Properties of Yogurts Enriched with Crude Polysaccharides Extracted from Pleurotus ostreatus Cultivated Mushroom
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction of Crude Water Soluble Polysaccharides
2.2. Chemical Characterization of Crude Polysaccharides
2.3. Bacterial Culture
2.4. Preparation of Reinforced Yogurts and Experiment Design
2.5. Acidity and Total Soluble Content Measurements
2.6. Textural Properties and Syneresis
2.7. Antioxidant Capacity
2.8. Statistical Analysis
3. Results and Discussion
3.1. Chemical Characteristic of Water Soluble Polysaccharides
3.2. Physicochemical Analysis of Yogurts
3.3. Textural Properties and Syneresis
3.4. Antioxidant Activity of Yogurts
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaur, S.; Das, M. Functional Foods: An Overview. Food Sci. Biotechnol. 2011, 20, 861–875. [Google Scholar] [CrossRef]
- Birch, C.S.; Bonwick, G.A. Ensuring the Future of Functional Foods. Int. J. Food Sci. Technol. 2019, 54, 1467–1485. [Google Scholar] [CrossRef]
- Sarkar, S. Potentiality of Probiotic Yoghurt as a Functional Food—A Review. Nutr. Food Sci. 2019, 49, 182–202. [Google Scholar] [CrossRef]
- Najgebauer-Lejko, D. Characteristics of Probiotic Yoghurts Supplemented with Pu-Erh Tea Infusion. Acta Sci. Pol. Technol. Aliment. 2019, 18, 153–161. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Santos, L. Incorporation of Phenolic Extracts from Different By-Products in Yoghurts to Create Fortified and Sustainable Foods. Food Biosci. 2023, 51, 102293. [Google Scholar] [CrossRef]
- Bchir, B.; Bouaziz, M.A.; Blecker, C.; Attia, H. Physico-Chemical, Antioxidant Activities, Textural, and Sensory Properties of Yoghurt Fortified with Different States and Rates of Pomegranate Seeds (Punica Granatum L.). J. Texture Stud. 2020, 51, 475–487. [Google Scholar] [CrossRef]
- Azari-Anpar, M.; Payeinmahali, H.; Daraei Garmakhany, A.; Sadeghi Mahounak, A. Physicochemical, Microbial, Antioxidant, and Sensory Properties of Probiotic Stirred Yoghurt Enriched with Aloe Vera Foliar Gel. J. Food Process. Preserv. 2017, 41, e13209. [Google Scholar] [CrossRef]
- Şengül, M.; Erkaya, T.; Şengül, M.; Yildiz, H. The Effect of Adding Sour Cherry Pulp into Yoghurt on the Physicochemical Properties, Phenolic Content and Antioxidant Activity during Storage. Int. J. Dairy Technol. 2012, 65, 429–436. [Google Scholar] [CrossRef]
- Sakul, S.E.; Rosyidi, D.; Radiati, L.E.; Purwadi, M.; Evanuarini, H. Effect of Pleurotus Ostreatus Aqueous Extract on Physicochemical Properties, Protein Profile and Total Lactic Acid Bacteria of Yogurt Fortified with Lactobacillus Acidophilus. J. Microbiol. Biotechnol. Food Sci. 2021, 10, e2551. [Google Scholar] [CrossRef]
- Al-Sahlany, S.T.G.; Al-Kaabi, W.J.; Al-Manhel, A.J.A.; Niamah, A.K.; Altemimi, A.B.; Al-Wafi, H.; Cacciola, F. Effects of β-Glucan Extracted from Saccharomyces Cerevisiae on the Quality of Bio-Yoghurts: In Vitro and in Vivo Evaluation. J. Food Meas. Charact. 2022, 16, 3607–3617. [Google Scholar] [CrossRef]
