Antioxidant Properties of Chokeberry Products—Assessment of the Composition of Juices and Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Total Anthocyanins
2.2.2. Total Flavonoids
2.2.3. Polyphenols
2.2.4. Ferric Ion Reducing Antioxidant Potential (FRAP)
2.2.5. Determinations of Minerals Content
2.2.6. Vitamin C
2.2.7. Comparison to Reference Intake Values
2.2.8. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hawkins, J.; Hires, C.; Baker, C.; Keenan, L.; Bush, M. Daily supplementation with Aronia melanocarpa (chokeberry) reduces blood pressure and cholesterol: A meta-analysis of controlled clinical trials. J. Diet. Suppl. 2020, 18, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, J.; Clark, C.; Varkaneh, H.K.; Lakiang, T.; Vasanthan, L.T.; Onyeche, V.; Mousavi, S.M.; Zhang, Y. The effect of Aronia consumption on lipid profile, blood pressure, and biomarkers of inflammation: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2019, 33, 1981–1990. [Google Scholar] [CrossRef] [PubMed]
- Olechno, E.; Puścion-Jakubik, A.; Zujko, M.E. Chokeberry (A. melanocarpa (Michx.) Elliott)—A Natural Product for Metabolic Disorders? Nutrients 2022, 14, 2688. [Google Scholar] [CrossRef] [PubMed]
- Sidor, A.; Gramza-Michałowska, A. Black Chokeberry Aronia melanocarpa L.—A Qualitative Composition, Phenolic Profile and Antioxidant Potential. Molecules 2019, 24, 3710. [Google Scholar] [CrossRef] [PubMed]
- King, E.S.; Bolling, B.W.; Kiritsakis, A.K.; Kiritsakis, K.A.; Tsitsipas, C.K. Composition, polyphenol bioavailability, and health benefits of aronia berry: A review. J. Food Bioact. 2020, 11, 13–30. [Google Scholar] [CrossRef]
- Nowak, D.; Gośliński, M.; Kłębukowska, L. Antioxidant and Antimicrobial Properties of Selected Fruit Juices. Plant Foods Hum. Nutr. 2022, 77, 427–435. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative Stress: Concept and Some Practical Aspects. Antioxidants 2020, 9, 852. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Trenka, M.; Nawirska-Olszańska, A.; Oziembłowski, M. Analysis of Selected Properties of Fruits of Black Chokeberry (Aronia melanocarpa L.) from Organic and Conventional Cultivation. Appl. Sci. 2020, 10, 9096. [Google Scholar] [CrossRef]
- Wilkes, K.; Howard, L.R.; Brownmiller, C.; Prior, R.L. Changes in Chokeberry (Aronia melanocarpa L.) Polyphenols during Juice Processing and Storage. J. Agric. Food Chem. 2014, 62, 4018–4025. [Google Scholar] [CrossRef]
- Oszmiański, J.; Lachowicz, S. Effect of the Production of Dried Fruits and Juice from Chokeberry (Aronia melanocarpa L.) on the Content and Antioxidative Activity of Bioactive Compounds. Molecules 2016, 21, 1098. [Google Scholar] [CrossRef]
- Bolling, B.W.; Taheri, R.; Pei, R.; Kranz, S.; Yu, M.; Durocher, S.N.; Brand, M.H. Harvest date affects aronia juice polyphenols, sugars, and antioxidant activity, but not anthocyanin stability. Food Chem. 2015, 187, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Zujko, M.E.; Witkowska, A.M. Antioxidant potential and polyphenol content of selected food. Int. J. Food Prop. 2011, 14, 300–308. [Google Scholar] [CrossRef]
- Polish Certified Reference Material for Multielement Trace Analysis. Tea Leaves (INCT-TL-1); Department of Analytical Chemistry, Institute of Nuclear Chemistry and Technology: Warsaw, Poland, 2002.
