Effects of Metabolites, Sex, Sire, and Muscle Type on Chilled Lamb Meat Colour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Design
2.2. Effect of Metabolites on Metmyoglobin Reductase Activity and Colour Stability of Lamb Meat
2.2.1. Metmyoglobin Extraction and Reductase Activity
Chemicals
Extraction of Metmyoglobin Substrate
Metmyoglobin Reductase Activity Assay
2.2.2. Colour stability of Lamb Meat Treated with Four Metabolites
Colour Change Measured with a Chroma Meter
Change in Spectral Reflectance
2.3. Effect of Sexes and Sires on the Colour Stability of Lamb Meat from Different Muscles
2.3.1. Metmyoglobin Reductase Activity of Lamb Meat from Different Sexes
2.3.2. Surface Colour Stability of Lamb from the Loin and Leg Muscles
2.3.3. Surface Colour Stability of Lamb Chops from Different Sexes and Sires
2.4. Statistical Analysis
3. Results
3.1. Metmyoglobin Reductase Activity
3.1.1. Effect of the Four Metabolites
3.1.2. Effect of Sex
3.2. Effects of Metabolites on Colour Stability of Lamb Meat
3.3. Changes in the Surface Colour of Lamb Meat during Retail Display
3.3.1. Effect of Muscles (Loin vs. Chop) on the Instrumental Colour of Male and Female Lamb Meat
3.3.2. Effect of Muscles on the Instrumental Colour of Lamb Leg Chops from Different Sexes and Colour Liable or Stable Sires
3.3.3. Effect of Sexes and Sires on the Instrumental Colour of Lamb Leg Chops
4. Discussion
5. Conclusions
6. Implications
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khliji, S.; Van de Ven, R.; Lamb, T.; Lanza, M.; Hopkins, D. Relationship between consumer ranking of lamb colour and objective measures of colour. Meat Sci. 2010, 85, 224–229. [Google Scholar] [CrossRef]
- Holman, B.W.B.; van de Ven, R.J.; Mao, Y.; Coombs, C.E.O.; Hopkins, D.L. Using instrumental (CIE and reflectance) measures to predict consumers’ acceptance of beef colour. Meat Sci. 2017, 127, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Grebitus, C.; Jensen, H.H.; Roosen, J.; Sebranek, J.G. Fresh meat packaging: Consumer acceptance of modified atmosphere packaging including carbon monoxide. J. Food Prot. 2013, 76, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Ponnampalam, E.N.; Hopkins, D.L.; Bruce, H.; Li, D.; Baldi, G.; Bekhit, A.E.d. Causes and contributing factors to “dark cutting” meat: Current trends and future directions: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 400–430. [Google Scholar] [CrossRef]
- Ramanathan, R.; Lambert, L.H.; Nair, M.N.; Morgan, B.; Feuz, R.; Mafi, G.; Pfeiffer, M. Economic loss, amount of beef discarded, natural resources wastage, and environmental impact due to beef discoloration. Meat Muscle Biol. 2022, 6, 13218. [Google Scholar] [CrossRef]
- Hopkins, D.; Mortimer, S. Effect of genotype, gender and age on sheep meat quality and a case study illustrating integration of knowledge. Meat Sci. 2014, 98, 544–555. [Google Scholar] [CrossRef]
- Warner, R.; Kearney, G.; Hopkins, D.; Jacob, R. Retail colour stability of lamb meat is influenced by breed type, muscle, packaging and iron concentration. Meat Sci. 2017, 129, 28–37. [Google Scholar] [CrossRef]
