Mathematical Modeling of Thin-Layer Drying Kinetics of Tomato Peels: Influence of Drying Temperature on the Energy Requirements and Extracts Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of Tomato Peels
2.3. Drying Method
2.4. Energy Consumption
2.5. Moisture Equations
2.6. Modelling of Tomato Peels Drying
2.6.1. Theoretical Diffusion Model
2.6.2. Semi-Theoretical Diffusion Models
Model Type | Model Equation * | Reference |
---|---|---|
Theoretical Diffusion Model | ||
Fick’s second law of diffusion | MR = 8/π2exp(–(π2Defft)/4/(L/2)2) | [34] |
STM–N Models | ||
Newton | MR = exp(–kt) | [35] |
Page | MR = exp(–ktn) | [36] |
Modified Page | MR = exp(–(kt)n) | [37] |
STM–F Models | ||
Henderson and Pabis | MR = aexp(–kt) | [38] |
Modified Henderson and Pabis | MR = aexp(–kt) + bexp(–gt)+ cexp(–ht) | [39] |
Midili | MR = aexp(–ktn) + bt | [42] |
Logarithmic | MR = aexp(–kt) + b | [43] |
Two-term | MR = aexp(–k1t) + bexp(–k2t) | [40] |
Two-term exponential | MR = aexp(–kt) + (1 – a)exp(–kat) | [41] |
2.7. Carotenoid Extraction Method
2.8. Carotenoids Quantification Method
2.9. Statistical Analysis
3. Results and Discussion
3.1. Experimental Drying Results
3.2. Determination of Effective Moisture Diffusivity and Activation Energy
3.3. Drying Kinetic Parameters and Models Validation
3.4. Carotenoid Degradation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al Maiman, S.A.; Albadr, N.A.; Almusallam, I.A.; Al-Saad, M.J.; Alsuliam, S.; Osman, M.A.; Hassan, A.B. The potential of exploiting economical solar dryer in food preservation: Storability, physicochemical properties, and antioxidant capacity of solar-dried tomato (Solanum lycopersicum) Fruits. Foods 2021, 10, 734. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yang, C.; Zhang, J.; Zhang, L. Study on the drying technology of tomato pulp with phytoene, phytofluene and lycopene retention as inspection indexes. Foods 2022, 11, 3333. [Google Scholar] [CrossRef] [PubMed]
- Aniceto, J.P.S.; Rodrigues, V.H.; Portugal, I.; Silva, C.M. Valorization of tomato residues by supercritical fluid extraction. Processes 2022, 10, 28. [Google Scholar] [CrossRef]
- Gorecka, D.; Wawrzyniak, A.; Jedrusek-Golinska, A.; Dziedzic, K.; Hamulka, J.; Kowalczewski, P.L.; Walkowiak, J. Lycopene in tomatoes and tomato products. Open Chem. 2020, 18, 752–756. [Google Scholar] [CrossRef]
- Azeez, L.; Adebisi, S.A.; Oyedeji, A.O.; Adetoro, R.O.; Tijani, K.O. Bioactive compounds’ contents, drying kinetics and mathematical modelling of tomato slices influenced by drying temperatures and time. J. Saudi Soc. Agric. Sci. 2019, 18, 120–126. [Google Scholar] [CrossRef]
- Bhatkar, N.S.; Shirkole, S.S.; Mujumdar, A.S.; Thorat, B.N. Drying of tomatoes and tomato processing waste: A critical review of the quality aspects. Dry. Technol. 2021, 39, 1720–1744. [Google Scholar] [CrossRef]
