Effects of White Sorghum Flour Levels on Physicochemical and Sensory Characteristics of Gluten-Free Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Composite Flour Treatments
2.3. Flour Analyses
2.4. Breadmaking Process
2.5. Bread Analyses
2.5.1. Physical and Chemical Characteristics
2.5.2. Sensory Characteristics
2.6. Statistical Analysis
3. Results and Discussion
3.1. Flour Characteristics
3.2. Bread Characteristics
3.2.1. Physical and Chemical Characteristics
3.2.2. Sensory Characteristics of Gluten-Free Bread
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statista. Per Capita Food Consumption Worldwide in 2022, by Food Product Group. Available online: https://www.statista.com/forecasts/1315528/worldwide-food-consumption-per-capita-by-food-product-group (accessed on 3 October 2023).
- Monthe, O.C.; Grosmaire, L.; Nguimbou, R.M.; Dahdouh, L.; Ricci, J.; Tran, T.; Ndjouenkeu, R. Rheological and textural properties of gluten-free doughs and breads based on fermented cassava, sweet potato and sorghum mixed flours. LWT-Food Sci. Technol. 2019, 101, 575–582. [Google Scholar] [CrossRef]
- Bathrellou, E.; Kontogianni, M.D.; Panagiotakos, D.B. Celiac disease and non-celiac gluten or wheat sensitivity and health in later life: A review. Maturitas 2018, 112, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Cianferoni, A. Wheat allergy: Diagnosis and management. J. Asthma Allergy 2016, 9, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Mordor Intelligence. Gluten-Free Bakery Market Size & Share Analysis–Growth Trends & Forecasts (2023–2028). Available online: https://www.mordorintelligence.com/industry-reports/global-gluten-free-bread-products-cookies-snacks-market-industry#faqs (accessed on 3 October 2023).
- Onyango, C.; Mutungi, C.; Unbehend, G.; Lindhauer, M.G. Modification of gluten-free sorghum batter and bread using maize, potato, cassava or rice starch. LWT-Food Sci. Technol. 2011, 44, 681–686. [Google Scholar] [CrossRef]
- Hager, A.S.; Arendt, E. Influence of hydroxypropylmethylcellulose (HPMC), xanthan gum and their combination on loaf specific volume, crumb hardness and crumb grain characteristics of gluten-free breads based on rice, maize, teff and buckwheat. Food Hydrocoll. 2013, 32, 195–203. [Google Scholar] [CrossRef]
- Rybicka, I.; Doba, K.; Bińczak, O. Improving the sensory and nutritional value of gluten-free bread. Int. J. Food Sci. Technol. 2019, 54, 2661–2667. [Google Scholar] [CrossRef]
- Akin, P.A.; Miller, R.; Jaffe, T.; Koppel, K.; Ehmke, L. Sensory profile and quality of chemically leavened gluten-free sorghum bread containing different starches and hydrocolloids. J. Sci. Food Agric. 2019, 99, 4391–4396. [Google Scholar] [CrossRef] [PubMed]
- Torbica, A.; Belović, M.; Tomić, J. Novel breads of non-wheat flours. Food Chem. 2019, 282, 134–140. [Google Scholar] [CrossRef]
- Yano, H. Recent practical researches in the development of gluten-free breads. npj Sci. Food 2019, 3, 7. [Google Scholar] [CrossRef]
- Marchini, M.; Marti, A.; Tuccio, M.G.; Bocchi, E.; Carini, E. Technological functionality of composite flours from sorghum, tapioca and cowpea. Int. J. Food Sci. Technol. 2022, 57, 4736–4743. [Google Scholar] [CrossRef]
- De Aguiar, L.A.; Rodrigues, D.B.; Queiroz, V.A.V.; Melo, L.; Pineli, L.L.O. Comparison of two rapid descriptive sensory techniques for profiling and screening of drivers of liking of sorghum breads. Food Res. Int. 2020, 131, 108999. [Google Scholar] [CrossRef] [PubMed]
- Chanapamkkhot, H.; Thongngam, M. The chemical and physico-chemical properties of sorghum starch and flour. Kasetsart J. Nat. Sci. 2007, 41, 343–349. [Google Scholar]