- Gao, X.; Xie, L.; Wang, Z.; Li, X.; Luo, H.; Ma, C.; Dai, R. Effect of postmortem time on the metmyoglobin reductase activity, oxygen consumption, and colour stability of different lamb muscles. Eur. Food Res. Technol. 2013, 236, 579–587. [Google Scholar] [CrossRef]
- Ramanathan, R.; Hunt, M.C.; Mancini, R.A.; Nair, M.N.; Denzer, M.L.; Suman, S.P.; Mafi, G.G. Recent updates in meat color research: Integrating traditional and high-throughput approaches. Meat Muscle Biol. 2020, 4, 7. [Google Scholar] [CrossRef]
- Mortimer, S.; Van der Werf, J.; Jacob, R.H.; Hopkins, D.; Pannier, L.; Pearce, K.; Gardner, G.; Warner, R.D.; Geesink, G.; Edwards, J.H. Genetic parameters for meat quality traits of Australian lamb meat. Meat Sci. 2014, 96, 1016–1024. [Google Scholar] [CrossRef]
- Kwan, S.Y. Identification of the Metabolites Responsible for Colour Stability from Different Lamb Sires and Elucidation of the Underlying Biochemical Pathways. Ph.D. Thesis, Lincoln University, Lincoln, New Zealand, 2021. [Google Scholar]
- Subbaraj, A.K.; Kim, B.Y.H.; Fraser, K.; Farouk, M.M. A hydrophilic interaction liquid chromatography–mass spectrometry (HILIC–MS) based metabolomics study on colour stability of ovine meat. Meat Sci. 2016, 117, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, L.M.; Smolenski, G.; Boggs, I.; Choe, J.; Farouk, M.M.; Brad Kim, Y.H. Metabolomic and proteomic characterisation of aged and packaged lamb loins with different colour stability. J. Food Compos. Anal. 2022, 111, 104639. [Google Scholar] [CrossRef]
- Beef + Lamb New Zealand. The New Zealand Meat Specifications Guide. Available online: https://static1.squarespace.com/static/5afa23cc50a54ff627bbcea9/t/5bbd184b71c10b0fa9c00d5e/1539119231151/The+New+Zealand+Meat+Specifications+Guide.pdf (accessed on 26 October 2023).
- Mikkelsen, A.; Juncher, D.; Skibsted, L.H. Metmyoglobin reductase activity in porcine m. longissimus dorsi muscle. Meat Sci. 1999, 51, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Andersen, H.J.; Skibsted, L.H. Kinetics and mechanism of thermal oxidation and photooxidation of nitrosylmyoglobin in aqueous solution. J. Agric. Food Chem. 1992, 40, 1741–1750. [Google Scholar] [CrossRef]
- McKenna, D.R.; Mies, P.D.; Baird, B.E.; Pfeiffer, K.D.; Ellebracht, J.W.; Savell, J.W. Biochemical and physical factors affecting discoloration characteristics of 19 bovine muscles. Meat Sci. 2005, 70, 665–682. [Google Scholar] [CrossRef]
- Hunt, M.; Sørheim, O.; Slinde, E. Color and heat denaturation of myoglobin forms in ground beef. J. Food Sci. 1999, 64, 847–851. [Google Scholar] [CrossRef]
- King, D.; Shackelford, S.; Rodriguez, A.; Wheeler, T. Effect of time of measurement on the relationship between metmyoglobin reducing activity and oxygen consumption to instrumental measures of beef longissimus color stability. Meat Sci. 2011, 87, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Brito, L.F.; McEwan, J.C.; Miller, S.; Bain, W.; Lee, M.; Dodds, K.; Newman, S.-A.; Pickering, N.; Schenkel, F.S.; Clarke, S. Genetic parameters for various growth, carcass and meat quality traits in a New Zealand sheep population. Small Rumin. Res. 2017, 154, 81–91. [Google Scholar] [CrossRef]
