossRef]
- Phair, K.; Pereira, S.G.; Kealey, C.; Fanning, S.; Brady, D.B. Insights into the mechanisms of Cronobacter sakazakii virulence. Microb. Pathog. 2022, 169, 105643. [Google Scholar] [CrossRef]
- Jang, H.; Gopinath, G.R.; Eshwar, A.; Srikumar, S.; Scott, N.; Gangiredla, J.; Isha, R.; Isha, P.R.; Finkelstein, S.B.; Negrete, F.; et al. The secretion of toxins and other exoproteins of Cronobacter: Role in virulence, adaption, and persistence. Microorganisms 2020, 8, 229. [Google Scholar] [CrossRef]
- International Commission on Microbiological Specifications for Foods (ICMSF). Microorganisms in Food 7. In Microbiological Testing in Food Safety Management; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2002; pp. 168–169. [Google Scholar]
- Henry, M.; Fouladkhah, A. Outbreak history, biofilm formation, and preventive measures for control of Cronobacter sakazakii in infant formula and infant care settings. Microorganisms 2019, 7, 77. [Google Scholar] [CrossRef]
- Iversen, C.; Forsythe, S.J. Isolation of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant formula milk and related products. Food Microbiol. 2004, 21, 771–776. [Google Scholar] [CrossRef]
- Kandhai, M.C.; Heuvelink, A.E.; Reij, M.W.; Beumer, R.R.; Dijk, R.; van Tilburg, J.J.H.C.; van Schothorst, M.; Gorris, L.G.M. A study into the occurrence of Cronobacter spp. in The Netherlands between 2001 and 2005. Food Control 2010, 21, 1127–1136. [Google Scholar] [CrossRef]
- Kim, J.-B.; Park, Y.-B.; Kang, S.-H.; Lee, M.-J.; Kim, K.-C.; Jeong, H.-R.; Kim, D.-H.; Yoon, M.-H.; Lee, J.-B.; Oh, D.-H. Prevalence, genetic diversity, and antibiotic susceptibility of Cronobacter spp. (Enterobacter sakazakii) isolated from Sunshik, its ingredients and soils. Food Sci. Biotechnol. 2011, 20, 941–948. [Google Scholar] [CrossRef]
- Lee, Y.-D.; Park, J.-H.; Chang, H. Detection, antibiotic susceptibility and biofilm formation of Cronobacter spp. from various foods in Korea. Food Control 2012, 24, 225–230. [Google Scholar] [CrossRef]
- Ogihara, H.; Kiribe, N.; Fukuda, N.; Furukawa, S.; Morinaga, Y.; Igimi, S. Cronobacter spp. in commercially available dried food in Japan. Biocontrol. Sci. 2014, 19, 209–213. [Google Scholar] [CrossRef]
- Garbowska, M.; Berthold-Pluta, A.; Stasiak-Różańska, L. Microbiological quality of selected spices and herbs including the presence of Cronobacter spp. Food Microbiol. 2015, 49, 1–5. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Sallam, K.I.; Tamura, T. Prevalence, identification and molecular characterization of Cronobacter sakazakii isolated from retail meat products. Food Control 2015, 53, 206–211. [Google Scholar] [CrossRef]
- Vojkovska, H.; Karpiskova, R.; Orieskova, M.; Drahovska, H. Characterization of Cronobacter spp. isolated from food of plant origin and environmental samples collected from farms and from supermarkets in the Czech Republic. Int. J. Food Microbiol. 2016, 217, 130–136. [Google Scholar] [CrossRef]
- Berthold-Pluta, A.; Garbowska, M.; Stefańska, I.; Pluta, A. Microbiological quality of selected ready-to-eat leaf vegetables, sprouts and non-pasteurized fresh fruit-vegetable juices including the presence of Cronobacter spp. Food Microbiol. 2017, 65, 221–230. [Google Scholar] [CrossRef]