- Gustaw, W.; Glibowski, P.; Mleko, S. The Rheological Properties of Yoghurt with Incorporated Whey Protein Aggregates/Polymers. Milchwissenschaft 2006, 61, 415–419. [Google Scholar]
- Drużyńska, B.; Wołosiak, R.; Grzebalska, M.; Majewska, E.; Ciecierska, M.; Worobiej, E. Comparison of the Content of Selected Bioactive Components and Antiradical Properties in Yoghurts Enriched with Chia Seeds (Salvia Hispanica L.) and Chia Seeds Soaked in Apple Juice. Antioxidants 2021, 10, 1989. [Google Scholar] [CrossRef] [PubMed]
- Krakowska, A.; Zięba, P.; Włodarczyk, A.; Kała, K.; Sułkowska-Ziaja, K.; Bernaś, E.; Sękara, A.; Ostachowicz, B.; Muszyńska, B. Selected Edible Medicinal Mushrooms from Pleurotus Genus as an Answer for Human Civilization Diseases. Food Chem. 2020, 327, 127084. [Google Scholar] [CrossRef] [PubMed]
- Reis, F.S.; Martins, A.; Vasconcelos, M.H.; Morales, P.; Ferreira, I.C.F.R. Functional Foods Based on Extracts or Compounds Derived from Mushrooms. Trends Food Sci. Technol. 2017, 66, 48–62. [Google Scholar] [CrossRef]
- Vetter, J. Biological Values of Cultivated Mushrooms—A Review. Acta Aliment. 2019, 48, 229–240. [Google Scholar] [CrossRef]
- Varghese, R.; Dalvi, Y.B.; Lamrood, P.Y.; Shinde, B.P.; Nair, C.K.K. Historical and Current Perspectives on Therapeutic Potential of Higher Basidiomycetes: An Overview. 3 Biotech 2019, 9, 362. [Google Scholar] [CrossRef] [PubMed]
- Giavasis, I. Bioactive Fungal Polysaccharides as Potential Functional Ingredients in Food and Nutraceuticals. Curr. Opin. Biotechnol. 2014, 26, 162–173. [Google Scholar] [CrossRef]
- Roselló-Soto, E.; Parniakov, O.; Deng, Q.; Patras, A.; Koubaa, M.; Grimi, N.; Boussetta, N.; Tiwari, B.K.; Vorobiev, E.; Lebovka, N.; et al. Application of Non-Conventional Extraction Methods: Toward a Sustainable and Green Production of Valuable Compounds from Mushrooms. Food Eng. Rev. 2016, 8, 214–234. [Google Scholar] [CrossRef]
- Witkowska, A.M.; Zujko, M.E.; Mirończuk-Chodakowska, I. Comparative Study of Wild Edible Mushrooms as Sources of Antioxidants. Int. J. Med. Mushrooms 2011, 13, 335–341. [Google Scholar] [CrossRef]
- Łysakowska, P.; Sobota, A.; Wirkijowska, A. Medicinal Mushrooms: Their Bioactive Components, Nutritional Value and Application in Functional Food Production-A Review. Molecules 2023, 28, 5393. [Google Scholar] [CrossRef] [PubMed]
- Radzki, W.; Sławińska, A.; Skrzypczak, K.; Michalak-Majewska, M. The Impact of Drying of Wild-Growing Mushrooms on the Content and Antioxidant Capacity of Water-Soluble Polysaccharides. Int. J. Med. Mushrooms 2019, 21, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Guillamón, E.; García-Lafuente, A.; Lozano, M.; D’Arrigo, M.; Rostagno, M.A.; Villares, A.; Martínez, J.A. Edible Mushrooms: Role in the Prevention of Cardiovascular Diseases. Fitoterapia 2010, 81, 715–723. [Google Scholar] [CrossRef]
