Comparison of Efficacy of Fermented Garlic and Orlistat (Lipase Inhibitor) in Obesity Management Using an Experimental Rodent Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Fermented Garlic Powder
2.3. Animal Experiment
2.4. Experimental Design
2.5. Collection of Blood Samples
2.6. Blood Serum Lipid Profiles and Insulin
2.7. Blood Serum Liver Function Parameters
2.8. Serum IL-6 and C-Reactive Protein
2.9. Histopathology Slides
2.10. Statistical Analysis
3. Results
3.1. Body and Organ Weight
3.2. Serum Lipid Profile
3.3. Liver Function Parameters
3.4. Insulin
3.5. Serum IL6 and CPR
3.6. Histopathological Slides
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, B.; Sultana, R.; Greene, M.W.J.B. Adipose tissue and insulin resistance in obese. Biomed. Pharmacother. 2021, 137, 111315. [Google Scholar] [CrossRef]
- Al-Shehri, S.A. Efficacy of black garlic extract on anti-tumor and anti-oxidant activity enhancement in rats. Clin. Nutr. Open Sci. 2021, 36, 126–139. [Google Scholar] [CrossRef]
- Alsuhibani, A.; Alrasheed, M.; Gari, M.; Hincapie, A.L.; Guo, J.J. Descriptive analysis of reported adverse events associated with anti-obesity medications using FDA Adverse Event Reporting System (FAERS) databases 2013–2020. Int. J. Clin. Pharm. 2022, 44, 172–179. [Google Scholar] [CrossRef]
- Aydin, B.; Onbasi, K. Lipase inhibitor orlistat: An old but still effective weapon. Med. Sci. 2021, 10, 1406–1411. [Google Scholar] [CrossRef]
- Baker, J.S.; Supriya, R.; Dutheil, F.; Gao, Y. Obesity: Treatments, conceptualizations, and future directions for a growing problem. Biology 2022, 11, 160. [Google Scholar] [CrossRef]
- Bülbül, E.; Çağdaş, C.; Gözübüyük3, F. Chemical Burn Caused by Garlic. J. Contemp. Med. 2022, 11, 1–2. [Google Scholar] [CrossRef]
- Christoffersen, B.Ø.; Sanchez-Delgado, G.; John, L.M.; Ryan, D.H.; Raun, K.; Ravussin, E. Beyond appetite regulation: Targeting energy expenditure, fat oxidation, and lean mass preservation for sustainable weight loss. Obesity 2022, 30, 841–857. [Google Scholar] [CrossRef]
- Chung, S.Y.; Han, K.-H.; Bae, S.-H.; Han, S.H.; Lee, Y.K. Effects of the Fermented Black Garlic Extract on Lipid Metabolism and Hepatoprotection in Mice. Korean J. Food Nutr. 2020, 33, 17–26. [Google Scholar]
- da Silva, M.V.B.; dos Santos Barbosa, G.; da Rocha, A.C.; da Rocha, D.; da Silva, T.A.; da Silva, J.A.; Andrade, A.C.B.A.; Andrade, B.B.P.; Santos, F.A.d.C.d.; Longen Junior, J.L.; et al. Therapeutic potential of flavonoid-rich plants in the treatment of arterial hypertension and diabetes mellitus: Focus on antioxidant role. Res. Soc. Dev. 2022, 11, e52911831364. [Google Scholar] [CrossRef]
- Elsahoryi, N.; Al-Sayyed, H.; McGrattan, A.; Odeh, M.M.; Hammad, F.J. Using of licensed and unlicensed anti-obesity medications among the university students. Nutr. Food Process. 2021, 4, 043. [Google Scholar] [CrossRef]
- Fajrani, A.M.; Sulchan, M.; Muis, S.F.; Purnomo, H.D.; Djamiatun, K.; Karlowee, V.; Ardiaria, M. Effect of black garlic on visceral fat, oxidative stress and insulin resistance in nonalcoholic fatty liver disease rats. Nutr. Food Sci. 2021, 51, 1084–1095. [Google Scholar] [CrossRef]
- González-Ramírez, P.; Pascual-Mathey, L.; García-Rodríguez, R.; Jiménez, M.; Beristain, C.I.; Sanchez-Medina, A.; Pascual-Pineda, L.A. Effect of relative humidity on the metabolite profiles, antioxidant activity and sensory on black garlic processing. Food Biosci. 2022, 48, 101827. [Google Scholar] [CrossRef]
- Hoofnagle, J.H. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012.