- Purslow, P.P.; Warner, R.D.; Clarke, F.M.; Hughes, J.M. Variations in meat colour due to factors other than myoglobin chemistry; a synthesis of recent findings (invited review). Meat Sci. 2020, 159, 107941. [Google Scholar] [CrossRef]
- Bekhit, A.; Faustman, C. Metmyoglobin reducing activity. Meat Sci. 2005, 71, 407–439. [Google Scholar] [CrossRef]
- Bekhit, A.; Geesink, G.; Morton, J.; Bickerstaffe, R. Metmyoglobin reducing activity and colour stability of ovine longissimus muscle. Meat Sci. 2001, 57, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Botman, D.; Tigchelaar, W.; Van Noorden, C.J. Determination of glutamate dehydrogenase activity and its kinetics in mouse tissues using metabolic mapping (quantitative enzyme histochemistry). J. Histochem. Cytochem. 2014, 62, 802–812. [Google Scholar] [CrossRef] [PubMed]
- Maejima, Y.; Zablocki, D.; Sadoshima, J. Chapter 23–Oxidative stress and cardiac muscle. In Muscle; Hill, J.A., Olson, E.N., Eds.; Academic Press: Boston/Waltham, MA, USA, 2012; pp. 309–322. [Google Scholar]
- Russell, D.W.; Wilson, J.D. Steroid 5α-reductase: Two genes/two enzymes. Annu. Rev. Biochem. 1994, 63, 25–61. [Google Scholar] [CrossRef]
- Craigie, C.; Lambe, N.; Richardson, R.; Haresign, W.; Maltin, C.; Rehfeldt, C.; Roehe, R.; Morris, S.; Bunger, L. The effect of sex on some carcass and meat quality traits in Texel ewe and ram lambs. Anim. Prod. Sci. 2012, 52, 601–607. [Google Scholar] [CrossRef]
- de Araújo, T.L.; Pereira, E.S.; Mizubuti, I.Y.; Campos, A.C.; Pereira, M.W.; Heinzen, E.L.; Magalhães, H.C.; Bezerra, L.R.; da Silva, L.P.; Oliveira, R.L. Effects of quantitative feed restriction and sex on carcass traits, meat quality and meat lipid profile of Morada Nova lambs. J. Anim. Sci. Biotechnol. 2017, 8, 46. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Chawla, P.; Samarakoon, C.; Farouk, M.M. Effects of sex, sire and in-bag dry-ageing on the physicochemical and microbial properties, colour and fatty acids stability of lamb. Food Chem. 2023, 403, 134356. [Google Scholar] [CrossRef]
- Ithurralde, J.; Bianchi, G.; Feed, O.; Nan, F.; Garibotto, G.; Bielli, A. Histochemical fiber types in 16 heavy-lamb skeletal muscles. Small Rumin. Res. 2015, 125, 88–92. [Google Scholar] [CrossRef]
- Tschirhart-Hoelscher, T.; Baird, B.; King, D.; McKenna, D.; Savell, J. Physical, chemical, and histological characteristics of 18 lamb muscles. Meat Sci. 2006, 73, 48–54. [Google Scholar] [CrossRef]
- Greenwood, P.; Gardner, G.E.; Hegarty, R. Lamb myofibre characteristics are influenced by sire estimated breeding values and pastoral nutritional system. Aust. J. Agric. Res. 2006, 57, 627–639. [Google Scholar] [CrossRef]
- Johnston, D.; Moody, W.; Boling, J.; Bradley, N. Influence of breed type, sex, feeding systems, and muscle bundle size on bovine fiber type characteristics. J. Food Sci. 1981, 46, 1760–1765. [Google Scholar] [CrossRef]