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–179. [Google Scholar]
- Kupina, S.; Fields, C.; Roman, M.C.; Brunelle, S.L. Determination of total phenolic content using the Folin-C Assay: Single-Laboratory Validation, First Action 2017.13. J. AOAC Int. 2018, 101, 1466–1472. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Klimczak, I.; Gliszczyńska-Świgło, A. Comparision of UPLC and HPLC methods for determination of vitamin C. Food Chem. 2015, 175, 100–105. [Google Scholar] [CrossRef]
- Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX%3A02011R1169-20180101 (accessed on 21 September 2023).
- Pavlović, A.N.; Brcanović, J.M.; Veljković, J.N.; Mitić, S.S.; Tošić, S.B.; Kalicanin, B.M.; Kostić, D.A.; Ðordevic, M.S.; Velimirovic, D.S. Characterization of commercially available products of aronia according to their metal content. Fruits 2015, 70, 385–393. [Google Scholar] [CrossRef]
- Cindrić, I.J.; Zeiner, M.; Mihajlov-Konanov, D.; Stingeder, G. Inorganic Macro- and Micronutrients in “Superberries” Black Chokeberries (Aronia melanocarpa) and Related Teas. Int. J. Environ. Res. Public Health 2017, 14, 539. [Google Scholar] [CrossRef] [PubMed]
- Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in Prevention and Therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Dudley, S.C., Jr. Magnesium, Oxidative Stress, Inflammation, and Cardiovascular Disease. Antioxidants 2020, 9, 907. [Google Scholar] [CrossRef]
- Nielsen, F.H. Magnesium deficiency and increased inflammation: Current perspectives. J. Inflamm. Res. 2018, 11, 25–34. [Google Scholar] [CrossRef]
- Torović, L.; Sazdanić, D.; Atanacković Krstonošić, M.; Mikulić, M.; Beara, I.; Cvejić, J. Compositional characteristics, health benefit and risk of commercial bilberry and black chokeberry juices. Food Biosci. 2023, 51, 102301. [Google Scholar] [CrossRef]
- Dehelean, A.; Magdas, D.A. Analysis of mineral and heavy metal content of some commercial fruit juices by inductively coupled plasma mass spectrometry. Sci. World J. 2013, 2013, 215423. [Google Scholar] [CrossRef]
- Harmankaya, M.; Gezgin, S.; Ozcan, M.M. Comparative evaluation of some macro- and micro-element and heavy metal contents in commercial fruit juices. Environ. Monit. Assess. 2012, 184, 5415–5420. [Google Scholar] [CrossRef]
- Li, L.; Yang, X. The Essential Element Manganese, Oxidative Stress, and Metabolic Diseases: Links and Interactions. Oxid. Med. Cell. Longev. 2018, 2018, 7580707. [Google Scholar] [CrossRef]
- Bresgen, N.; Eckl, P.M. Oxidative stress and the homeodynamics of iron metabolism. Biomolecules 2015, 5, 808–847. [Google Scholar] [CrossRef] [PubMed]
- Jomovaa, K.; Valkoa, M. Importance of Iron Chelation in Free Radical-Induced Oxidative Stress and Human Disease. Curr. Pharm. Des. 2011, 17, 3460–3473. [Google Scholar] [CrossRef] [PubMed]