- Darwish, S.M.I.; Abd El-Hakim, H.I.; Abd EL-Rahman, M.A.M.; Megali, H.K.H. Extraction and utilization of tomato peels lycopene as antioxidant and natural colorants in beef burger. J. Food Dairy Sci. 2019, 10, 257–264. [Google Scholar] [CrossRef]
- Toledo, Y.S.; Macias, R.C.; Cardenas, B.Z.; Viera, L.C. Tomato skin drying: Mathematical modeling and effect on lycopene content extracted with Moringa oleifera oil. AFINAE 2022, 79, 349–357. [Google Scholar]
- Madia, V.N.; De Vita, D.; Ialongo, D.; Tudino, V.; De Leo, A.; Scipione, L.; Di Santo, R.; Costi, R.; Messore, A. Recent advances in recovery of lycopene from tomato waste: A potent antioxidant with endless benefits. Molecules 2021, 26, 4495. [Google Scholar] [CrossRef]
- Lazzarini, C.; Casadei, E.; Valli, E.; Tura, M.; Ragni, L.; Bendini, A.; Toschi, T.G. Sustainable drying and green deep eutectic extraction of carotenoids from tomato pomace. Foods 2022, 11, 405. [Google Scholar] [CrossRef]
- Umbreen, H.; Javid, M.; Riaz, M.; Nisa, M. Chapter 11—Metabolism of carotenoids. In Carotenoids: Structure and Function in the Human Body; Zia-Ul-Haq, M., Dewanjee, S., Riaz, M., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 421–446. [Google Scholar]
- Rizk, E.M.; El-Kady, A.T.; El-Bialy, A.R. Characterization of carotenoids (lyco-red) extracted from tomato peels and its uses as natural colorants and antioxidants of ice cream. Ann. Agric. Sci. 2014, 59, 53–61. [Google Scholar] [CrossRef]
- Escoto, D.F.; Ramborger, B.P.; Gaer, M.C.; Rodriguez, D.T.; Denardin, E.L.G.; Roehrs, R.; Roehrs, M. Chapter 3—Lycopene extraction and analysis. In Lycopene food Sources, Potential Role in Human Health and Antioxidant Effects; Bailey, J.R., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2015; pp. 91–103. [Google Scholar]
- Mamouda, M.N.A.; Saidou, M.; Makinta, B. Drying kinetics of tomato, okra, potato and mango in a forced-convective solar tunnel dryer. Int. J. Sustain. Green Energy 2019, 8, 34–44. [Google Scholar] [CrossRef]
- Younis, M.; Abdelkarim, D.; El-Abdein, A.Z. Kinetics and mathematical modeling of infrared thin-layer drying of garlic slices. Saudi J. Biol. Sci. 2018, 25, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Perazzini, H.; Freire, F.B.; Freire, F.B.; Freire, J.T. Thermal treatment of solid wastes using drying technologies: A review. Dry. Technol. 2016, 34, 39–52. [Google Scholar] [CrossRef]
- Farooq, S.; Rather, S.A.; Gull, A.; Ganai, A.A.; Masoodi, F.A.; Wani, S.M.; Ganaie, T.A. Physicochemical and nutraceutical properties of tomato powder as affected by pretreatments, drying methods, and storage period. Int. J. Food Prop. 2020, 23, 797–808. [Google Scholar] [CrossRef]
- Tahmasebi, M.; Emam-Djomeh, Z. Lycopene degradation and color characteristics of fresh and processed tomatoes under the different drying methods: A comparative study. Chem. Pap. 2021, 75, 3617–3623. [Google Scholar] [CrossRef]