- Guimaraes, V.H.D.; Lelis, D.d.F.; Oliveira, L.P.; Borém, L.M.; Guimaraes, F.A.; Farias, L.C.; de Paula, A.M.; Guimarães, A.L.; Santos, S.H. Comparative study of dietary fat: Lard and sugar as a better obesity and metabolic syndrome mice model. Arch. Physiol. Biochem. 2020, 129, 449–459. [Google Scholar] [CrossRef]
- Guo, Q.; Li, F.; Duan, Y.; Wen, C.; Wang, W.; Zhang, L.; Huang, R.; Yin, Y. Oxidative stress, nutritional antioxidants and beyond. Sci. China Life Sci. 2020, 63, 866–874. [Google Scholar] [CrossRef]
- Han, A.L.; Jeong, S.-J.; Ryu, M.-S.; Yang, H.J.; Jeong, D.Y.; Park, D.S.; Lee, H.K. Anti-Obesity Effects of Traditional and Commercial Kochujang in Overweight and Obese Adults: A Randomized Controlled Trial. Nutrients 2022, 14, 2783. [Google Scholar] [CrossRef]
- Jeong, D.; Priefer, R. Anti-obesity weight loss medications: Short-term and long-term use. Life Sci. 2022, 306, 120825. [Google Scholar] [CrossRef]
- Labanieh, L.; Majzner, R.G.; Klysz, D.; Sotillo, E.; Fisher, C.J.; Vilches-Moure, J.G.; Pacheco, K.Z.; Malipatlolla, M.; Xu, P.; Hui, J.H.; et al. Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell 2022, 185, 1745–1763.e22. [Google Scholar] [CrossRef]
- Li, J.; Duan, H.; Liu, Y.; Wang, L.; Zhou, X. Biomaterial-Based Therapeutic Strategies for Obesity and Its Comorbidities. Pharmaceutics 2022, 14, 1445. [Google Scholar] [CrossRef]
- Lishianawati, T.U.; Yusiati, L.M. Antioxidant effects of black garlic powder on spent duck meat nugget quality during storage. Food Sci. Technol. 2021, 42, e62220. [Google Scholar] [CrossRef]
- Nguyen, D.H.; El-Ramady, H.; Llanaj, X.; Törős, G.; Hajdú, P.; Prokisch, J. Chemical Composition and Health Attributes of Agri-Foods: A Scientific Overview on Black Foods. Sustainability 2023, 15, 3852. [Google Scholar] [CrossRef]
- Perez, G.S.; Cordeiro, G.D.; Santos, L.S.; Espírito-Santo, D.D.; Boaventura, G.T.; Barreto-Medeiros, J.M. Does a high-fat diet-induced obesity model brown adipose tissue thermogenesis? A systematic review. Arch. Med. Sci. AMS 2021, 17, 596. [Google Scholar] [CrossRef]
- Raheem, A.; Sultan, R.; Yasmeen, H. Epidemiology of Obesity in Asia: Challenges and Prevention. Adv. Life Sci. 2022, 9, 125–130. [Google Scholar]
- Saeed, M.W.; Gillani, S.W.; Mahmood, R.K.; Usman, M. Assessment of the antihyperlipidemic effect of garlic vs pitavastatin in patients with moderate hyperlipidemia: A metanalysis of Randomized controlled trials. Chiang Mai Univer. J. Nat. Sci. 2021, 20, e2021087. [Google Scholar] [CrossRef]
- Saif, S.; Hanif, M.A.; Rehman, R.; Riaz, M. Garlic. In Medicinal Plants of South Asia; Elsevier: Amsterdam, The Netherlands, 2020; pp. 301–315. [Google Scholar]
- Saryono; Proverawati, A. The potency of black garlic as anti-atherosclerotic: Mechanisms of action and the prospectively. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; p. 020027. [Google Scholar]