- Brewer, G.J. Risks of copper and iron toxicity during aging in humans. Chem. Res. Toxicol. 2010, 23, 319–326. [Google Scholar] [CrossRef]
- Bost, M.; Houdart, S.; Oberli, M.; Kalonji, E.; Huneau, J.F.; Margaritis, I. Dietary copper and human health: Current evidence and unresolved issues. J. Trace Elem. Med. Biol. 2016, 35, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Wapnir, R.A. Copper absorption and bioavailability. Am. J. Clin. Nutr. 1998, 67, 1054S–1060S. [Google Scholar] [CrossRef] [PubMed]
- Stern, B.R. Essentiality and toxicity in copper health risk assessment: Overview, update and regulatory considerations. J. Toxicol. Environ. Health A 2010, 73, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Mehdi, Y.; Hornick, J.-L.; Istasse, L.; Dufrasne, I. Selenium in the Environment, Metabolism and Involvement in Body Functions. Molecules 2013, 18, 3292–3311. [Google Scholar] [CrossRef]
- Mojadadi, A.; Au, A.; Salah, W.; Witting, P.; Ahmad, G. Role for Selenium in Metabolic Homeostasis and Human Reproduction. Nutrients 2021, 13, 3256. [Google Scholar] [CrossRef]
- Tolić, M.T.; Jurčević, I.L.; Krbavčić, I.P.; Marković, K.; Vahčić, N. Phenolic Content, Antioxidant Capacity and Quality of Chokeberry (Aronia melanocarpa) Products. Food Technol. Biotechnol. 2015, 53, 171–179. [Google Scholar] [CrossRef]
- Błaszczak, W.; Amarowicz, R.; Górecki, A.R. Antioxidant capacity, phenolic composition and microbial stability of aronia juice subjected to high hydrostatic pressure processing. Innov. Food Sci. Emerg. Technol. 2017, 39, 141–147. [Google Scholar] [CrossRef]
- Soural, I.; Šnurkovič, P.; Bieniasz, M. l-Ascorbic acid content and antioxidant capacity in less-known fruit juices. Czech J. Food Sci. 2019, 37, 359–365. [Google Scholar] [CrossRef]
- Sadowska, K.; Andrzejewska, J.; Klóska, Ł. Influence of freezing, lyophilisation and air-drying on the total monomeric anthocyanins, vitamin C and antioxidant capacity of selected berriesnt. J. Food Sci. Technol. 2017, 52, 1246–1251. [Google Scholar] [CrossRef]
- Andrzejewska, J.; Sadowska, K.; Klóska, Ł.; Rogowski, L. The effect of plant age and harvest time on the content of chosen components and antioxidative potential of black chokeberry fruit. Acta Sci. Pol. Hortorum Cultus 2015, 14, 105–114. [Google Scholar]
- Denev, P.; Kratchanova, M.; Petrova, I.; Klisurova, D.; Georgiev, Y.; Ognyanov, M.; Yanakieva, I. Black Chokeberry (Aronia melanocarpa (Michx.) Elliot) Fruits and Functional Drinks Differ Significantly in Their Chemical Composition and Antioxidant Activity. J. Chem. 2018, 2018, 9574587. [Google Scholar] [CrossRef]