- Teixeira, A.; Batista, S.; Delfa, R.; Cadavez, V. Lamb meat quality of two breeds with protected origin designation. Influence of breed, sex and live weight. Meat Sci. 2005, 71, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, L.; Kroucamp, M.; Manley, M. Meat quality characteristics of springbok (Antidorcas marsupialis). 1: Physical meat attributes as influenced by age, gender and production region. Meat Sci. 2007, 76, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.; Purchas, R.; McEwan, J.; Blair, H. Carcass composition and meat quality differences between pasture-reared ewe and ram lambs. Meat Sci. 2005, 71, 383–391. [Google Scholar] [CrossRef]
- Stempa, T.; Muchenje, V.; Abrahams, A.; Bradley, G. Sex and breed affect plasma glucose, lactate, cortisol, meat quality but not muscle glycolytic potential of Dorper and Merino lambs. Anim. Prod. Sci. 2016, 58, 958–964. [Google Scholar] [CrossRef]
- Schreurs, N.M.; Garcia, F.; Jurie, C.; Agabriel, J.; Micol, D.; Bauchart, D.; Listrat, A.; Picard, B. Meta-analysis of the effect of animal maturity on muscle characteristics in different muscles, breeds, and sexes of cattle. J. Anim. Sci. 2008, 86, 2872–2887. [Google Scholar] [CrossRef] [PubMed]
- Rehfeldt, C.; Fiedler, I.; Stickland, N.C. Number and size of muscle fibres in relation to meat production. In Muscle Development of Livestock Animals: Physiology, Genetics and Meat Quality; CABI Publishing: Cambridge, MA, USA, 2004; pp. 1–38. [Google Scholar]
K4Fe(CN)6 | EDTA | MetMb(III) | MetMb Extract | NADH | Glutamate | Methionine | Testosterone | Activity (nmol·min−1·g−1) |
---|---|---|---|---|---|---|---|---|
+ | + | + | + | 0 | ||||
+ | + | + | + | + | −2.0 | |||
+ | + | + | + | + | 6.2 | |||
+ | + | + | + | + | −1.8 | |||
+ | + | + | + | + | 337.8 | |||
+ | + | + | + | + | + | 368.5 | ||
+ | + | + | + | + | + | 317.3 | ||
+ | + | + | + | + | + | 133.4 |
# (K/S)572/(K/S)525 | |||||
---|---|---|---|---|---|
Display Day | 0 d | 1 d | 2 d | 4 d | 7 d |
Control | 1.735 ± 0.067 ab | 1.518 ± 0.078 | 1.355 ± 0.077 a | 1.173 ± 0.077 a | 1.002 ± 0.118 a |
Glutamate | 1.763 ± 0.093 a | 1.520 ± 0.073 | 1.340 ± 0.074 ab | 1.134 ± 0.083 b | 0.955 ± 0.154 b |
Methionine | 1.731 ± 0.063 ab | 1.502 ± 0.068 | 1.320 ± 0.066 ab | 1.121 ± 0.080 b | 0.935 ± 0.114 b |
NADH | 1.762 ± 0.137 a | 1.517 ± 0.073 | 1.316 ± 0.080 b | 1.107 ± 0.089 b | 0.942 ± 0.127 b |
Testosterone | 1.709 ± 0.092 b | 1.506 ± 0.065 | 1.332 ± 0.069 ab | 1.134 ± 0.075 b | 0.965 ± 0.122 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Wu, G.; Staincliffe, M.; McEwan, J.C.; Farouk, M.M. Effects of Metabolites, Sex, Sire, and Muscle Type on Chilled Lamb Meat Colour. Foods 2023, 12, 4031. https://doi.org/10.3390/foods12214031
Zhang R, Wu G, Staincliffe M, McEwan JC, Farouk MM. Effects of Metabolites, Sex, Sire, and Muscle Type on Chilled Lamb Meat Colour. Foods. 2023; 12(21):4031. https://doi.org/10.3390/foods12214031
Chicago/Turabian StyleZhang, Renyu, Guojie Wu, Maryann Staincliffe, John C. McEwan, and Mustafa M. Farouk. 2023. "Effects of Metabolites, Sex, Sire, and Muscle Type on Chilled Lamb Meat Colour" Foods 12, no. 21: 4031. https://doi.org/10.3390/foods12214031
APA StyleZhang, R., Wu, G., Staincliffe, M., McEwan, J. C., & Farouk, M. M. (2023). Effects of Metabolites, Sex, Sire, and Muscle Type on Chilled Lamb Meat Colour. Foods, 12(21), 4031. https://doi.org/10.3390/foods12214031