- Li, C.; Zeng, H.; Zhang, J.; Luo, D.; Chen, M.; Lei, T.; Yang, X.; Wu, H.; Cai, S.; Ye, Y.; et al. Cronobacter spp. isolated from aquatic products in China: Incidence, antibiotic resistance, molecular characteristic and CRISPR diversity. Int. J. Food Microbiol. 2020, 335, 108857. [Google Scholar] [CrossRef]
- Carvalho, G.G.; Calarga, A.P.; Teodoro, J.R.; Queiroz, M.M.; Astudillo-Trujillo, A.C.; Levy, C.E.; Brocchi, M.; Kabuki, D.Y. Isolation, comparison of identification methods and antibiotic resistance of Cronobacter spp. in infant foods. Food Res. Int. 2020, 137, 109643. [Google Scholar] [CrossRef]
- Zeng, H.; Li, C.; Ling, N.; Zhang, J.; Chen, M.; Lei, T.; Wu, S.; Yang, X.; Luo, D.; Ding, Y.; et al. Prevalence, genetic analysis and CRISPR typing of Cronobacter spp. isolated from meat and meat products in China. Int. J. Food Microbiol. 2020, 321, 108549. [Google Scholar] [CrossRef]
- Berthold-Pluta, A.; Garbowska, M.; Stefańska, I.; Stasiak-Różańska, L.; Aleksandrzak-Piekarczyk, T.; Pluta, A. Microbiological quality of nuts, dried and candied fruits, including the prevalence of Cronobacter spp. Pathogens 2021, 10, 900. [Google Scholar] [CrossRef] [PubMed]
- Parra-Flores, J.; Maury-Sintjago, E.; Rodriguez-Fernández, A.; Acuña, S.; Cerda, F.; Aguirre, J.; Holy, O. Microbiological Quality of Powdered Infant Formula in Latin America. J. Food Prot. 2020, 83, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Pakbin, B.; Brück, W.M.; Allahyari, S.; Rossen, J.W.A.; Mahmoudi, R. Antibiotic resistance and molecular characterization of Cronobacter sakazakii strains isolated from powdered infant formula milk. Foods 2022, 11, 1093. [Google Scholar] [CrossRef] [PubMed]
- Fei, P.; Xing, M.; Feng, Y.; Liu, S.; Chang, Y.; Wang, Y.; Yu, Y.; Shi, E.; Zhang, Y.; Bian, X.; et al. Cronobacter sakazakii in goat milk-based infant formula from shaanxi province, China. Foodborne Pathog. Dis. 2022, 19, 304–310. [Google Scholar] [CrossRef]
- Xu, X.; Li, C.; Wu, Q.; Zhang, J.; Huang, J.; Yang, G. Prevalence, molecular characterization, and antibiotic susceptibility of Cronobacter spp. in Chinese ready-to-eat foods. Int. J. Food Microbiol. 2015, 204, 17–23. [Google Scholar] [CrossRef]
- Lou, X.; Liu, T.; Zhang, W.; Yu, H.; Wang, H.; Song, S.; Chen, Q.; Fang, Z. The occurrence and distribution characteristics of Cronobacter in diverse cereal kernels, flour, and flour-based products. Food Microbiol. 2019, 84, 103269. [Google Scholar] [CrossRef]
- Holý, O.; Forsythe, S. Cronobacter spp. as emerging causes of healthcare-associated infection. J. Hosp. Infect. 2014, 86, 169–177. [Google Scholar] [CrossRef]
- Burgess, C.M.; Gianotti, A.; Gruzdev, N.; Holah, J.; Knøchel, S.; Lehner, A.; Margas, E.; Schmitz Esser, S.; Saldinger, S.S.; Tresse, O. The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int. J. Food Microbiol. 2016, 221, 37–53. [Google Scholar] [CrossRef]
- Srikumar, S.; Cao, Y.; Yan, Q.; Van Hoorde, K.; Nguyen, S.; Cooney, S.; Gopinath, G.R.; Tall, B.D.; Sivasankaran, S.K.; Lehner, A.; et al. RNA sequencing-based transcriptional overview of xerotolerance in Cronobacter sakazakii SP291. Appl. Environ. Microbiol. 2019, 85, e01993-18. [Google Scholar] [CrossRef]