- Hussein, J.B.; Oke, M.O.; Ajetunmobi, R.I.; Agboola, F.F. Modelling the drying properties of tomato in a hot-air dryer using hybrid ANN-GA technique. J. App. Sci. 2022, 22, 262–272. [Google Scholar] [CrossRef]
- Farcas, A.C.; Socaci, S.A.; Michiu, D.; Biris, S.; Tofana, M. Tomato waste as a source of biologically active compounds. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Food Sci. Technol. 2019, 76, 85–88. [Google Scholar]
- Popescu, M.; Iancu, P.; Plesu, V.; Todasca, M.C.; Bildea, C.S. Effect of different drying processes on lycopene recovery from tomato peels of Crystal variety. U.P.B. Sci. Bull. Ser. B. 2019, 81, 46–58. [Google Scholar]
- Khama, R.; Aissani-Benissad, F.; Alkama, R.; Fraikin, L.; Leonard, A. Modeling of drying thin layer of tomato slices using solar and convective driers. Agric. Eng. Int. CIGR J. 2022, 24, 287–298. [Google Scholar]
- Mokhtarian, M.; Majd, M.H.; Garmakhany, A.D.; Zaerzadeh, E. Predicting the moisture ratio of dried tomato slices using artificial neural network and genetic algorithm modeling. Res. Innovation Food Sci. Technol. 2021, 9, 411–422. [Google Scholar]
- Moreno, D.C.; Diaz-Moreno, A.C. Effect of air drying process on the physicochemical, antioxidant, and microstructural characteristics of tomato cv. Chonto. Agron. Colomb. 2017, 35, 100–106. [Google Scholar] [CrossRef]
- Albanese, D.; Adiletta, G.; D’Acunto, M.; Cinquanta, L.; Di Matteo, M. Tomato peel drying and carotenoids stability of the extracts. Int. J. Food Sci.Technol. 2014, 49, 2458–2463. [Google Scholar] [CrossRef]
- Kehili, M.; Kammlott, M.; Choura, S.; Zammel, A.; Zetzl, C.; Smirnova, I.; Allouche, N.; Sayadi, S. Supercritical CO2 extraction and antioxidant activity of lycopene and β-carotene-enriched oleoresin from tomato (Lycopersicum esculentum L.) peels by-product of a tunisian industry. Food Bioprod. Process. 2017, 102, 340–349. [Google Scholar] [CrossRef]
- Hatami, T.; Meireles, M.A.A.; Ciftici, O.N. Supercritical carbon dioxide extraction of lycopene from tomato processing by-products: Mathematical modelling and optimization. J. Food Eng. 2018, 241, 18–25. [Google Scholar] [CrossRef]
- Onwude, D.I.; Hashim, N.; Janius, R.B.; Nawi, N.M.; Abdan, K. Modeling the thin-layer drying of fruits and vegetables: A review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 599–618. [Google Scholar] [CrossRef]
- Famurewa, J.A.V.; Begbaaji, O.J. Mathematical modelling of drying kinetics of tomatoes using cabinet dryer. Ife J. Sci. Technol. 2018, 2, 27–33. [Google Scholar]
- Guine, R.P.F.; Lima, M.J. Study of the drying kinetics and calculation of mass transfer properties in hot air drying of Cynara cardunculus. Open Agric. 2020, 5, 740–750. [Google Scholar] [CrossRef]
- Badaoui, O.; Hanini, S.; Djebli, A.; Haddad, B.; Benhamou, A. Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models. Renew. Energy 2019, 133, 144–155. [Google Scholar] [CrossRef]
- Coskun, S.; Doymaz, I.; Tunckal, C.; Erdogan, S. Investigation of drying kinetics of tomato slices dried by using a closed loop heat pump dryer. Heat Mass Transf. 2017, 53, 1863–1871. [Google Scholar] [CrossRef]