- Prasad, M.P.R.; Rao, B.D.; Kalpana, K.; Rao, M.V.; Patil, J.V. Glycaemic index and glycaemic load of sorghum products. J. Sci. Food Agric. 2015, 95, 1626–1630. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Trani, A.; Knaapila, A.; Hietala, S.; Coda, R.; Katina, K.; Maina, N.H. The effect of in situ produced dextran on flavor and texture perception of wholegrain sorghum bread. Food Hydrocoll. 2020, 106, 105913. [Google Scholar] [CrossRef]
- Siddeeg, A.; Salih, Z.A.; Babikir, H.S.E.; Ammar, A.; Ali, A.O. Physiochemical and sensory characteristics of wheat flour bread blends with sorghum flour. Int. J. Agric. Innov. Res. 2017, 6, 566–575. [Google Scholar]
- Akin, P.A.; Miller, R.A. Starch-hydrocolloid interaction in chemically leavened gluten-free sorghum bread. Cereal Chem. 2017, 94, 897–902. [Google Scholar] [CrossRef]
- Azarbad, H.R.; Tehrani, M.M.; Rashidi, H. Optimization of gluten-free bread formulation using sorghum, rice, and millet flour by d-optimal mixture design approach. J. Agric. Sci. Technol. 2019, 21, 101–115. [Google Scholar]
- Thilakarathna, R.C.N.; Madhusankha, G.D.M.P.; Navaratne, S.B. Potential food applications of sorghum (Sorghum bicolor) and rapid screening methods of nutritional traits by spectroscopic platforms. J. Food Sci. 2022, 87, 36–51. [Google Scholar] [CrossRef]
- Yousif, A.; Nhepera, D.; Johnson, S. Influence of sorghum flour addition on flat bread in vitro starch digestibility, antioxidant capacity and consumer acceptability. Food Chem. 2012, 134, 880–887. [Google Scholar] [CrossRef]
- Centeno, A.C.L.; Aguiar, E.; Santos, F.; Queiroz, V.; Conti-Silva, A.; Krupa-Kozak, U.; Capriles, V. Defining whole grain sorghum flour and water levels to improve sensory and nutritional quality of gluten-free bread—A factorial design approach. Appl. Sci. 2021, 11, 8186. [Google Scholar] [CrossRef]
- Dube, N.M.; Xu, F.; Zhao, R. The efficacy of sorghum flour addition on dough rheological properties and bread quality: A short review. Grain Oil Sci. Technol. 2020, 3, 164–171. [Google Scholar] [CrossRef]
- Rao, S.; Santhakumar, A.B.; Chinkwo, K.A.; Wu, G.; Johnson, S.K.; Blanchard, C.L. Characterization of phenolic compounds and antioxidant activity in sorghum grains. J. Cereal Sci. 2018, 84, 103–111. [Google Scholar] [CrossRef]
- Pezzali, J.G.; Suprabha-Raj, A.; Siliveru, K.; Aldrich, C.G. Characterization of white and red sorghum flour and their potential use for production of extrudate crisps. PLoS ONE 2020, 15, e0234940. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 18th ed.; Association of official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- AACC. Method 76-21.02, General pasting method for wheat or rye flour or starch using the rapid visco analyzer. In Approved Methods of Analysis, 11th ed.; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- AACC. Method 10-05.01, Guidelines for measurement of volume by rapeseed displacement. In Approved Methods of Analysis, 11th ed.; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- Amigo, J.M.; del Olmo Alvarez, A.; Engelsen, M.M.; Lundkvist, H.; Engelsen, S.B. Staling of white wheat bread crumb and effect of maltogenic alpha-amylases. Part 1: Spatial distribution and kinetic modeling of hardness and resilience. Food Chem. 2016, 208, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Piga, A.; Catzeddu, P.; Farris, S.; Roggio, T.; Sanguinetti, A.; Scano, E. Texture evolution of “Amaretti” cookies during storage. Eur. Food Res. Technol. 2005, 221, 387–391. [Google Scholar] [CrossRef]