- Kapci, B.; Neradová, E.; Čížková, H.; Voldřich, M.; Rajchl, A.; Capanoglu, E. Investigating the antioxidant potential of chokeberry (Aronia melanocarpa) products. J. Food Nutr. Res. 2013, 52, 219–229. [Google Scholar]
- Ochmian, I.; Grajkowski, J.; Smolik, M. Comparison of Some Morphological Features, Quality and Chemical Content of Four Cultivars of Chokeberry Fruits (Aronia melanocarpa). Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 253–260. [Google Scholar] [CrossRef]
- Nowak, D.; Gośliński, M.; Wojtowicz, E.; Przygoński, K. Antioxidant Properties and Phenolic Compounds of Vitamin C-Rich Juices. J. Food Sci. 2018, 83, 2237–2246. [Google Scholar] [CrossRef] [PubMed]
- Zujko, M.E.; Witkowska, A.M. Antioxidant Potential and Polyphenol Content of Beverages, Chocolates, Nuts, and Seeds. Int. J. Food Prop. 2013, 17, 86–92. [Google Scholar] [CrossRef]
- Georgé, S.; Brat, P.; Alter, P.; Amiot, M.J. Rapid determination of polyphenols and vitamin C in plant-derived products. J. Agric. Food Chem. 2005, 53, 1370–1373. [Google Scholar] [CrossRef] [PubMed]
- Díaz-García, M.C.; Obón, J.M.; Castellar, M.R.; Collado, J.; Alacid, M. Quantification by UHPLC of total individual polyphenols in fruit juices. Food Chem. 2013, 138, 938–949. [Google Scholar] [CrossRef]
- Matute, A.; Tabart, J.; Cheramy-Bien, J.-P.; Kevers, C.; Dommes, J.; Defraigne, J.-O.; Pincemail, J. Ex Vivo Antioxidant Capacities of Fruit and Vegetable Juices. Potential In Vivo Extrapolation. Antioxidants 2021, 10, 770. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.; Gośliński, M.; Szwengiel, A. Multidimensional comparative analysis of phenolic compounds in organic juices with high antioxidant capacity. J. Sci. Food Agric. 2017, 97, 2657–2663. [Google Scholar] [CrossRef]
- Horszwald, A.; Julien, H.; Andlauer, W. Characterisation of Aronia powders obtained by different drying processes. Food Chem. 2013, 141, 2858–2863. [Google Scholar] [CrossRef] [PubMed]
- Konic Ristic, A.; Srdic-Rajic, T.; Kardum, N.; Glibetic, M. Biological activity of Aronia melanocarpa antioxidants pre-screening in an intervention study design. J. Serb. Chem. Soc. 2013, 78, 429–443. [Google Scholar] [CrossRef]
- Herbig, A.L.; Renard, C.M. Factors that impact the stability of vitamin C at intermediate temperatures in a food matrix. Food Chem. 2017, 220, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Catană, L.; Catană, M.; Iorga, E.; Asănică, A.C.; Lazăr, A.G.; Lazăr, M.A.; Belc, N. Vitamin C and Total Polyphenol Content and Antioxidant Capacity of Fresh and Processed Fruits of Aronia melanocarpa. Sci. Pap. Ser. B Hortic. 2017, LXI, 433–440. [Google Scholar]
- Njoku, P.; Ayuk, A.; Okoye, C. Temperature Effects on Vitamin C Content in Citrus Fruits. Pak. J. Nutr. 2011, 10, 1168–1169. [Google Scholar] [CrossRef]
Type of Chokeberry Juices | Mg (mg/kg) | Microelements | |||||