- Wang, J.; Li, W.; Huang, X.; Liu, Y.; Li, Q.; Zheng, Z.; Wang, K. A Polysaccharide from Lentinus Edodes Inhibits Human Colon Cancer Cell Proliferation and Suppresses Tumor Growth in Athymic Nude Mice. Oncotarget 2017, 8, 610–623. [Google Scholar] [CrossRef] [PubMed]
- Nowak, R.; Nowacka-Jechalke, N.; Juda, M.; Malm, A. The Preliminary Study of Prebiotic Potential of Polish Wild Mushroom Polysaccharides: The Stimulation Effect on Lactobacillus Strains Growth. Eur. J. Nutr. 2018, 57, 1511–1521. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, L.; Cheung, P.C.K.; Ooi, V.E.C. Molecular Weight and Anti-Tumor Activity of the Water-Soluble Polysaccharides Isolated by Hot Water and Ultrasonic Treatment from the Sclerotia and Mycelia of Pleurotus Tuber-Regium. Carbohydr. Polym. 2004, 56, 123–128. [Google Scholar] [CrossRef]
- Augustin, J.; Jaworska, G.; Dandar, A.; Cejpek, K. Boczniak Ostrygowaty [Pleurotus Ostreatus] Jako Zrodlo Beta-D-Glukanow. Żywność Nauk. Technol. Jakość 2007, 14, 170–176. [Google Scholar]
- Maity, K.K.; Patra, S.; Dey, B.; Bhunia, S.K.; Mandal, S.; Das, D.; Majumdar, D.K.; Maiti, S.; Maiti, T.K.; Islam, S.S. A Heteropolysaccharide from Aqueous Extract of an Edible Mushroom, Pleurotus Ostreatus Cultivar: Structural and Biological Studies. Carbohydr. Res. 2011, 346, 366–372. [Google Scholar] [CrossRef]
- Ma, L.; Zhao, Y.; Yu, J.; Ji, H.; Liu, A. Characterization of Se-Enriched Pleurotus Ostreatus Polysaccharides and Their Antioxidant Effects in Vitro. Int. J. Biol. Macromol. 2018, 111, 421–429. [Google Scholar] [CrossRef]
- Yan, J.; Zhu, L.; Qu, Y.; Qu, X.; Mu, M.; Zhang, M.; Muneer, G.; Zhou, Y.; Sun, L. Analyses of Active Antioxidant Polysaccharides from Four Edible Mushrooms. Int. J. Biol. Macromol. 2019, 123, 945–956. [Google Scholar] [CrossRef]
- Tong, H.; Xia, F.; Feng, K.; Sun, G.; Gao, X.; Sun, L.; Jiang, R.; Tian, D.; Sun, X. Structural Characterization and in Vitro Antitumor Activity of a Novel Polysaccharide Isolated from the Fruiting Bodies of Pleurotus Ostreatus. Bioresour. Technol. 2009, 100, 1682–1686. [Google Scholar] [CrossRef]
- Wang, J.; Liu, B.; Qi, Y.; Wu, D.; Liu, X.; Liu, C.; Gao, Y.; Shi, J.; Fang, L.; Min, W. Impact of Auricularia Cornea Var. Li Polysaccharides on the Physicochemical, Textual, Flavor, and Antioxidant Properties of Set Yogurt. Int. J. Biol. Macromol. 2022, 206, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Kondyli, E.; Pappa, E.C.; Arapoglou, D.; Metafa, M.; Eliopoulos, C.; Israilides, C. Effect of Fortification with Mushroom Polysaccharide Β-Glucan on the Quality of Ovine Soft Spreadable Cheese. Foods 2022, 11, 417. [Google Scholar] [CrossRef] [PubMed]
- Sołowiej, B.G.; Nastaj, M.; Waraczewski, R.; Szafrańska, J.O.; Muszyński, S.; Radzki, W.; Mleko, S. Effect of Polysaccharide Fraction from Oyster Mushroom (Pleurotus Ostreatus) on Physicochemical and Antioxidative Properties of Acid Casein Model Processed Cheese. Int. Dairy J. 2023, 137, 105516. [Google Scholar] [CrossRef]