- Nwabuka, N.R.; Chukwuezie, O.C.; Asonye, G.U.; Asoegwu, S.N. Influence of process parameters on the energy requirements and dried sliced tomato quality. Eng. Rep. 2020, 2, e12123. [Google Scholar]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: London, UK, 1975. [Google Scholar]
- Bruce, D.M. Exposed-layer barley drying, three models fitted to new data up to 150 °C. J. Agric. Eng. Res. 1985, 32, 337–347. [Google Scholar] [CrossRef]
- Page, G.E. Factors Influencing the Maximum Rates of Air Drying Shelled Corn in thin Layers. Master’s Thesis, Department of Mechanical Engineering, Purdue University, Purdue, IN, USA, 1949. [Google Scholar]
- White, G.M.; Ross, I.J.; Ponelert, R. Fully exposed drying of popcorn. Trans. ASAE. 1981, 24, 466–468. [Google Scholar] [CrossRef]
- Henderson, S.M.; Pabis, S. Grain drying theory. II. Temperature effects on drying coefficients. J. Agric. Eng. Res. 1961, 6, 169–174. [Google Scholar]
- Karathanos, V.T. Determination of water content of dried fruits by drying kinetics. J. Food Eng. 1999, 39, 337–344. [Google Scholar] [CrossRef]
- Henderson, S.M. Progress in developing the thin layer drying equation. Trans. ASAE. 1974, 17, 1167–1172. [Google Scholar] [CrossRef]
- Sharaf-Eldeen, Y.I.; Blaisdell, J.L.; Hamdy, M.Y. A model for ear corn drying. Trans. ASAE 1980, 23, 1261–1265. [Google Scholar] [CrossRef]
- Midilli, A.; Kucuk, H.; Yapar, Z. A new model for single layer drying. Dry. Technol. 2002, 20, 1503–1513. [Google Scholar] [CrossRef]
- Togrul, I.T.; Pehlivan, D. Mathematical modelling of solar drying of apricots in thin layers. J. Food Eng. 2002, 55, 209–216. [Google Scholar] [CrossRef]
- Popescu, M.; Iancu, P.; Plesu, V.; Bildea, C.S.; Todasca, M.C. Different spectrophotometric methods for simultaneous quantification of lycopene and β-carotene from a binary mixture. LWT-Food Sci. Technol. 2022, 160, 113238. [Google Scholar] [CrossRef]
- Konieczka, P.; Namiesnik, J. Quality Assurance and Quality Control in the Analytical Chemical Laboratory: A Practical Approach; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Shi, J.; Jun Xue, S.; Jiang, Y.; Ye, X. Supercritical-fluid extraction of lycopene from tomatoes. In Separation, Extraction and Concentration Processes in the Food, Beverage and Nutraceutical Industries; Elsevier Ltd.: Amsterdam, The Netherlands, 2010; pp. 619–645. [Google Scholar]
- Nobre, B.P.; Palavra, A.F.; Pessoa, F.L.P.; Mendes, R.L. Supercritical CO2 extraction of trans-lycopene from portuguese tomato industrial waste. Food Chem. 2009, 116, 680–685. [Google Scholar] [CrossRef]
- Lavecchia, R.; Zuorro, A. Improved lycopene extraction from tomato peels using cell-wall degrading enzymes. Eur. Food. Res. Technol. 2008, 228, 153–158. [Google Scholar] [CrossRef]