- Seo, Y.G. Side Effects Associated with Liraglutide Treatment for Obesity as Well as Diabetes. Obes. Metab. Syndr. 2021, 30, 12–19. [Google Scholar] [CrossRef]
- Sun, Y.E.; Wang, W. Changes in nutritional and bio-functional compounds and antioxidant capacity during black garlic processing. J. Food Sci. Technol. 2018, 55, 479–488. [Google Scholar] [CrossRef]
- Tahir, Z.; Saeed, F.; Nosheen, F.; Ahmed, A.; Anjum, F.M. Comparative study of nutritional properties and antioxidant activity of raw and fermented (black) garlic. Int. J. Food Prop. 2022, 25, 116–127. [Google Scholar] [CrossRef]
- Tak, Y.J.; Lee, S.Y. Anti-obesity drugs: Long-term efficacy and safety: An updated review. World J. Men’s Health 2021, 39, 208. [Google Scholar] [CrossRef]
- Tarantino, G.; Citro, V.; Cataldi, M. Findings from studies are congruent with obesity having a viral origin, but what about obesity-related NAFLD? Viruses 2021, 13, 1285. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Teng, X.; Guo, P.; Zuo, Y.; Zhao, H.; Wang, P.; Liang, H. Garlic oil alleviates high triglyceride levels in alcohol-exposed rats by inhibiting liver oxidative stress and regulating the intestinal barrier and intestinal flora. Food Sci. Nutr. 2022, 10, 2479–2495. [Google Scholar] [CrossRef]
- Wesling, M.; D’Souza, J.J. Diabetes: How to manage overweight and obesity in type 2 diabetes mellitus. Drugs Context 2022, 11, 2021-11-7. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Y.; Dou, Z.; Wu, T.; Liu, R.; Sui, W.; Jin, Y.; Zhang, M. Black garlic melanoidins prevent obesity, reduce serum LPS levels and modulate the gut microbiota composition in high-fat diet-induced obese C57BL/6J mice. Food Funct. 2020, 11, 9585–9598. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhou, X.; Dou, Z.; Wu, T.; Liu, R.; Sui, W.; Zhang, M. Different molecular weight black garlic melanoidins alleviate high fat diet induced circadian intestinal microbes dysbiosis. J. Agric. Food Chem. 2021, 69, 3069–3081. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Tang, D.; Cao, S.; Li, T.; Gao, H.; Ma, T.; Yao, T.; Li, J.; Chang, B. Effect of different exercise loads on testicular oxidative stress and reproductive function in obese male mice. Oxidative Med. Cell. Longev. 2020, 2020, 3071658. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, J.; Liu, Y.; Wu, Y.; Xu, Y.; Feng, J. Dietary Garlic Powder Alleviates Lipopolysaccharide-Induced Inflammatory Response and Oxidative Stress through Regulating the Immunity and Intestinal Barrier Function in Broilers. Animals 2022, 12, 2281. [Google Scholar] [CrossRef] [PubMed]
- Zorena, K.; Jachimowicz-Duda, O.; Ślęzak, D.; Robakowska, M.; Mrugacz, M. Adipokines and obesity. Potential link to metabolic disorders and chronic complications. Int. J. Mol. Sci. 2020, 21, 3570. [Google Scholar] [CrossRef] [PubMed]
Groups | 1st Week | 2nd Week | 3rd Week | 4th Week | 5th Week | 6th Week |
---|---|---|---|---|---|---|