- Keane, P. The flavor profile. In Manual on Descriptive Analysis Testing for Sensory Evaluation; Hootman, R.C., Ed.; American Society for Testing and Materials: Philadelphia, PA, USA, 1992; pp. 5–14. [Google Scholar]
- Rosales, C.K.; Suwonsichon, S.; Klinkesorn, U. Influence of crystal promoters on sensory characteristics of heat-resistant compound chocolate. Int. J. Food Sci. Technol. 2018, 53, 1459–1467. [Google Scholar] [CrossRef]
- Pinsuwan, A.; Suwonsichon, S.; Chompreeda, P.; Prinyawiwatkul, W. Sensory drivers of consumer acceptance, purchase intent and emotions toward brewed black coffee. Foods 2022, 11, 180. [Google Scholar] [CrossRef]
- Laplamool, T.; Suwonsichon, S.; Sittiketgorn, S.; Soontrunnarudrungsri, A. Sensory flavor profile of split gill mushroom (Schizophyllum commune) extract and its enhancement effect on taste perception in salt solution and seasoned clear soup. Foods 2023, 12, 3745. [Google Scholar] [CrossRef]
- Heymann, H.; Machado, B.; Torri, L.; Robinson, A.L. How many judges should one use for sensory descriptive analysis? J. Sens. Stud. 2012, 27, 111–122. [Google Scholar] [CrossRef]
- Sharanagat, V.S.; Singh, L.; Nema, P.K. Approaches for development of functional and low gluten bread from sorghum: A review. J. Food Process. Preserv. 2022, 46, e17089. [Google Scholar] [CrossRef]
- Sciarini, L.S.; Ribotta, P.D.; León, A.E.; Pérez, G.T. Influence of gluten-free flours and their mixtures on batter properties and bread quality. Food Bioproc. Tech. 2010, 3, 577–585. [Google Scholar] [CrossRef]
- Onyango, C.; Mutungi, C.; Unbehend, G.; Lindhauer, M.G. Batter rheology and bread texture of sorghum-based gluten-free formulations modified with native or pregelatinised cassava starch and α-amylase. Int. J. Food Sci. Technol. 2010, 45, 1228–1235. [Google Scholar] [CrossRef]
- Marco, C.; Rosell, C.M. Breadmaking performance of protein enriched, gluten-free breads. Eur. Food Res. Technol. 2008, 227, 1205–1213. [Google Scholar] [CrossRef]
- Comettant-Rabanal, R.; Carvalho, C.W.P.; Ascheri, J.L.R.; Chávez, D.W.H.; Germani, R. Extruded whole grain flours and sprout millet as functional ingredients for gluten-free bread. LWT-Food Sci. Technol. 2021, 150, 112042. [Google Scholar] [CrossRef]
- Olojede, A.O.; Sanni, A.I.; Banwo, K. Effect of legume addition on the physiochemical and sensorial attributes of sorghum-based sourdough bread. LWT-Food Sci. Technol. 2020, 118, 108769. [Google Scholar] [CrossRef]
- Trappey, E.F.; Khouryieh, H.; Aramouni, F.; Herald, T. Effect of sorghum flour composition and particle size on quality properties of gluten-free bread. Food Sci. Technol. Int. 2015, 21, 188–202. [Google Scholar] [CrossRef]
- Nieto-Mazzocco, E.; Saldaña-Robles, A.; Franco-Robles, E.; Rangel-Contreras, A.K.; Cerón-García, A.; Ozuna, C. Optimization of sorghum, rice, and amaranth flour levels in the development of gluten-free bakery products using response surface methodology. J. Food Proc. Preserv. 2020, 44, e14302. [Google Scholar] [CrossRef]
- Jafari, M.; Koocheki, A.; Milani, E. Functional effects of xanthan gum on quality attributes and microstructure of extruded sorghum-wheat composite dough and bread. LWT-Food Sci. Technol. 2018, 89, 551–558. [Google Scholar] [CrossRef]
- Moreno, M.D.M.C.; Barreto-Palacios, V.; Gonzalez-Carrascosa, R.; Iborra-Bernad, C.; Andres-Bello, A.; Martínez-Monzó, J.; García-Segovia, P. Evaluation of textural and sensory properties on typical Spanish small cakes designed using alternative flours. J. Culin. Sci. Technol. 2015, 13, 19–28. [Google Scholar] [CrossRef]