- Mariem, S.B.; Mabrouk, S.B. Drying characteristics of tomato slices and mathematical modeling. Int. J. Energy Eng. 2014, 4, 17–24. [Google Scholar]
- Meegahawaththa, W.K.; Singhalage, I.D.; Mudannayake, D.C. Tomato (Lycopersicon esculentum L.) peel powder as a source of natural antioxidant and a colorant in stirred yoghurt. Food Life 2020, 2020, 87–97. [Google Scholar] [CrossRef]
- Vallecilla-Yepez, L.; Ciftici, O.N. Increasing cis-lycopene content of the oleoresin from tomato processing byproducts using supercritical carbon dioxide. LWT-Food Sci. Technol. 2018, 95, 354–360. [Google Scholar] [CrossRef]
- Machmudah, S.; Zakaria; Winardi, S.; Sasaki, M.; Goto, M.; Kusumoto, N.; Hayakawa, K. Lycopene extraction from tomato peel by-product containing tomato seed using supercritical carbon dioxide. J. Food Eng. 2012, 108, 290–296. [Google Scholar] [CrossRef]
- Topal, U.; Sasaki, M.; Goto, M.; Hayakawa, K. Extraction of lycopene from tomato skin with supercritical carbon dioxide: Effect of operating conditions and solubility analysis. J. Agric. Food Chem. 2006, 54, 5604–5610. [Google Scholar] [CrossRef]
- Kehili, M.; Sayadi, S.; Frikha, F.; Zammel, A.; Allouche, N. Optimization of lycopene extraction from tomato peels industrial by-product using maceration in refined olive oil. Food Bioprod. Process. 2019, 117, 321–328. [Google Scholar] [CrossRef]
- Zuorro, A. Enhanced lycopene extraction from tomato peels by optimized mixed-polarity solvent mixtures. Molecules 2020, 25, 2038. [Google Scholar] [CrossRef]
- Calvo, M.M.; Dado, D.; Santa-Maria, G. Influence of extraction with ethanol or ethyl acetate on the yield of lycopene, β-carotene, phytoene and phytofluene from tomato peel powder. Eur. Food Res. Technol. 2007, 224, 567–571. [Google Scholar] [CrossRef]
- Bac, H.S.; Yemis, O.; Ozkan, M. Thermal stabilities of lycopene and β-carotene in tomato pulp and pink grapefruit juice. J. Food Eng. 2023, 337, 111217. [Google Scholar]
- Sahin, H.; Aktas, F.T.; Orak, H.; Ulger, P. Influence of pretreatments and different drying methods on color parameters and lycopene content of dried tomato. Bulg. J. Agric. Sci. 2011, 17, 867–881. [Google Scholar]
- Abdulahi, N.; Kabiruyunusa, A.; Aliyu, A. Kinetics of the thermal degradation of lycopene in tomatoes. Croat. J. Food Sci. Technol. 2020, 12, 84–89. [Google Scholar]
- Demiray, E.; Tulek, Y.; Yilmaz, Y. Degradation kinetics of lycopene, b-carotene and ascorbic acid in tomatoes during hot air drying. LWT-Food Sci. Technol. 2013, 50, 172–176. [Google Scholar] [CrossRef]
Model | Temperature, (°C) | Model Constants | R2 | χ2 | RMSE |
---|---|---|---|---|---|
Fick’s second law of diffusion | 50 | (8/π2) = 0.8106; −(π2 × Deff)/4/(L/2)2) = −9.5680 × 10−5 Deff = 1.0074 × 10−9 | 0.9914 | 0.0017 | 0.0377 |
55 | (8/π2) = 0.8106; −(π2 × Deff)/4/(L/2)2) = −1.0493 × 10−4 Deff = 1.0226 × 10−9 | 0.9841 | 0.0030 | 0.0496 | |
60 | (8/π2) = 0.8106; −(π2 × Deff)/4/(L/2)2) = −1.1475 × 10−4 Deff = 1.1642 × 10−9 | 0.9886 | 0.0025 | 0.0444 | |