- Ling, N.; Forsythe, S.; Wu, Q.; Ding, Y.; Zhang, J.; Zeng, H. Insights into Cronobacter sakazakii biofilm formation and control strategies in the food industry. Engineering 2020, 6, 393–405. [Google Scholar] [CrossRef]
- Cruz, A.; Xicohtencatl-Cortes, J.; Gonzalez-Pedrajo, B.; Bobadilla, M.; Eslava, C.; Rosas, I. Virulence traits in Cronobacter species isolated from different sources. Can. J. Microbiol. 2011, 57, 735–744. [Google Scholar] [CrossRef]
- Jang, H.; Chase, H.R.; Gangiredla, J.; Grim, C.J.; Patel, I.R.; Kothary, M.H.; Jackson, S.A.; Mammel, M.K.; Carter, L.; Negrete, F.; et al. Analysis of the molecular diversity among Cronobacter species isolated from filth flies using targeted PCR, pan genomic DNA microarray, and whole genome sequencing analyses. Front. Microbiol. 2020, 11, 561204. [Google Scholar] [CrossRef] [PubMed]
- Umeda, N.S.; De Filippis, I.; Forsythe, S.J.; Brandão, M.L.L. Phenotypic characterization of Cronobacter spp. strains isolated from foods and clinical specimens in Brazil. Food Res. Int. 2017, 102, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Svobodová, B.; Vlach, J.; Junková, P.; Karamonová, L.; Blažková, M.; Fukal, L. Novel method for reliable identification of Siccibacter and Franconibacter strains: From “Pseudo-Cronobacter” to new Enterobacteriaceae genera. Appl. Environ. Microbiol. 2017, 83, e00234-17. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, S.J.; Dickins, B.; Jolley, K.A. Cronobacter, the emergent bacterial pathogen Enterobacter sakazakii comes of age; MLST and whole genome sequence analysis. BMC Genom. 2014, 15, 1121–1134. [Google Scholar] [CrossRef]
- Baldwin, A.; Loughlin, M.; Caubilla-Barron, J.; Kucerova, E.; Manning, G.; Dowson, C.; Forsythe, S. Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance which do not correlate with biotypes. BMC Microbiol. 2009, 9, 223. [Google Scholar] [CrossRef]
- Buxton, R. Blood Agar Plates and Hemolysis Protocols. Am. Soc. Microbiol. 2005, 15, 1–9. Available online: https://asm.org/getattachment/7ec0de2b-bb16-4f6e-ba07-2aea25a43e76/protocol-2885.pdf (accessed on 10 April 2020).
- Wang, Q.; Forsythe, S.J.; Zhao, X.-J.; Wanga, Z.-W.; Li, D.; Ma, D.; Cao, J.-Y.; Zeng, J. Species identification and molecular characterization of Cronobacter spp. isolated from food imported over nine years into Beijing, China. Food Microbiol. 2019, 82, 11–19. [Google Scholar] [CrossRef]
- Li, Q.; Li, C.; Ye, Q.; Gu, Q.; Wu, S.; Zhang, Y.; Wei, X.; Xue, L.; Chen, M.; Zeng, H.; et al. Occurrence, molecular characterization and antibiotic resistance of Cronobacter spp. isolated from wet rice and flour products in Guangdong, China. Curr. Res. Food Sci. 2023, 7, 100554. [Google Scholar] [CrossRef]
- Fei, P.; Jiang, Y.; Jiang, Y.; Yuan, X.; Yang, T.; Chen, J.; Wang, Z.; Kang, H.; Forsythe, S.J. Prevalence, Molecular Characterization, and Antibiotic Susceptibility of Cronobacter sakazakii Isolates from Powdered Infant Formula Collected from Chinese Retail Markets. Front. Microbiol. 2017, 8, 2026. [Google Scholar] [CrossRef]