- Gosine, L.; McSweeney, M.B. Consumers’ attitudes towards alternative grains: A conjoint analysis study. Int. J. Food Sci. Technol. 2019, 54, 1588–1596. [Google Scholar] [CrossRef]
- De Oliveira, L.d.L.; de Oliveira, G.T.; de Alencar, E.R.; Queiroz, V.A.V.; de Alencar Figueiredo, L.F. Physical, chemical, and antioxidant analysis of sorghum grain and flour from five hybrids to determine the drivers of liking of gluten-free sorghum breads. LWT-Food Sci. Technol. 2022, 153, 112407. [Google Scholar] [CrossRef]
- Sabanis, D.; Lebesi, D.; Tzia, C. Effect of dietary fibre enrichment on selected properties of gluten-free bread. LWT-Food Sci. Technol. 2009, 42, 1380–1389. [Google Scholar] [CrossRef]
- Sciarini, L.S.; Ribotta, P.D.; León, A.E.; Pérez, G.T. Effect of hydrocolloids on gluten-free batter properties and bread quality. Inter. J. Food Sci. Technol. 2010, 45, 2306–2312. [Google Scholar] [CrossRef]
- Marti, A.; Cardone, G.; Nicolodi, A.; Quaglia, L.; Pagani, M.A. Sprouted wheat as an alternative to conventional flour improvers in bread-making. LWT-Food Sci. Technol. 2017, 80, 230–236. [Google Scholar] [CrossRef]
- De Alcântara, R.G.; Fukumasu, H.; Raspantini, P.C.F.; Raspantini, L.E.R.; Steel, C.J.; Oliveira, L.C.; De Carvalho, R.A.; Vanin, F.M. Baking effect on resistant starch digestion from composite bread produced with partial wheat flour substitution. J. Food Qual. 2020, 2020, 9245035. [Google Scholar] [CrossRef]
- Bourne, M. Food Texture and Viscosity: Concept and Measurement, 2nd ed.; Elsevier Science & Technology Books; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Suwonsichon, S. The importance of sensory lexicons for research and development of food products: A Review. Foods 2019, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Araújo, L.; Chambers, E., IV; Funk, D.B. References for “musty” odor notes in sensory analysis of grain sorghum. J. Cereal Sci. 2011, 54, 460–466. [Google Scholar] [CrossRef]
- Dankwa, R.; Aisala, H.; Kayitesi, E.; de Kock, H.L. The sensory profiles of flatbreads made from sorghum, cassava, and cowpea flour used as wheat flour alternatives. Foods 2021, 10, 3095. [Google Scholar] [CrossRef]
- Kobue-Lekalake, R.I.; Taylor, J.R.N.; de Kock, H.L. Effects of phenolics in sorghum grain on its bitterness, astringency and other sensory properties. J. Sci. Food Agric. 2007, 87, 1940–1948. [Google Scholar] [CrossRef]
- Muggah, E.M.; Duizer, L.M.; McSweeney, M.B. A comparison of sensory properties of artisanal style and industrially processed gluten-free breads. Int. J. Gastron Food Sci. 2016, 3, 38–46. [Google Scholar] [CrossRef]
- Gámbaro, A.; Varela, P.; Giménez, A.; Aldrovandi, A.; Fiszman, S.M.; Hough, G. Textural quality of white pan bread by sensory and instrumental measurements. J. Texture Stud. 2002, 33, 401–413. [Google Scholar] [CrossRef]
Composite Flours | Sorghum Flour (%) | Rice Flour (%) | Tapioca Flour (%) | Corn Starch (%) |
---|---|---|---|---|
T1 | 0 | 33.3 | 33.3 | 33.3 |
T2 | 10 | 30 | 30 | 30 |
T3 | 25 | 25 | 25 | 25 |
T4 | 40 | 20 | 20 | 20 |
T5 | 70 | 10 | 10 | 10 |
T6 | 85 | 5 | 5 | 5 |
T7 | 100 | 0 | 0 | 0 |
Moisture Content (%) | Color Values | |||
---|---|---|---|---|
L* | a* | b* | ||
Single flours/starch | ||||
Sorghum flour | 12.27 ± 0.11 B | 80.95 ± 0.56 C | 1.67 ± 0.01 A | 12.27 ± 0.08 A |
Rice flour | 12.17 ± 0.11 B | 91.99 ± 0.02 B | −0.24 ± 0.02 C | 3.60 ± 0.02 C |
Tapioca flour | 12.76 ± 0.19 A | 92.83 ± 0.10 A | 0.10 ± 0.03 B | 2.80 ± 0.01 D |
Corn starch | 12.57 ± 0.14 A | 93.41 ± 0.07 A | −0.34 ± 0.02 D | 4.80 ± 0.08 B |
