Application of Near-Infrared Spectroscopy and Fuzzy Improved Null Linear Discriminant Analysis for Rapid Discrimination of Milk Brands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. NIR Spectra Collection
2.3. NIR Spectra Preprocessing
2.4. Improved Null Linear Discriminant Analysis
- (1)
- Build matrices , , by the training data (containing n data points in );
- (2)
- Performing singular value decomposition on the matrix , , , , . ;
- (3)
- Construct the matrix ;
- (4)
- Perform the eigendecomposition of matrix . The matrix is constructed by the eigenvectors associated with the zero eigenvalues;
- (5)
- Define the matrix . Here, G is the feature projection matrix of iNLDA.
2.5. Fuzzy Improved Null Linear Discriminant Analysis
- (1)
- Build matrices , , by the training data (containing n data points in :
- (2)
- Performing singular value decomposition on the matrix , , ,. ;
- (3)
- Construct the matrix ;
- (4)
- Perform the eigendecomposition of matrix . The matrix is constructed by the eigenvectors associated with the zero eigenvalues;
- (5)
- Define the matrix . Here, G is the feature projection matrix of FiNLDA.
2.6. K-Nearest Neighbor
2.7. Software
3. Results
3.1. Dimensional Reduction by PCA
3.2. Discriminant Feature Extraction by LDA
3.3. Discriminant Feature Extraction by iNLDA
3.4. Discriminant Feature Extraction by FiNLDA
3.5. Classification Results
3.6. Classify Accuracy under Different Values of K
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalyankar, S.D.; Khedkar, C.; Patil, A.M.; Deosarkar, S.S. Milk: Sources and Composition. Encycl. Food Health 2016, 741–747. [Google Scholar] [CrossRef]
- Liu, Z.; Rochfort, S. Lipidomics in milk: Recent advances and developments. Curr. Opin. Food Sci. 2023, 51, 101016. [Google Scholar] [CrossRef]
- Medeiros, G.K.V.V.; Queiroga, R.C.R.E.; Costa, W.K.A.; Gadelha, C.A.A.; Lacerda, R.R.E.; Lacerda, J.T.; Pinto, L.S.; Braganhol, E.; Teixeira, F.C.; Barbosa, P.P.d.S.; et al. Proteomic of goat milk whey and its bacteriostatic and antitumour potential. Int. J. Biol. Macromol. 2018, 113, 116–123. [Google Scholar] [CrossRef]
- Kandhro, F.; Kazi, T.G.; Afridi, H.I.; Baig, J.A. Compare the nutritional status of essential minerals in milk of different cattle and humans: Estimated daily intake for children. J. Food Compos. Anal. 2022, 105, 104214. [Google Scholar] [CrossRef]
- Costa, A.; Lopez-Villalobos, N.; Sneddon, N.W.; Shalloo, L.; Franzoi, M.; De Marchi, M.; Penasa, M. Invited review: Milk lactose—Current status and future challenges in dairy cattle. J. Dairy Sci. 2019, 102, 5883–5898. [Google Scholar] [CrossRef]
- Claeys, W.L.; Verraes, C.; Cardoen, S.; De Block, J.; Huyghebaert, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control 2014, 42, 188–201. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Beaulieu, A.D.; Barbano, D.M. Feed and animal factors influencing milk fat composition. J. Dairy Sci. 1993, 76, 1753–1771. [Google Scholar] [CrossRef]
- Gulati, A.; Galvin, N.; Hennessy, D.; McAuliffe, S.; O’Donovan, M.; McManus, J.J.; Fenelon, M.A.; Guinee, T.P. Grazing of dairy cows on pasture versus indoor feeding on total mixed ration: Effects on low-moisture part-skim Mozzarella cheese yield and quality characteristics in mid and late lactation. J. Dairy Sci. 2018, 101, 8737–8756. [Google Scholar] [CrossRef]
- Goetsch, A.L.; Zeng, S.S.; Gipson, T.A. Factors affecting goat milk production and quality. Small Rumin. Res. 2011, 101, 55–63. [Google Scholar] [CrossRef]
- Hayes, E.; Wallace, D.; O’Donnell, C.; Greene, D.; Hennessy, D.; O’Shea, N.; Tobin, J.T.; Fenelon, M.A. Trend analysis and prediction of seasonal changes in milk composition from a pasture-based dairy research herd. J. Dairy Sci. 2023, 106, 2326–2337. [Google Scholar] [CrossRef]
- Schopen, G.C.B.; Heck, J.M.L.; Bovenhuis, H.; Visker, M.H.P.W.; van Valenberg, H.J.F.; van Arendonk, J.A.M. Genetic parameters for major milk proteins in Dutch Holstein-Friesians. J. Dairy Sci. 2009, 92, 1182–1191. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, M.; Mujumdar, A.S.; Wang, D. Non-destructive quality determination of frozen food using NIR spectroscopy-based machine learning and predictive modelling. J. Food Eng. 2023, 343, 111374. [Google Scholar] [CrossRef]
- Folli, G.S.; Santos, L.P.; Santos, F.D.; Cunha, P.H.P.; Schaffel, I.F.; Borghi, F.T.; Barros, I.H.A.S.; Pires, A.A.; Ribeiro, A.V.F.N.; Romão, W.; et al. Food analysis by portable NIR spectrometer. Food Chem. Adv. 2022, 1, 100074. [Google Scholar] [CrossRef]