- Joseph, S.; Desai, P.; Ji, Y.; Cummings, C.A.; Shih, R.; Degoricija, L.; Rico, A.; Brzoska, P.; Hamby, S.E.; Masood, N.; et al. Comparative analysis of genome sequences covering the seven Cronobacter species. PLoS ONE 2012, 7, e49455. [Google Scholar] [CrossRef] [PubMed]
- Fakruddin, M.; Rahaman, M.; Ahmed, M.M.; Hoque, M.M. Stress tolerant virulent strains of Cronobacter sakazakii from food. Biol. Res. 2014, 47, 63. [Google Scholar] [CrossRef] [PubMed]
- Rajani, C.S.R.; Chaudhary, A.; Swarna, A.; Puniya, A.K. Identification and virulence of Enterobacter sakazakii. J. Food Ind. Microbiol. 2016, 2, 108. [Google Scholar] [CrossRef]
- Cui, J.; Hu, J.; Du, X.; Yan, C.; Xue, G.; Li, S.; Cui, Z.; Huang, H.; Yuan, J. Genomic analysis of putative virulence factors affecting cytotoxicity of Cronobacter. Front. Microbiol. 2020, 10, 3104. [Google Scholar] [CrossRef] [PubMed]
- Yong, W.; Guo, B.; Shi, X.; Cheng, T.; Chen, M.; Jiang, X.; Ye, Y.; Wang, J.; Xie, G.; Ding, J. An investigation of an acute gastroenteritis outbreak: Cronobacter sakazakii, a potential cause of food-borne illness. Front. Microbiol. 2018, 9, 2549. [Google Scholar] [CrossRef] [PubMed]
Isolate | Species | Origin |
---|---|---|
s12 | C. sakazakii | Alfalfa sprouts |
9n | C. sakazakii | Brazilian nuts |
10n | C. sakazakii | Brazilian nuts |
14 | C. sakazakii | Alfalfa sprouts |
s44 | C. sakazakii | Mix of sprouts |
s45 | C. sakazakii | Mix of sprouts |
s21 | C. sakazakii | Leek sprouts |
s47 | C. sakazakii | Mix of sprouts |
s48 | C. sakazakii | Mix of sprouts |
s22 | C. sakazakii | Leek sprouts |
11m | C. sakazakii | Mixes of dried fruits, seeds, and nuts |
lv25 | C. sakazakii | Rucola |
lv27 | C. sakazakii | Endive escarola |
s41 | C. sakazakii | Sunflower sprouts |
s42 | C. sakazakii | Sunflower sprouts |
5n | C. malonaticus | Hazelnuts |
6n | C. malonaticus | Cashew nuts |
7n | C. malonaticus | Pini nuts |
8n | C. malonaticus | Macadamia nuts |
12m | C. malonaticus | Mixes of dried fruits, seeds, and nuts |
lv31 | C. malonaticus | Lambs lettuce |
1n | C. turicensis | Almonds |
lv54 | C. turicensis | Mix of leaf vegetables |
s37 | C. condimenti | Small radish sprouts |
PubMLST ID | Isolate | Species | atpD | fusA | glnS | gltB | gyrB | infB | ppsA | ST | CC |
---|---|---|---|---|---|---|---|---|---|---|---|
4062 | s12 | C. sakazakii | 5 | 1 | 3 | 3 | 5 | 5 | 4 | 4 | 4 |
4063 | 9n | C. sakazakii | 3 | 12 | 16 | 5 | 16 | 20 | 14 | 17 | 17 |
4064 | 10n | C. sakazakii | 3 | 12 | 16 | 5 | 16 | 20 | 14 | 17 | 17 |
4065 | s14 | C. sakazakii | 3 | 11 | 13 | 18 | 11 | 17 | 13 | 21 | 21 |
4066 | s44 | C. sakazakii | 3 | 8 | 52 | 54 | 21 | 65 | 73 | 99 | 99 |
4067 | s45 | C. sakazakii | 3 | 8 | 52 | 54 | 21 | 65 | 73 | 99 | 99 |
4068 | s21 | C. sakazakii | 3 | 8 | 52 | 54 | 21 | 65 | 73 | 99 | 99 |
4069 | s47 | C. sakazakii | 3 | 8 | 52 | 54 | 21 | 65 | 73 | 99 | 99 |
4070 | s48 | C. sakazakii | 3 | 8 | 52 | 54 | 21 | 65 | 73 | 99 | 99 |
4071 | s22 | C. sakazakii | 3 | 8 | 52 | 54 | 21 | 65 | 73 | 99 | 99 |
4072 | 11m | C. sakazakii | 11 | 8 | 24 | 220 | 15 | 56 | 261 | 494 | - |