Composite flours # | ||||
T1 (0%) | 12.52 ± 0.12 a | 92.26 ± 0.06 a | −0.17 ± 0.05 g | 3.44 ± 0.09 g |
T2 (10%) | 12.44 ± 0.19 a | 90.87 ± 0.46 b | 0.03 ± 0.03 f | 4.61 ± 0.00 f |
T3 (25%) | 12.46 ± 0.14 a | 89.19 ± 0.21 c | 0.21 ± 0.04 e | 5.61 ± 0.11 e |
T4 (40%) | 12.50 ± 0.17 a | 87.22 ± 0.69 d | 0.44 ± 0.12 d | 7.01 ± 0.20 d |
T5 (70%) | 12.40 ± 0.13 ab | 83.20 ± 0.41 e | 1.05 ± 0.02 c | 9.88 ± 0.31 c |
T6 (85%) | 12.32 ± 0.10 b | 82.03 ± 0.12 f | 1.24 ± 0.05 b | 10.42 ± 0.02 b |
T7 (100%) | 12.27 ± 0.11 b | 80.95 ± 0.56 f | 1.67 ± 0.01 a | 12.27 ± 0.08 a |
Pasting Temperature (°C) | Peak Time (min) | Peak Viscosity (cp) | Breakdown Viscosity (cp) | Setback Viscosity (cp) | Final Viscosity (cp) | |
---|---|---|---|---|---|---|
Single flours/starch | ||||||
Sorghum flour | 87.4 ± 0.2 B | 6.0 ± 0.1 B | 1498.5 ± 27.6 D | 69.3 ± 7.5 D | 1190.0 ± 66.0 A | 2619.2 ± 30.9 B |
Rice flour | 90.5 ± 0.6 A | 6.8 ± 0.1 A | 2156.0 ± 36.3 C | 376.8 ± 52.6 C | 1191.8 ± 6.8 A | 2993.8 ± 63.4 A |
Tapioca flour | 65.1 ± 0.1 D | 3.8 ± 0.0 D | 4335.2 ± 96.4 A | 2843.2 ± 93.1 A | 686.3 ± 6.8 B | 2198.3 ± 6.6 C |
Corn starch | 76.6 ± 0.2 C | 5.2 ± 0.0 C | 2525.2 ± 32.8 B | 931.7 ± 10.4 B | 629.5 ± 18.4 B | 2223.0 ± 26.4 C |
Composite flours # | ||||||
T1 (0%) | 71.5 ± 0.4 f | 5.8 ± 0.0 c | 2757.7 ± 12.7 a | 670.8 ± 27.6 a | 706.7 ± 20.3 c | 2793.5 ± 5.4 b |
T2 (10%) | 72.8 ± 0.9 ef | 6.0 ± 0.1 b | 2394.3 ± 86.3 b | 523.0 ± 81.1 b | 606.3 ± 99.4 cd | 2607.0 ± 89.1 c |
T3 (25%) | 73.4 ± 0.0 e | 6.1 ± 0.0 ab | 2011.5 ± 21.9 c | 374.3 ± 14.6 c | 542.8 ± 21.0 cd | 2180.0 ± 15.6 d |
T4 (40%) | 75.4 ± 1.0 d | 6.1 ± 0.2 ab | 1827.6 ± 94.6 d | 353.8 ± 54.0 c | 504.7 ± 82.5 d | 1996.0 ± 21.7 e |
T5 (70%) | 83.6 ± 0.4 c | 6.2 ± 0.1 a | 1737.6 ± 75.1 de | 217.2 ± 1.6 d | 1653.5 ± 67.8 a | 3219.7 ± 77.3 a |
T6 (85%) | 86.0 ± 0.4 b | 6.2 ± 0.1 a | 1589.0 ± 84.9 ef | 102.0 ± 29.2 e | 1786.5 ± 80.8 a | 3157.7 ± 75.9 a |
T7 (100%) | 87.4 ± 0.2 a | 6.0 ± 0.1 b | 1498.5 ± 27.6 f | 69.3 ± 7.5 e | 1190.0 ± 66.0 b | 2619.2 ± 30.9 c |
Composite Flours # | Loaf Specific Volume (cm3/g) | Crumb Color | Moisture (%) ns | Water Activity (aw) ns | ||
---|---|---|---|---|---|---|
L* | a* | b* | ||||
T1 (0%) | 3.24 ± 0.01 a | 80.26 ± 1.68 a | 3.16 ± 0.32 d | 23.32 ± 0.19 a | 44.23 ± 0.81 | 0.894 ± 0.001 |
T2 (10%) | 3.17 ± 0.01 b | 79.20 ± 2.02 ab | 3.09 ± 0.11 d | 21.73 ± 1.88 ab | 43.00 ± 0.59 | 0.892 ± 0.002 |
T3 (25%) | 3.15 ± 0.00 b | 75.67 ± 2.10 bc | 3.70 ± 0.25 c | 21.20 ± 2.33 bc | 43.37 ± 0.71 | 0.894 ± 0.002 |
T4 (40%) | 3.11 ± 0.03 b | 73.24 ± 0.87 cd | 4.10 ± 0.13 b | 20.46 ± 0.75 bcd | 43.52 ± 0.99 | 0.892 ± 0.002 |
T5 (70%) | 2.95 ± 0.02 c | 69.91 ± 0.66 de | 4.40 ± 0.41 a | 20.37 ± 0.44 bcd | 43.68 ± 0.68 | 0.891 ± 0.000 |
T6 (85%) | 2.53 ± 0.02 d | 68.36 ± 2.65 e | 4.32 ± 0.19 ab | 19.61 ± 1.68 cd | 44.65 ± 0.82 | 0.893 ± 0.003 |
T7 (100%) | 2.11 ± 0.04 e | 66.20 ± 4.63 e | 4.57 ± 0.27 a | 18.95 ± 1.05 d | 44.44 ± 0.85 | 0.880 ± 0.018 |
Composite Flours # | Hardness (N) | Cohesiveness | Gumminess (N) ns | Chewiness (N) | Springiness | Resilience | Cutting Force (N) |
---|---|---|---|---|---|---|---|
T1 (0%) | 6.52 ± 1.84 e | 0.66 ± 0.03 a | 5.03 ± 0.64 | 4.83 ± 0.48 a | 0.95 ± 0.02 a | 0.34 ± 0.02 a | 17.23 ± 0.12 a |
T2 (10%) | 8.77 ± 3.70 de | 0.55 ± 0.01 b | 4.72 ± 1.02 | 4.20 ± 1.10 ab | 0.91 ± 0.03 ab | 0.26 ± 0.01 b | 11.34 ± 0.33 b |
T3 (25%) | 7.31 ± 0.95 e | 0.48 ± 0.05 bc | 4.08 ± 0.61 | 3.41 ± 0.15 abc | 0.88 ± 0.04 abc | 0.20 ± 0.05 bc | 9.84 ± 0.13 c |