G-I | 250.25 ± 2.12 3 | 258 ± 0.53 3 | 264.87 ± 1.89 3 | 274.12 ± 1.25 3 | 281.87 ± 0.99 3 | 291.62 ± 0.74 3 |
G-II | 250.37 ± 0.51 4 | 262.75 ± 0.16 4 | 275.75 ± 1.28 4 | 283.75 ± 1.00 4 | 296.12 ± 2.64 4 | 303.75 ± 2.12 4 |
G-III | 249.75 ± 1.98 1 | 252.87 ± 1.24 1 | 259.75 ± 1.03 1 | 266.87 ± 0.99 1 | 270.75 ± 0.88 1 | 276.75 ± 1.48 1 |
G-IV | 250.25 ± 2.12 2 | 255.5 ± 1.19 2 | 261 ± 0.75 2 | 269.37 ± 0.51 2 | 277.5 ± 0.92 2 | 282.75 ± 0.88 2 |
G-V | 249.62 ± 0.91 1 | 253.87 ± 0.83 1 | 258.12 ± 0.83 1 | 263.62 ± 0.74 1 | 269 ± 0.75 1 | 275.375 ± 0.91 1 |
Groups | Cholesterol (mg/dL) | Triglycerides (mg/dL) | LDL Cholesterol (mg/dL) | HDL Cholesterol (mg/dL) | Non-HDL Cholesterol (mg/dL) |
---|---|---|---|---|---|
G-I | 76 ± 1.06 1 | 92 ± 2.00 1 | 69.88 ± 1.45 1 | 25.13 ± 0.35 5 | 37.88 ± 1.80 1 |
G-II | 162.88 ± 1.88 5 | 152.5 ± 2.07 4 | 91.13 ± 1.24 5 | 17.25 ± 0.46 1 | 62 ± 1.92 5 |
G-III | 85.25 ± 1.03 4 | 97.75 ± 0.88 3 | 84.38 ± 0.51 4 | 19.5 ± 0.53 2 | 56 ± 0.01 4 |
G-IV | 80.75 ± 0.88 3 | 94.38 ± 0.51 2 | 81.75 ± 1.28 3 | 21.5 ± 0.53 3 | 53 ± 0.01 3 |
G-V | 77.63 ± 0.51 2 | 91.5 ± 0.53 1 | 76.5 ± 0.92 2 | 24 ± 0.01 4 | 48 ± 0.01 2 |
Groups | Bilirubin (mg/dL) | ALT (U/L) | AST (U/L) | Alkaline Phosphate (U/L) | Protein (g/dL) | Albumin (g/dL) | AG Ratio |
---|---|---|---|---|---|---|---|
G-I | 0.06 ± 0.01 1 | 35.5 ± 0.53 1 | 97.75 ± 0.70 1 | 198.88 ± 0.64 1 | 5.25 ± 0.5 1 | 3.03 ± 0.00 1 | 1.15 ± 0.00 2 |
G-II | 0.32 ± 0.08 2 | 61.88 ± 0.99 5 | 171.38 ± 0.74 5 | 284.5 ± 2.26 5 | 9.2 ± 0.15 5 | 5 ± 0.10 3 | 2.62 ± 0.07 3 |
G-III | 0.32 ± 0.41 2 | 46.75 ± 0.46 4 | 141 ± 0.75 4 | 229.38 ± 0.51 4 | 7.84 ± 0.05 4 | 4.0 ± 0.05 2 | 1.09 ± 0.00 1 |
G-IV | 0.07 ± 0.01 1 | 42.75 ± 0.46 3 | 138.62 ± 0.51 3 | 220.75 ± 0.88 3 | 7.46 ± 0.05 3 | 3.99 ± 0.10 2 | 1.079 ± 0.00 1 |
G-V | 0.59 ± 0.27 1 | 42 ± 0.01 2 | 127.13 ± 0.99 2 | 200 ± 0.53 2 | 6.41 ± 0.07 2 | 4.01 ± 0.05 2 | 1.059 ± 0.01 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javed, M.; Ahmed, W.; Khan, A.; Rabbani, I. Comparison of Efficacy of Fermented Garlic and Orlistat (Lipase Inhibitor) in Obesity Management Using an Experimental Rodent Model. Foods 2023, 12, 3905. https://doi.org/10.3390/foods12213905
Javed M, Ahmed W, Khan A, Rabbani I. Comparison of Efficacy of Fermented Garlic and Orlistat (Lipase Inhibitor) in Obesity Management Using an Experimental Rodent Model. Foods. 2023; 12(21):3905. https://doi.org/10.3390/foods12213905
Chicago/Turabian StyleJaved, Mavra, Waqas Ahmed, Azmatullah Khan, and Imtiaz Rabbani. 2023. "Comparison of Efficacy of Fermented Garlic and Orlistat (Lipase Inhibitor) in Obesity Management Using an Experimental Rodent Model" Foods 12, no. 21: 3905. https://doi.org/10.3390/foods12213905
APA StyleJaved, M., Ahmed, W., Khan, A., & Rabbani, I. (2023). Comparison of Efficacy of Fermented Garlic and Orlistat (Lipase Inhibitor) in Obesity Management Using an Experimental Rodent Model. Foods, 12(21), 3905. https://doi.org/10.3390/foods12213905