---|---|---|---|---|---|---|---|
Cu (mg/kg) | Fe (mg/kg) | Mn (mg/kg) | Se (µg/kg) | Zn (mg/kg) | |||
Conventional (n = 10) | Med. | 151.07 | 78.38 | 1.23 | 4.23 | 17.02 | 0.56 |
Q1–Q3 | 136.64–163.66 | 26.59–89.30 | 0.84–2.00 | 3.45–5.15 | 11.64–21.64 | 0.49–0.69 | |
Av. ± SD | 150.80 ± 26.85 | 72.81 ± 47.22 | 1.40 ± 0.78 | 4.03 ± 1.54 | 18.60 ± 8.65 | 0.57 ± 0.12 | |
Min-Max | 108.65–193.12 | 16.63–169.41 | 0.31–2.82 | 1.40–5.82 | 8.75–38.73 | 0.33–0.70 | |
Organic (n = 15) | Med. | 152.84 | 61.01 | 0.92 | 3.63 | 15.62 | 0.60 |
Q1–Q3 | 135.98–199.78 | 30.74–105.92 | 0.57–1.19 | 2.44–4.28 | 11.48–26.86 | 0.51–0.77 | |
Av. ± SD | 160.63 ± 37.43 | 88.09 ± 83.22 | 1.19 ± 1.20 | 3.51 ± 1.42 | 17.91 ± 10.02 | 0.66 ± 0.21 | |
Min–Max | 105.18–227.21 | 14.95–317.70 | 0.31–5.24 | 1.36–6.49 | <dl-40.84 | 0.41–1.15 | |
NFC (n = 20) | Med. | 148.40 | 63.32 | 0.98 | 3.70 | 18.66 | 0.62 |
Q1–Q3 | 134.61–179.43 | 28.66–101.59 | 0.57–1.29 | 2.39–4.94 | 12.66–25.68 | 0.52–0.73 | |
Av. ± SD | 155.79 ± 36.77 | 84.86 ± 76.91 | 1.25 ± 1.14 | 3.66 ± 1.63 | 19.23 ± 10.04 | 0.64 ± 0.19 | |
Min–Max | 105.18–227.21 | 14.95–317.70 | 0.31–5.24 | 1.36–6.49 | <dl-40.84 | 0.33–1.15 | |
FC (n = 5) | Med. | 158.12 | 80.47 | 1.39 | 3.89 | 15.62 | 0.49 |
Q1–Q3 | 155.43–161.68 | 51.22–89.88 | 0.92–1.70 | 3.81–4.21 | 11.64–15.78 | 0.49–0.69 | |
Av. ± SD | 160.33 ± 15.04 | 70.47 ± 36.01 | 1.37 ± 0.50 | 3.92 ± 0.33 | 14.00 ± 3.78 | 0.54 ± 0.09 | |
Min–Max | 142.50–183.92 | 19.07–111.07 | 0.83–2.00 | 3.45–4.25 | 8.75–18.26 | 0.48–0.69 | |
Total (n = 25) | Med. | 152.84 | 65.64 | 1.04 | 3.81 | 15.78 | 0.59 |
Q1–Q3 | 136.64–165.74 | 30.74–97.25 | 0.71–1.39 | 2.56–4.52 | 11.64–21.47 | 0.49–0.70 | |
Av. ± SD | 156.70 ± 33.34 | 81.98 ± 70.24 | 1.28 ± 1.04 | 3.72 ± 1.46 | 18.19 ± 9.31 | 0.62 ± 0.18 | |
Min–Max | 105.18–227.21 | 14.95–317.70 | 0.31–5.24 | 1.36–6.49 | <dl-40.84 | 0.33–1.15 |
Type of Chokeberry Juices | Total Anthocyanins (mg Cy-3-GL/kg) | Total Flavonoids (mg QE/kg) | FRAP (mmol/kg) | TPC (mg GAE/kg) | Vitamin C (mg/kg) | |
---|---|---|---|---|---|---|
Conventional (n = 10) | Med. | 193.95 | 571.15 | 65.25 * | 3718.00 | 120.17 |
Q1–Q3 | 179.40–213.20 | 537.90–629.60 | 56.81–68.25 | 3516.00–3956.00 | 98.06–167.00 | |
Av. ± SD | 196.01 ± 26.84 | 585.65 ± 68.18 | 64.37 ± 13.38 | 3752.20 ± 366.25 | 128.49 ± 40.61 | |
Min-Max | 156.70–248.70 | 507.90–726.90 | 41.79–85.66 | 3285.00–4633.00 | 72.51–187.32 | |
Organic (n = 15) | Med. | 214.40 | 646.30 | 75.56 * | 3918.00 | 136.78 |
Q1–Q3 | 183.40–239.20 | 540.00–717.70 | 71.98–84.30 | 3783.00–4154.00 | 106.30–174.69 | |
Av. ± SD | 214.08 ± 37.81 | 640.91 ± 123.54 | 78.47 ± 10.84 | 3969.13 ± 313.39 | 143.96 ± 54.04 | |
Min–Max | 171.20–297.20 | 511.50–947.90 | 56.14–97.41 | 3375.00–4566.00 | 66.74–276.32 | |