T4 (40%) | 12.36 ± 3.47 cd | 0.40 ± 0.04 cd | 4.85 ± 0.86 | 3.65 ± 0.15 abc | 0.78 ± 0.14 bcd | 0.16 ± 0.03 cd | 5.91 ± 0.07 d |
T5 (70%) | 14.87 ± 2.97 bc | 0.31 ± 0.06 de | 4.25 ± 0.69 | 2.82 ± 0.64 bc | 0.74 ± 0.04 cd | 0.13 ± 0.04 d | 4.67 ± 0.03 e |
T6 (85%) | 18.17 ± 2.29 ab | 0.26 ± 0.02 e | 4.04 ± 0.32 | 2.50 ± 0.35 c | 0.65 ± 0.12 d | 0.11 ± 0.02 d | 4.63 ± 0.16 e |
T7 (100%) | 20.22 ± 0.48 a | 0.27 ± 0.03 e | 5.13 ± 0.04 | 3.21 ± 0.42 bc | 0.64 ± 0.04 d | 0.11 ± 0.01 d | 4.87 ± 0.54 e |
Attributes | Definitions and Evaluation Procedure | References and Reference Intensities |
---|---|---|
Flavor | ||
Baked flour | A flavor of baked flour which consists of cereal, dry, sweet and brown notes. | Ritz crackers (original) (1 piece) = 5.0 Jacob’s cream cracker (original) (1/4 piece) = 9.0 |
Baking soda | A flavor associated with baking soda. | McGarrett baking soda 0.25 g in 100 ml water = 2.0 0.50 g in 100 ml water = 5.5 |
Brown | A full, round flavor impression always characterized as some degree of darkness, generally associated with other attributes such as baked, roasted, sweet, etc. | S&W canned pinto beans = 5.0 |
Dairy product | A sweet and milky flavor associated with dairy products. | Meji full fat pasteurized milk = 8.5 |
Dry | A dry flavor of food products achieved from drying or dehydration process. | Doi Kham soya milk powder 2 g in 400 ml water = 3.0 Soya milk powder (pure) = 7.0 |
Eggy | A flavor associated with cooked whole egg with a mild sulfur note. | Peng Kee crinkle cookie (2 × 2 cm piece) = 5.0 |
Fermented | A sour, pungent and slightly sweet flavor associated with fermented starches, grains, vegetables, or fruits. | Kewpie 4.2% Hom Mali Rice vinegar 2 mL in 250 mL water = 2.5 |
Musty | A flavor associated with stale products or closed air space/poor ventilation area. | Kellogg’s All-Bran (original) 3 pieces = 3.5, 6 pieces = 7.0 |
Nutty | A sweet, slightly roasted, dry, woody flavor associated with nuts, wheat germ and certain whole grains. | Dr. Green wheat germ = 7.5 |
Sweet aromatic | A flavor associated with the impression of all sweet substances. | Mitr Phol brown sugar 40 g in 400 mL water = 3.5 Brown sugar (pure) = 5.5 |
Vanilla | A flavor associated with vanilla consisting of brown, sweet and dry bark notes. | Winner vanilla flavor 0.3 mL in 200 mL water = 4.0 |
Sweet | A fundamental taste sensation of which sucrose is typical. | 20 g/L sucrose solution = 2.0 50 g/L sucrose solution = 5.0 |
Salty | A fundamental taste sensation of which sodium chloride is typical. | 2 g/L NaCl solution = 2.5 3.5 g/L NaCl solution = 5.0 |
Bitter | A fundamental taste sensation of which caffeine is typical. | 0.1 g/L caffeine solution = 2.0 0.35 g/L caffeine solution = 3.5 |
Astringent | The complex of drying, puckering and shrinking sensations in the mouth. | 0.35 g/L alum solution = 1.5 |
Tooth-etch | A drying/dragging sensation perceived when the tongue is rubbing on the tooth surface.rubbing on the tooth surface. | 1 g/L alum solution = 4.0 |
Texture | ||
Hardness | Force required to compress the sample between molars to attain sample deformation. | S&P butter cake (0.5-in cube) = 3.0 |
Firmness | Resistance to compression of the sample with the first bite with molars. | S&P butter cake (0.5-in cube) = 3.0 |
Cohesiveness | The degree to which the sample deforms rather than crumbles or breaks on the first bite with molars. | S&P butter cake (0.5-in cube) = 7.0 |
Tooth pull | The force required to pull molars out of the sample. | Hershey’s creamy milk chocolate (1 piece) = 2.0 |