65 | (8/π2) = 0.8106; −(π2 × Deff)/4/(L/2)2) = −1.2517 × 10−4 Deff = 1.2441 × 10−9 | 0.9805 | 0.0048 | 0.0610 | |
70 | (8/π2) = 0.8106; −(π2 × Deff)/4/(L/2)2) = −1.3618 × 10−4 Deff = 1.3712 × 10−9 | 0.9590 | 0.0119 | 0.0944 | |
75 | (8/π2) = 0.8106; −(π × Deff)/4/(L/2)2) = −1.4780 × 10−4 Deff = 1.5350 × 10−9 | 0.9432 | 0.0207 | 0.1217 | |
Newton | 50 | k = 0.5096 | 0.9974 | 0.0017 | 0.0377 |
55 | k = 0.5989 | 0.9964 | 0.0007 | 0.0251 | |
60 | k = 0.6271 | 0.9977 | 0.0004 | 0.0197 | |
65 | k = 0.7691 | 0.9948 | 0.0010 | 0.0300 | |
70 | k = 1.0250 | 0.9961 | 0.0009 | 0.0278 | |
75 | k = 1.2920 | 0.9989 | 0.0004 | 0.0180 | |
Page | 50 | k = 0.5854; n = 0.8494 | 0.9992 | 0.0001 | 0.0084 |
55 | k = 0.6901; n = 0.8143 | 0.9980 | 0.0002 | 0.0133 | |
60 | k = 0.6904; n = 0.8661 | 0.9983 | 0.0002 | 0.0127 | |
65 | k = 0.8978; n = 0.7331 | 0.9996 | 0.0001 | 0.0063 | |
70 | k = 1.1523; n = 0.6865 | 0.9998 | 0.0001 | 0.0047 | |
75 | k = 1.3681; n = 0.7399 | 0.9994 | 0.0001 | 0.0090 | |
Modified Page | 50 | k = 0.5324; n = 0.8494 | 0.9992 | 0.0001 | 0.0084 |
55 | k = 0.6341; n = 0.8143 | 0.9980 | 0.0002 | 0.0133 | |
60 | k = 0.6519; n = 0.8661 | 0.9983 | 0.0002 | 0.0127 | |
65 | k = 0.8633; n = 0.7331 | 0.9996 | 0.0001 | 0.0063 | |
70 | k = 1.2294; n = 0.6865 | 0.9998 | 0.0000 | 0.0047 | |
75 | k = 1.5274; n = 0.7399 | 0.9994 | 0.0001 | 0.0090 | |
Henderson and Pabis | 50 | a = 0.9817; k = 0.5002 | 0.9978 | 0.0004 | 0.0190 |
55 | a = 0.9846; k = 0.5897 | 0.9966 | 0.0007 | 0.0242 | |
60 | a = 0.9907; k = 0.6215 | 0.9978 | 0.0005 | 0.0192 | |
65 | a = 0.9835; k = 0.7568 | 0.9951 | 0.0011 | 0.0289 | |
70 | a = 0.9912; k = 1.0173 | 0.9961 | 0.0010 | 0.0274 | |
75 | a = 0.9976; k = 1.2897 | 0.9989 | 0.0004 | 0.0179 | |
Modified Henderson and Pabis | 50 | a = 0.0006; k = 0.0026; b = 0.6443; g = 0.7703; c = 0.3563; h = 0.2814 | 0.9998 | 0.0001 | 0.0044 |
55 | a = 0.0060; k = 0.0021; b = 0.8061; g = 0.8142; c = 0.1956; h = 0.2181 | 0.9996 | 0.0001 | 0.0080 | |
60 | a = 0.0267; k = 0.0022; b = 0.0238; g = 4.2794; c = 0.9496; h = 0.6675 | 0.9990 | 0.0002 | 0.0093 | |
65 | a = 0.0003; k = 0.0021; b = 0.3407; g = 0.3562; c = 0.6593; h = 1.3215 | 0.9999 | 0.0001 | 0.0023 | |
70 | a = 0.0019; k = 0.0020; b = 0.7209; g = 1.6571; c = 0.2772; h = 0.4242 | 0.9999 | 0.0001 | 0.0013 | |
75 | a = 0.0159; k = 0.0021; b = 0.6377; g = 1.8397; c = 0.3473; h = 0.8840 | 0.9999 | 0.0001 | 0.0036 | |
Midili | 50 | a = 1.0008; k = 0.5787; n = 0.8807; b = 0.0011 | 0.9994 | 0.0001 | 0.0070 |
55 | a = 0.9929; k = 0.6378; n = 0.9504; b = 0.0030 | 0.9982 | 0.0002 | 00123 | |
60 | a = 0.9978; k = 0.6635; n = 0.9615; b = 0.0027 | 0.9988 | 0.0002 | 0.0103 | |
65 | a = 1.0004; k = 0.8943; n = 0.7594; b = 0.0011 | 0.9997 | 0.0001 | 0.0056 | |
70 | a = 1.0001; k = 1.1489; n = 0.7230; b = 0.0015 | 0.9999 | 0.0001 | 0.0032 | |
75 | a = 1.0001; k = 1.3649; n = 0.8384; b = 0.0030 | 0.9998 | 0.0001 | 0.0050 | |