4073 | lv25 | C. sakazakii | 175 | 1 | 120 | 275 | 21 | 234 | 333 | 648 | - |
4074 | lv27 | C. sakazakii | 175 | 1 | 120 | 275 | 21 | 234 | 333 | 648 | - |
3574 | s41 | C. sakazakii | 3 | 1 | 120 | 94 | 270 | 1 | 368 | 804 | - |
3575 | s42 | C. sakazakii | 3 | 1 | 120 | 94 | 270 | 1 | 368 | 804 | - |
4075 | 5n | C. malonaticus | 89 | 13 | 107 | 8 | 10 | 35 | 160 | 258 | - |
4076 | 6n | C. malonaticus | 89 | 13 | 107 | 8 | 10 | 35 | 160 | 258 | - |
4077 | 7n | C. malonaticus | 89 | 13 | 107 | 8 | 10 | 35 | 160 | 258 | - |
4078 | 8n | C. malonaticus | 89 | 13 | 107 | 8 | 10 | 35 | 160 | 258 | - |
3139 | 12m | C. malonaticus | 64 | 7 | 64 | 7 | 10 | 16 | 381 | 805 | - |
3576 | lv31 | C. malonaticus | 3 | 8 | 10 | 94 | 5 | 93 | 74 | 807 | - |
3573 | 1n | C. turicensis | 46 | 147 | 42 | 21 | 237 | 193 | 318 | 806 | - |
3140 | lv54 | C. turicensis | 46 | 5 | 4 | 314 | 279 | 265 | 382 | 808 | - |
1896 | s37 | C. condimenti | 24 | 86 | 96 | 28 | 63 | 42 | 147 | 98 | - |
Isolate | Species | Hemolysis (Zone in mm) | |
---|---|---|---|
Horse Blood Agar | Sheep Blood Agar | ||
s12 | C. sakazakii | β (2.9) | α |
9n | C. sakazakii | β (2.4) | α |
10n | C. sakazakii | β (2.8) | α |
s14 | C. sakazakii | β (2.7) | α |
s44 | C. sakazakii | β (3.3) | α |
s45 | C. sakazakii | β (2.8) | α |
s21 | C. sakazakii | β (2.4) | α |
s47 | C. sakazakii | β (2.5) | α |
s48 | C. sakazakii | β (2.8) | α |
s22 | C. sakazakii | β (3.2) | α |
11m | C. sakazakii | β (1.0) | α |
lv25 | C. sakazakii | β (2.5) | α |
lv27 | C. sakazakii | β (1.1) | α |
s41 | C. sakazakii | β (3.5) | β (1.2) |
s42 | C. sakazakii | β (3.1) | β (1.0) |
5n | C. malonaticus | β (1.9) | α |
6n | C. malonaticus | β (1.0) | α |
7n | C. malonaticus | β (2.6) | α |
8n | C. malonaticus | β (2.4) | α |
12m | C. malonaticus | β (1.0) | α |
lv31 | C. malonaticus | α | α |
1n | C. turicensis | α | β (1.0) |
lv54 | C. turicensis | α | β (1.0) |
s37 | C. condimenti | β (1.0) | α |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbowska, M.; Berthold-Pluta, A.; Stasiak-Różańska, L.; Pluta, A.; Forsythe, S.; Stefańska, I. The Genotyping Diversity and Hemolytic Activity of Cronobacter spp. Isolated from Plant-Based Food Products in Poland. Foods 2023, 12, 3873. https://doi.org/10.3390/foods12203873
Garbowska M, Berthold-Pluta A, Stasiak-Różańska L, Pluta A, Forsythe S, Stefańska I. The Genotyping Diversity and Hemolytic Activity of Cronobacter spp. Isolated from Plant-Based Food Products in Poland. Foods. 2023; 12(20):3873. https://doi.org/10.3390/foods12203873
Chicago/Turabian StyleGarbowska, Monika, Anna Berthold-Pluta, Lidia Stasiak-Różańska, Antoni Pluta, Stephen Forsythe, and Ilona Stefańska. 2023. "The Genotyping Diversity and Hemolytic Activity of Cronobacter spp. Isolated from Plant-Based Food Products in Poland" Foods 12, no. 20: 3873. https://doi.org/10.3390/foods12203873
APA StyleGarbowska, M., Berthold-Pluta, A., Stasiak-Różańska, L., Pluta, A., Forsythe, S., & Stefańska, I. (2023). The Genotyping Diversity and Hemolytic Activity of Cronobacter spp. Isolated from Plant-Based Food Products in Poland. Foods, 12(20), 3873. https://doi.org/10.3390/foods12203873