- Kondyli, E.; Pappa, E.C.; Kremmyda, A.; Arapoglou, D.; Metafa, M.; Eliopoulos, C.; Israilides, C. Manufacture of Reduced Fat White-Brined Cheese with the Addition of β-Glucans Biobased Polysaccharides as Textural Properties Improvements. Polymers 2020, 12, 2647. [Google Scholar] [CrossRef] [PubMed]
- Hozová, B.; Kuniak, Ľ.; Kelemenová, B. Application of β-d-Glucans Isolated from Mushrooms Pleurotus Ostreatus (Pleuran) and Lentinus Edodes (Lentinan) for Increasing the Bioactivity of Yoghurts. Czech J. Food Sci. 2004, 22, 204–214. [Google Scholar] [CrossRef]
- Lunardello, K.A.; Yamashita, F.; De Toledo Benassi, M.; De Rensis, C.M.V.B. The Physicochemical Characteristics of Nonfat Set Yoghurt Containing Some Hydrocolloids. Int. J. Dairy Technol. 2012, 65, 260–267. [Google Scholar] [CrossRef]
- Nguyen, P.T.M.; Kravchuk, O.; Bhandari, B.; Prakash, S. Effect of Different Hydrocolloids on Texture, Rheology, Tribology and Sensory Perception of Texture and Mouthfeel of Low-Fat Pot-Set Yoghurt. Food Hydrocoll. 2017, 72, 90–104. [Google Scholar] [CrossRef]
- Radzki, W.; Ziaja-Sołtys, M.; Nowak, J.; Rzymowska, J.; Topolska, J.; Sławińska, A.; Michalak-Majewska, M.; Zalewska-Korona, M.; Kuczumow, A. Effect of Processing on the Content and Biological Activity of Polysaccharides from Pleurotus Ostreatus Mushroom. LWT Food Sci. Technol. 2016, 66, 27–33. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic Acid–Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Gustaw, W. The Effect of an Oat- β-Glucan Addition on the Physico-Chemical Properties of a Set Yoghurt. Milchwissenschaft 2008, 63, 296–298. [Google Scholar]
- De Carvalho, M.W.; Arriola, N.D.A.; Pinto, S.S.; Verruck, S.; Fritzen-Freire, C.B.; Prudêncio, E.S.; Amboni, R.D.D.M.C. Stevia-Fortified Yoghurt: Stability, Antioxidant Activity and In Vitro Digestion Behaviour. Int. J. Dairy Technol. 2019, 72, 57–64. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Mitra, P.; Khatua, S.; Acharya, K. Free Radical Scavenging and Nos Activation Properties of Water Soluble Crude Polysaccharide from Pleurotus Ostreatus. Asian J. Pharm. Clin. Res. 2013, 6, 67–70. [Google Scholar]
- Siu, K.C.; Chen, X.; Wu, J.Y. Constituents Actually Responsible for the Antioxidant Activities of Crude Polysaccharides Isolated from Mushrooms. J. Funct. Foods 2014, 11, 548–556. [Google Scholar] [CrossRef]
- Saura-Calixto, F. Dietary Fiber as a Carrier of Dietary Antioxidants: An Essential Physiological Function. J. Agric. Food Chem. 2011, 59, 43–49. [Google Scholar] [CrossRef]
- Antontceva, E.; Sorokin, S.; Shamtsyan, M.; Krasnikova, L. Influence of Pleurotus Ostreatus Preparations on Fermentation Products of Lactic Acid Cultures. J. Hyg. Eng. Des. 2018, 22, 47–52. [Google Scholar]
- Chomsri, N.; Manowan, K. Characteristics of Yogurt Supplemented with Different Concentrations of Carissa carandas L. J. Sci. Agric. Technol. 2020, 1, 18–25. [Google Scholar]
- Sigdel, A.; Ojha, P.; Karki, T.B. Phytochemicals and Syneresis of Osmo-Dried Mulberry Incorporated Yoghurt. Food Sci. Nutr. 2018, 6, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, Y. Texture Profile Analysis. In Current Protocols in Food Analytical Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2001; pp. 1–7. [Google Scholar]