Logarithmic | 50 | a = 0.9652; k = 0.5522; b = 0.0276 | 0.9987 | 0.0001 | 0.0105 |
55 | a = 0.9621; k = 0.6677; b = 0.0345 | 0.9985 | 0.0002 | 0.0113 | |
60 | a = 0.9713; k = 0.6841; b = 0.0278 | 0.9990 | 0.0001 | 0.0094 | |
65 | a = 0.9552; k = 0.8727; b = 0.0387 | 0.9973 | 0.0004 | 0.0157 | |
70 | a = 0.9626; k = 1.1535; b = 0.0343 | 0.9980 | 0.0003 | 0.0140 | |
75 | a = 0.9757; k = 1.4042; b = 0.0239 | 0.9997 | 0.0001 | 0.0056 | |
Two-term | 50 | a = 0.3204; k1 = 0.2673; b = 0.6800; k2 = 0.7452 | 0.9998 | 0.0001 | 0.0043 |
55 | a = 0.1957; k1 = 0.2180; b = 0.8062; k2 = 0.8145 | 0.9996 | 0.0001 | 0.0056 | |
60 | a = 0.1455; k1 = 0.2194; b = 0.8568; k2 = 0.7801 | 0.9995 | 0.0001 | 0.0068 | |
65 | a = 0.3408; k1 = 0.3562; b = 0.6593; k2 = 1.3215 | 0.9999 | 0.0001 | 0.0023 | |
70 | a = 0.2667; k1 = 0.4049; b = 0.7333; k2 = 1.6353 | 0.9999 | 0.0001 | 0.0013 | |
75 | a = 0.0769; k1 = 0.2581; b = 0.9232; k2 = 1.5304 | 0.9999 | 0.0001 | 0.0020 | |
Two-termexponential | 50 | a = 0.3668; k = 1.0225 | 0.9994 | 0.0001 | 0.0074 |
55 | a = 0.3621; k = 1.2147 | 0.9984 | 0.0002 | 0.0135 | |
60 | a = 0.4161; k = 1.0962 | 0.9988 | 0.0001 | 0.0109 | |
65 | a = 0.3055; k = 1.8999 | 0.9985 | 0.0002 | 00154 | |
70 | a = 0.3227; k = 2.3944 | 0.9985 | 0.0003 | 0.0166 | |
75 | a = 0.3804; k = 2.5416 | 0.9993 | 0.0001 | 0.0120 |
Temperature, (°C) | Yield * | Lycopene * | β-Carotene * |
---|---|---|---|
50 | 4.80 ± 0.17 a | 95.56 ± 3.92 b | 96.22 ± 1.56 c |
55 | 4.84 ± 0.14 a | 88.94 ± 2.30 b | 90.70 ± 0.86 c |
60 | 4.33 ± 0.05 a | 73.39 ± 2.57 b | 80.89 ± 2.39 c |
65 | 4.37 ± 0.11 a | 60.87 ± 1.99 b | 71.59 ± 1.39 c |
70 | 3.48 ± 0.08 a | 40.42 ± 0.84 b | 54.32 ± 1.01 c |
75 | 3.84 ± 0.17 a | 31.16 ± 1.11 b | 47.33 ± 1.54 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, M.; Iancu, P.; Plesu, V.; Bildea, C.S.; Manolache, F.A. Mathematical Modeling of Thin-Layer Drying Kinetics of Tomato Peels: Influence of Drying Temperature on the Energy Requirements and Extracts Quality. Foods 2023, 12, 3883. https://doi.org/10.3390/foods12203883
Popescu M, Iancu P, Plesu V, Bildea CS, Manolache FA. Mathematical Modeling of Thin-Layer Drying Kinetics of Tomato Peels: Influence of Drying Temperature on the Energy Requirements and Extracts Quality. Foods. 2023; 12(20):3883. https://doi.org/10.3390/foods12203883
Chicago/Turabian StylePopescu, Mihaela, Petrica Iancu, Valentin Plesu, Costin Sorin Bildea, and Fulvia Ancuta Manolache. 2023. "Mathematical Modeling of Thin-Layer Drying Kinetics of Tomato Peels: Influence of Drying Temperature on the Energy Requirements and Extracts Quality" Foods 12, no. 20: 3883. https://doi.org/10.3390/foods12203883
APA StylePopescu, M., Iancu, P., Plesu, V., Bildea, C. S., & Manolache, F. A. (2023). Mathematical Modeling of Thin-Layer Drying Kinetics of Tomato Peels: Influence of Drying Temperature on the Energy Requirements and Extracts Quality. Foods, 12(20), 3883. https://doi.org/10.3390/foods12203883