NFC (n = 20) | Med. | 213.80 * | 637.95 * | 75.12 * | 3937.00 * | 134.72 |
Q1–Q3 | 186.10–236.15 | 552.40–693.45 | 71.48–84.18 | 3782.50–4123.00 | 101.76–175.51 | |
Av. ± SD | 213.40 ± 35.50 | 638.69 ± 110.58 | 77.79 ± 9.79 | 3986.10 ± 305.31 | 140.73 ± 51.81 | |
Min–Max | 156.70–297.20 | 511.50–947.90 | 64.25–97.41 | 3516.00–4633.00 | 66.74–276.32 | |
FC (n = 5) | Med. | 181.20 * | 540.00 * | 56.14 * | 3375.00 * | 127.45 |
Q1–Q3 | 179.40–183.40 | 537.90–540.20 | 53.06–56.81 | 3332.00–3607.00 | 112.89–149.97 | |
Av. ± SD | 180.68 ± 7.54 | 539.28 ± 22.12 | 52.98 ± 6.46 | 3467.40 ± 195.48 | 125.96 ± 36.37 | |
Min–Max | 169.30–190.10 | 507.90–570.40 | 41.79–57.12 | 3285.00–3738.00 | 72.51–167.00 | |
Total (n = 25) | Med. | 197.80 | 572.10 | 71.98 | 3829.00 | 132.66 |
Q1–Q3 | 181.20–227.90 | 540.00–661.50 | 66.24–82.35 | 3698.00–3975.00 | 105.47–167.55 | |
Av. ± SD | 206.85 ± 34.43 | 618.80 ± 106.82 | 72.83 ± 13.62 | 3882.36 ± 353.56 | 137.77 ± 48.80 | |
Min–Max | 156.70–297.20 | 507.90–947.90 | 41.79–97.41 | 3285.00–4633.00 | 66.74–276.32 |
Type of Chokeberry Fiber | Mg (mg/kg) | Microelements | |||||
---|---|---|---|---|---|---|---|
Cu (mg/kg) | Fe (mg/kg) | Mn (mg/kg) | Se (µg/kg) | Zn (mg/kg) | |||
Conventional (n = 3) | Med. | 1038.42 | 7.08 | 280.10 | 37.64 | 57.36 | 0.56 |
Q1–Q3 | 826.83–1250.00 | 5.97–8.19 | 112.23–447.96 | 34.62–40.67 | 50.01–495.02 | 0.49–0.69 | |
Min–Max | 826.83–1250.00 | 5.97–8.19 | 112.23–447.96 | 34.62–40.66 | 50.01–495.02 | 0.33–0.70 | |
Av. ± SD | 1038.42 ± 211.59 | 7.08 ± 1.11 | 280.10 ± 167.87 | 37.638 ± 3.02 | 200,794 ± 254.83 | 0.57 ± 0.12 | |
Organic (n = 3) | Med. | 990.88 | 5.94 | 287.58 | 31.68 | 64.70 | 0.60 |
Q1–Q3 | 971.70–1431.00 | 3.68–6.38 | 60.31–359.11 | 31.68–38.61 | 32.76–212.91 | 0.51–0.77 | |
Min-Max | 971.70–1431.00 | 3.68–6.38 | 60.31–359.11 | 31.68–38.61 | 32.76–212.91 | 0.41–1.15 | |
Av. ± SD | 1131.19 ± 259.82 | 5.33 ± 1.44 | 235.67 ± 156.01 | 33.99 ± 4.00 | 103.46 ± 96.13 | 0.66 ± 0.21 | |
Total (n = 6) | Med. | 1014.65 | 6.17 | 283.84 | 36.13 | 61.03 | 17.13 |
Q1–Q3 | 971.70–1250.00 | 3.68–8.19 | 112.23–359.11 | 31.68–38.61 | 50.01–212.91 | 12.08–24.64 | |
Min–Max | 826.83–1431.00 | 3.68–8.19 | 60.31–447.96 | 31.68–40.66 | 32.75–495.02 | 9.37–84.62 | |
Av. ± SD | 1084.80 ± 217.92 | 6.205 ± 1.50 | 257.88 ± 146.97 | 35.81 ± 3.75 | 152.13 ± 180.32 | 0.62 ± 0.18 |
Type of Chokeberry Fiber | Total Anthocyanins (mg Cy-3-GL/kg) | Total Flavonoids (mg QE/kg) | FRAP (mmol/kg) | TPC (mg GAE/kg) | Vitamin C (mg/kg) | |
---|---|---|---|---|---|---|
Conventional (n = 3) | Med. | 20.12 | 46.60 | 4.47 | 715.00 | 39.14 |
Q1–Q3 | 15.59–24.65 | 40.60–52.60 | 4.35–4.59 | 688.00–742.00 | 37.90–40.38 | |