Springiness | The degree to which the sample returns to its original shape after compression with molars. | S&P butter cake (0.5-in cube) = 2.5 |
Chewiness | Difficulty in chewing the sample. Evaluate during 1–5 chews with molars. | Markenburg Marshies choco-vanilla (1/2 piece) = 4.0 |
Moistness | The amount of water perceived in the sample during chewing. Evaluate during 1–10 chews with molars. | S&P butter cake (0.5-in cube) = 7.0 |
Cohesiveness of mass | The degree to which the chewed sample holds together in mass. Evaluate after 15 chews with molars. | Lay’s Stax original flavored potato chips (1/2 piece) = 3.0 Ritz cracker (original) (1/2 piece) = 7.0 |
Sliminess | The degree to which a slimy, slippery, slightly viscous and soft gel-like sensation is perceived in the mouth. Evaluate after 15 chews with molars. | Doi Kham tomato Juice = 2.0 |
Graininess | The amount of round and small particles perceived in the mouth. Evaluate after 15 chews with molars. | Sunbites multigrain snack (1 piece) = 7.0 |
Mealy | The sensation of fine, soft, and somewhat rounded smooth and evenly distributed particles perceived when eating cooked starchy tubers such as potatoes, taro and yams. This attribute is perceived as the product is broken down during chewing. It is a geometrical attribute within the product itself and is not created by the chewing process. Evaluate after 15 chews with molars. | McGarrett mashed potato 10 g mashed potato, stir in 100 mL hot water, then put in microwave (1000 watt) for 1 min = 8.0 |
Roughness | The degree of abrasion of the chewed sample. Chew the sample with molars 15 times. Use the tip of the tongue to push the sample against the palate, then evaluate roughness of chewed sample. | S&P butter cake (0.5-in cube) = 2.0 Lay’s Stax original flavored potato chips (1/2 piece) = 6.0 |
Chew count | The number of times the sample is chewed until it is ready to swallow. Chew the sample with molars at a constant rate of 1 chew/s. | S&P butter cake (0.5-in cube) = 6.0 |
Mouth coating | A feeling of starchy or fatty coating in the mouth perceived immediately after swallowing the sample. | Meji full fat pasteurized milk = 6.0 |
Tooth pack | The amount of sample attached to teeth perceived immediately after swallowing the sample. | Lay’s Stax original flavored potato chips (1/2 piece) = 3.0 Thong Garden salted peanuts (2 halves) = 5.0 |
Residue | The amount of sample left in the mouth, except the tooth area, perceived immediately after swallowing the sample. | Lay’s Stax original flavored potato chips (1/2 piece) = 2.5 Thong Garden salted peanuts (2 halves) = 5.0 |
Dryness | The feeling of dryness perceived in the mouth and throat immediately after swallowing the sample. | Mitr Phol brown sugar = 4.0 |
Aftertaste (after swallowing the sample for 30 s) | ||
Baked flour | The perception of baked flour flavor after swallowing. | |
Brown | The perception of brown flavor after swallowing. | |
Dairy product | The perception of dairy product flavor after swallowing. | |
Dry | The perception of dry flavor after swallowing. | |
Sweet aromatic | The perception of sweet aromatic after swallowing. | |
Salty | The residual salty taste after swallowing. | |
Sweet | The residual sweet taste after swallowing. |
Attributes | Composite Flours # | ||||||
---|---|---|---|---|---|---|---|
T1 (0%) | T2 (10%) | T3 (25%) | T4 (40%) | T5 (70%) | T6 (85%) | T7 (100%) | |
Flavor | |||||||
Baked flour ns | 6.28 ± 0.26 | 6.21 ± 0.17 | 6.15 ± 0.26 | 6.03 ± 0.04 | 5.90 ± 0.30 | 6.04 ± 0.25 | 5.99 ± 0.06 |
Baking soda ns | 2.96 ± 0.06 | 2.87 ± 0.39 | 2.77 ± 0.05 | 2.77 ± 0.03 | 2.91 ± 0.02 | 2.96 ± 0.07 | 2.91 ± 0.24 |