- Szczesniak, A.S. Texture Is a Sensory Property. Food Qual. Prefer. 2002, 13, 215–225. [Google Scholar] [CrossRef]
- Bahrami, M.; Ahmadi, D.; Alizadeh, M.; Hosseini, F. Physicochemical and Sensorial Properties of Probiotic Yogurt as Affected by Additions of Different Types of Hydrocolloid. Korean J. Food Sci. Anim. Resour. 2013, 33, 363–368. [Google Scholar] [CrossRef]
- Kaur, R.; Riar, C.S. Sensory, Rheological and Chemical Characteristics during Storage of Set Type Full Fat Yoghurt Fortified with Barley β-Glucan. J. Food Sci. Technol. 2020, 57, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Wu, K.; Wang, F.; Liang, X.; Liu, Q.; Li, G.; Li, Q. Effect of Exopolysaccharides from Lactic Acid Bacteria on the Texture and Microstructure of Buffalo Yoghurt. Int. Dairy J. 2014, 34, 252–256. [Google Scholar] [CrossRef]
- Vanegas-Azuero, A.M.; Gutiérrez, L.F. Physicochemical and Sensory Properties of Yogurts Containing Sacha Inchi (Plukenetia Volubilis L.) Seeds and β-Glucans from Ganoderma Lucidum. J. Dairy Sci. 2018, 101, 1020–1033. [Google Scholar] [CrossRef]
- Yildiz, E.; Ozcan, T. Functional and Textural Properties of Vegetable-Fibre Enriched Yoghurt. Int. J. Dairy Technol. 2019, 72, 199–207. [Google Scholar] [CrossRef]
- Delikanli, B.; Ozcan, T. Effects of Various Whey Proteins on the Physicochemical and Textural Properties of Set Type Nonfat Yoghurt. Int. J. Dairy Technol. 2014, 67, 495–503. [Google Scholar] [CrossRef]
- Amatayakul, T.; Sherkat, F.; Shah, N.P. Syneresis in Set Yogurt as Affected by EPS Starter Cultures and Levels of Solids. Int. J. Dairy Technol. 2006, 59, 216–221. [Google Scholar] [CrossRef]
- Singh, M.; Kim, S.; Liu, S.X. Effect of Purified Oat β-Glucan on Fermentation of Set-Style Yogurt Mix. J. Food Sci. 2012, 77, E195–E201. [Google Scholar] [CrossRef] [PubMed]
- Kaya, A.O.W.; Suryani, A.; Santoso, J.; Syahbana, M. The Effect of Gelling Agent Concentration on the Characteristic of Gel Produced from the Mixture of Semi- Refined Carrageenan and Glukomannan. Int. J. Sci. Basic Appl. Res. 2015, 20, 313–324. [Google Scholar]
- Gursel, A.; Gursoy, A.; Anli, E.A.K.; Budak, S.O.; Aydemir, S.; Durlu-Ozkaya, F. Role of Milk Protein-Based Products in Some Quality Attributes of Goat Milk Yogurt. J. Dairy Sci. 2016, 99, 2694–2703. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Boxin, O.U.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Najgebauer-Lejko, D.; Sady, M. Estimation of the Antioxidant Activity of the Commercially Available Fermented Milks. Acta Sci. Pol. Technol. Aliment. 2015, 14, 387–396. [Google Scholar] [CrossRef]
- Skrzypczak, K.W.; Gustaw, W.Z.; Jabłonska-Ryś, E.D.; Michalak-Majewska, M.; Sławińska, A.; Radzki, W.P.; Gustaw, K.M.; Waśko, A.D. Antioxidative Properties of Milk Protein Preparations Fermented by Polish Strains of Lactobacillus Helveticus. Acta Sci. Pol. Technol. Aliment. 2017, 16, 199–207. [Google Scholar] [CrossRef]