Min–Max | 15.59–24.65 | 40.60–52.60 | 4.35–4.59 | 688.00–742.00 | 37.90–40.38 | |
Av. ± SD | 20.12 ± 4.53 | 46.60 ± 6.00 | 4.47 ± 0.12 | 715.00 ± 27.00 | 39.14 ± 1.24 | |
Organic (n = 3) | Med. | 26.11 | 58.90 | 6.34 | 774.00 | 55.21 |
Q1–Q3 | 17.51–28.36 | 57.90–63.70 | 5.62–6.51 | 765.00–785.00 | 48.20–56.03 | |
Min–Max | 17.51–28.36 | 57.90–63.70 | 5.62–6.51 | 765.00–785.00 | 48.20–56.03 | |
Av. ± SD | 24.00 ± 5.73 | 60.17 ± 3.10 | 6.16 ± 0.47 | 774.67 ± 10.02 | 53.15 ± 4.30 | |
Total (n = 6) | Med. | 22.39 | 55.25 | 5.11 | 753.50 | 44.29 |
Q1–Q3 | 17.51–26.11 | 46.60–58.90 | 4.47–6.34 | 715.00–774.00 | 39.14–55.21 | |
Min–Max | 15.59–28.36 | 40.60–53.70 | 4.35–6.51 | 688.00–785.00 | 37.90–56.03 | |
Av. ± SD | 22.06 ± 5.08 | 53.38 ± 8.57 | 5.31 ± 0.97 | 477.83 ± 37.41 | 46.14 ± 8.18 |
Percent of Reference Intake Value (%, Minimum—Maximum) | |||||||
---|---|---|---|---|---|---|---|
Type of Product | Cu | Fe | Mn | Mg | Se | Zn | Vitamin C |
Conventional Juices | 166.3–1694.1 | 0.2–2.0 | 7.0–29.1 | 2.9–5.1 | 1.6–7.0 | 0.3–0.7 | 9.1–23.4 |
Organic Juices | 149.5–3177.0 | 0.2–3.7 | 6.8–32.4 | 2.8–6.1 | 0–7.4 | 0.4–1.2 | 8.3–34.5 |
NFC Juices | 149.5–3177.0 | 0.2–3.7 | 6.8–32.4 | 2.8–6.1 | 0–7.4 | 0.3–1.2 | 8.3–34.5 |
FC Juices | 190.7–1116.9 | 0.6–1.4 | 17.2–21.3 | 3.8–4.9 | 1.6–3.3 | 0.5–0.7 | 9.1–20.9 |
Juices (Total) | 149.5–3177.0 | 0.2–3.7 | 6.8–32.4 | 2.8–6.1 | 0.0–7.4 | 0.3–1.2 | 8.3–34.5 |
Conventional Fibers | 6.0–8.2 | 8.0–32.0 | 17.3–20.3 | 2.2–3.3 | 0.9–9.0 | 0.9–2.5 | 0.5 |
Organic Fibers | 3.7–6.4 | 4.3–25.7 | 15.8–19.3 | 2.6–3.8 | 0.6–3.9 | 1.2–8.5 | 0.6–0.7 |
Fibers (Total) | 3.7–8.2 | 4.3–32.0 | 15.8–20.3 | 2.2–3.8 | 0.6–9.0 | 0.9–8.5 | 0.5–0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olechno, E.; Puścion-Jakubik, A.; Soroczyńska, J.; Socha, K.; Cyuńczyk, M.; Zujko, M.E. Antioxidant Properties of Chokeberry Products—Assessment of the Composition of Juices and Fibers. Foods 2023, 12, 4029. https://doi.org/10.3390/foods12214029
Olechno E, Puścion-Jakubik A, Soroczyńska J, Socha K, Cyuńczyk M, Zujko ME. Antioxidant Properties of Chokeberry Products—Assessment of the Composition of Juices and Fibers. Foods. 2023; 12(21):4029. https://doi.org/10.3390/foods12214029
Chicago/Turabian StyleOlechno, Ewa, Anna Puścion-Jakubik, Jolanta Soroczyńska, Katarzyna Socha, Monika Cyuńczyk, and Małgorzata Elżbieta Zujko. 2023. "Antioxidant Properties of Chokeberry Products—Assessment of the Composition of Juices and Fibers" Foods 12, no. 21: 4029. https://doi.org/10.3390/foods12214029
APA StyleOlechno, E., Puścion-Jakubik, A., Soroczyńska, J., Socha, K., Cyuńczyk, M., & Zujko, M. E. (2023). Antioxidant Properties of Chokeberry Products—Assessment of the Composition of Juices and Fibers. Foods, 12(21), 4029. https://doi.org/10.3390/foods12214029