- Alaoui Mansouri, M.; Ziemons, E.; Sacré, P.Y.; Kharbach, M.; Barra, I.; Cherrah, Y.; Hubert, P.; Marini, R.D.; Bouklouze, A. Classification of polymorphic forms of fluconazole in pharmaceuticals by FT-IR and FT-NIR spectroscopy. J. Pharmaceut. Biomed. 2021, 196, 113922. [Google Scholar] [CrossRef]
- Larrechi, M.S.; Callao, M.P. Strategy for introducing NIR spectroscopy and multivariate calibration techniques in industry. TrAC Trends Anal. Chem. 2003, 22, 634–640. [Google Scholar] [CrossRef]
- Blanco, M.; Coello, J.; Iturriaga, H.; Maspoch, S.; Rovira, E. Determination of water in ferrous lactate by near infrared reflectance spectroscopy with a fibre-optic probe. J. Pharmaceut. Biomed. 1997, 16, 255–262. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, T.; Wang, G.; Xu, J.; Ren, F.; Zhang, H. An ultrasensitive NIR-IIa’ fluorescence-based multiplex immunochromatographic strip test platform for antibiotic residues detection in milk samples. J. Adv. Res. 2022, 50, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Said, M.; Wahba, A.; Khalil, D. Semi-supervised deep learning framework for milk analysis using NIR spectrometers. Chemometr. Intell. Lab. 2022, 228, 104619. [Google Scholar] [CrossRef]
- Nagy, M.M.; Wang, S.; Farag, M.A. Quality analysis and authentication of nutraceuticals using near IR (NIR) spectroscopy: A comprehensive review of novel trends and applications. Trends Food Sci. Technol. 2022, 123, 290–309. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Z.; Wang, S.H.; Yue, M.H.; Zhang, S.S.; Peng, H.H.; Yin, X.; Du, J.; Ma, C.Y. Comparison of methods for water content in rice by portable near-infrared and visible light spectrometers. Spectrosc. Spectr. Anal. 2023, 43, 2059–2066. [Google Scholar]
- Chen, L.F.; Liao, H.Y.M.; Ko, M.T.; Lin, J.C.; Yu, G.J. A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recogn. 2000, 33, 1713–1726. [Google Scholar] [CrossRef]
- Ye, J.P.; Tao, X. Computational and theoretical analysis of null space and orthogonal linear discriminant analysis. J. Mach. Learn. Res. 2006, 7, 1183–1204. [Google Scholar]
- Shen, Y.; Wu, X.; Wu, B.; Tan, Y.; Liu, J. Qualitative analysis of lambda-cyhalothrin on Chinese cabbage using mid-infrared spectroscopy combined with fuzzy feature extraction algorithms. Agriculture 2021, 11, 275. [Google Scholar] [CrossRef]
- Fábián, G.; Generalized, S.G. Filter for smoothing triangular meshes. Comput. Aided Geom. Des. 2023, 100, 102167. [Google Scholar] [CrossRef]
- Schafer, R.W. What is a Savitzky-Golay Filter. IEEE Signal Proc. Mag. 2011, 28, 111–117. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, X.; Wu, B.; Dai, C.; Fu, H. Rapid authentication of the geographical origin of milk using portable near-infrared spectrometer and fuzzy uncorrelated discriminant transformation. J. Food Process Eng. 2022, 45, e14040. [Google Scholar] [CrossRef]
- Li, B.; Wei, Y.; Duan, H.; Xi, L.; Wu, X. Discrimination of the geographical origin of Codonopsis pilosula using near infrared diffuse reflection spectroscopy coupled with random forests and k-nearest neighbor methods. Vib. Spectrosc. 2012, 62, 17–22. [Google Scholar] [CrossRef]
- An, M.H.; Cao, C.M.; Wang, S.S.; Zhang, X.C.; Ding, W.Y. Non-destructive identification of moldy walnut based on NIR. J. Food Compos. Anal. 2023, 121, 105407. [Google Scholar] [CrossRef]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Plenum Press: New York, NY, USA, 1981. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Fang, Y.; Wu, B.; Liu, M. Application of Near-Infrared Spectroscopy and Fuzzy Improved Null Linear Discriminant Analysis for Rapid Discrimination of Milk Brands. Foods 2023, 12, 3929. https://doi.org/10.3390/foods12213929
Wu X, Fang Y, Wu B, Liu M. Application of Near-Infrared Spectroscopy and Fuzzy Improved Null Linear Discriminant Analysis for Rapid Discrimination of Milk Brands. Foods. 2023; 12(21):3929. https://doi.org/10.3390/foods12213929
Chicago/Turabian StyleWu, Xiaohong, Yiheng Fang, Bin Wu, and Man Liu. 2023. "Application of Near-Infrared Spectroscopy and Fuzzy Improved Null Linear Discriminant Analysis for Rapid Discrimination of Milk Brands" Foods 12, no. 21: 3929. https://doi.org/10.3390/foods12213929
APA StyleWu, X., Fang, Y., Wu, B., & Liu, M. (2023). Application of Near-Infrared Spectroscopy and Fuzzy Improved Null Linear Discriminant Analysis for Rapid Discrimination of Milk Brands. Foods, 12(21), 3929. https://doi.org/10.3390/foods12213929