- Vamanu, E. Biological Activities of the Polysaccharides Produced in Submerged Culture of Two Edible Pleurotus Ostreatus Mushrooms. J. Biomed. Biotechnol. 2012, 2012, 565974. [Google Scholar] [CrossRef] [PubMed]
- Kozarski, M.; Klaus, A.; Nikšić, M.; Vrvić, M.M.; Todorović, N.; Jakovljević, D.; Van Griensven, L.J.L.D. Antioxidative Activities and Chemical Characterization of Polysaccharide Extracts from the Widely Used Mushrooms Ganoderma Applanatum, Ganoderma Lucidum, Lentinus Edodes and Trametes Versicolor. J. Food Compos. Anal. 2012, 26, 144–153. [Google Scholar] [CrossRef]
- Jaehrig, S.C.; Rohn, S.; Kroh, L.W.; Wildenauer, F.X.; Lisdat, F.; Fleischer, L.G.; Kurz, T. Antioxidative Activity of (1→3), (1→6)-β-d-Glucan from Saccharomyces Cerevisiae Grown on Different Media. LWT Food Sci. Technol. 2008, 41, 868–877. [Google Scholar] [CrossRef]
- Fernandes, P.A.R.; Coimbra, M.A. The Antioxidant Activity of Polysaccharides: A Structure-Function Relationship Overview. Carbohydr. Polym. 2023, 314, 120965. [Google Scholar] [CrossRef]
- Sinaga, D.P.; Tampubolon, D.K.A.; Kembaren, R.F.; Martgrita, M.M. Fermentation Process Effect to Enhance Antioxidant and Antibacterial Activity of Phenolic Compounds and Its Possible Application to Galactomannan Polysaccharides: A Review. IOP Conf. Ser. Earth Environ. Sci. 2022, 1097, 012027. [Google Scholar] [CrossRef]
- Song, S.; Liu, X.; Zhao, B.; Abubaker, M.A.; Huang, Y.; Zhang, J. Effects of Lactobacillus Plantarum Fermentation on the Chemical Structure and Antioxidant Activity of Polysaccharides from Bulbs of Lanzhou Lily. ACS Omega 2021, 6, 29839–29851. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Fardet, A.; Rock, E. In Vitro and in Vivo Antioxidant Potential of Milks, Yoghurts, Fermented Milks and Cheeses: A Narrative Review of Evidence. Nutr. Res. Rev. 2018, 31, 52–70. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radzki, W.; Skrzypczak, K.; Sołowiej, B.; Jabłońska-Ryś, E.; Gustaw, W. Properties of Yogurts Enriched with Crude Polysaccharides Extracted from Pleurotus ostreatus Cultivated Mushroom. Foods 2023, 12, 4033. https://doi.org/10.3390/foods12214033
Radzki W, Skrzypczak K, Sołowiej B, Jabłońska-Ryś E, Gustaw W. Properties of Yogurts Enriched with Crude Polysaccharides Extracted from Pleurotus ostreatus Cultivated Mushroom. Foods. 2023; 12(21):4033. https://doi.org/10.3390/foods12214033
Chicago/Turabian StyleRadzki, Wojciech, Katarzyna Skrzypczak, Bartosz Sołowiej, Ewa Jabłońska-Ryś, and Waldemar Gustaw. 2023. "Properties of Yogurts Enriched with Crude Polysaccharides Extracted from Pleurotus ostreatus Cultivated Mushroom" Foods 12, no. 21: 4033. https://doi.org/10.3390/foods12214033
APA StyleRadzki, W., Skrzypczak, K., Sołowiej, B., Jabłońska-Ryś, E., & Gustaw, W. (2023). Properties of Yogurts Enriched with Crude Polysaccharides Extracted from Pleurotus ostreatus Cultivated Mushroom. Foods, 12(21), 4033. https://doi.org/10.3390/foods12214033