Brown | 2.83 ± 0.46 c | 3.02 ± 0.30 c | 2.97 ± 0.48 c | 3.58 ± 0.07 b | 3.88 ± 0.09 a | 4.04 ± 0.26 a | 4.01 ± 0.06 a |
Dairy product | 3.43 ± 0.09 a | 3.21 ± 0.05 b | 3.21 ± 0.19 b | 2.84 ± 0.14 c | 2.86 ± 0.04 c | 2.78 ± 0.07 c | 2.93 ± 0.14 c |
Dry | 2.39 ± 0.07 c | 2.40 ± 0.31 c | 2.47 ± 0.46 c | 2.92 ± 0.07 b | 3.06 ± 0.08 ab | 3.02 ± 0.13 ab | 3.34 ± 0.04 a |
Eggy | 2.27 ± 0.01 ab | 2.33 ± 0.02 a | 2.41 ± 0.34 a | 2.03 ± 0.12 bc | 1.81 ± 0.04 c | 1.96 ± 0.06 c | 1.97 ± 0.04 c |
Fermented | 1.53 ± 0.40 ab | 1.27 ± 0.08 c | 1.56 ± 0.28 a | 1.38 ± 0.15 bc | 1.34 ± 0.09 bc | 1.37 ± 0.06 bc | 1.37 ± 0.10 bc |
Musty | 1.04 ± 0.29 c | 1.11 ± 0.07 bc | 1.05 ± 0.10 c | 1.34 ± 0.06 ab | 1.45 ± 0.04 a | 1.44 ± 0.10 a | 1.47 ± 0.04 a |
Nutty | 2.75 ± 0.30 d | 2.89 ± 0.16 d | 2.95 ± 0.24 cd | 3.23 ± 0.30 bc | 3.44 ± 0.08 ab | 3.48 ± 0.02 ab | 3.64 ± 0.04 a |
Sweet aromatic ns | 2.51 ± 0.02 | 2.38 ± 0.00 | 2.59 ± 0.19 | 2.62 ± 0.02 | 2.68 ± 0.29 | 2.58 ± 0.16 | 2.70 ± 0.16 |
Vanilla | 0.77 ± 0.01 a | 0.71 ± 0.25 ab | 0.72 ± 0.39 ab | 0.42 ± 0.04 c | 0.40 ± 0.02 c | 0.42 ± 0.04 c | 0.51 ± 0.17 bc |
Sweet ns | 3.26 ± 0.24 | 3.19 ± 0.11 | 3.35 ± 0.41 | 3.19 ± 0.15 | 3.14 ± 0.04 | 3.15 ± 0.21 | 3.38 ± 0.14 |
Salty ns | 4.77 ± 0.06 | 4.90 ± 0.30 | 4.37 ± 0.58 | 4.61 ± 0.08 | 4.63 ± 0.10 | 4.79 ± 0.29 | 4.79 ± 0.05 |
Bitter | 0.00 ± 0.00 c | 0.02 ± 0.03 bc | 0.03 ± 0.04 bc | 0.08 ± 0.04 bc | 0.13 ± 0.18 abc | 0.19 ± 0.27 ab | 0.28 ± 0.08 a |
Astringent ns | 1.37 ± 0.05 | 1.20 ± 0.03 | 1.31 ± 0.10 | 1.26 ± 0.07 | 1.31 ± 0.06 | 1.34 ± 0.16 | 1.27 ± 0.04 |
Tooth-etch ns | 1.93 ± 0.05 | 1.78 ± 0.00 | 1.91 ± 0.18 | 1.84 ± 0.14 | 1.81 ± 0.00 | 1.86 ± 0.07 | 1.87 ± 0.16 |
Texture | |||||||
Hardness ns | 4.32 ± 0.11 | 4.21 ± 0.24 | 3.94 ± 0.42 | 3.83 ± 0.17 | 3.96 ± 0.06 | 4.04 ± 0.05 | 4.08 ± 0.07 |
Firmness | 4.26 ± 0.17 a | 4.29 ± 0.15 a | 3.94 ± 0.15 ab | 3.58 ± 0.20 b | 3.74 ± 0.26 b | 3.63 ± 0.01 b | 3.78 ± 0.08 b |
Cohesiveness | 10.34 ± 0.01 a | 9.64 ± 0.05 b | 8.98 ± 1.05 b | 7.98 ± 0.29 c | 6.71 ± 0.25 d | 6.19 ± 0.43 d | 6.39 ± 0.31 d |
Tooth pull | 1.81 ± 0.18 a | 1.70 ± 0.03 a | 1.69 ± 0.07 a | 1.39 ± 0.16 b | 1.35 ± 0.07 b | 1.28 ± 0.03 b | 1.21 ± 0.13 b |
Springiness | 3.43 ± 0.06 a | 3.21 ± 0.14 a | 2.83 ± 0.24 b | 2.69 ± 0.27 bc | 2.47 ± 0.20 cd | 2.17 ± 0.50 de | 1.99 ± 0.17 e |
Chewiness | 4.25 ± 0.19 a | 4.19 ± 0.27 a | 3.76 ± 0.15 bc | 3.68 ± 0.26 c | 3.89 ± 0.44 abc | 3.63 ± 0.02 c | 4.18 ± 0.06 ab |
Moistness | 5.46 ± 0.02 a | 5.44 ± 0.13 a | 5.44 ± 0.15 a | 4.92 ± 0.51 b | 4.47 ± 0.27 bc | 4.17 ± 0.16 c | 4.47 ± 0.20 bc |
Cohesiveness of mass | 9.20 ± 0.50 a | 8.85 ± 0.55 ab | 8.55 ± 0.01 b | 8.75 ± 0.04 b | 8.57 ± 0.21 b | 8.59 ± 0.04 b | 8.78 ± 0.16 b |
Sliminess | 2.94 ± 0.08 ab | 2.98 ± 0.16 a | 2.94 ± 0.01 ab | 2.82 ± 0.02 abc | 2.69 ± 0.01 abc | 2.63 ± 0.05 bc | 2.58 ± 0.23 c |
Graininess | 2.87 ± 0.47 d | 3.12 ± 0.31 cd | 3.33 ± 0.00 c | 3.44 ± 0.16 bc | 3.69 ± 0.59 ab | 4.07 ± 0.02 a | 3.72 ± 0.47 ab |
Mealy | 5.00 ± 0.16 bc | 5.16 ± 0.33 ab | 5.54 ± 0.16 a | 4.94 ± 0.24 bc | 4.77 ± 0.25 bc | 4.69 ± 0.04 c | 4.60 ± 0.17 c |
Roughness | 3.19 ± 0.24 b | 3.21 ± 0.05 b | 3.24 ± 0.04 b | 3.58 ± 0.12 a | 3.72 ± 0.11 a | 3.69 ± 0.04 a | 3.82 ± 0.12 a |
Chew count | 8.80 ± 0.05 a | 8.62 ± 0.10 ab | 8.21 ± 0.30 c | 8.31 ± 0.04 bc | 8.49 ± 0.16 abc | 8.39 ± 0.31 bc | 8.69 ± 0.03 ab |
Mouth coating | 4.53 ± 0.43 abc | 4.88 ± 0.39 a | 4.84 ± 0.17 ab | 4.22 ± 0.47 c | 4.42 ± 0.20 bc | 4.64 ± 0.04 abc | 4.66 ± 0.16 abc |
Tooth pack ns | 1.39 ± 0.23 | 1.48 ± 0.08 | 1.52 ± 0.14 | 1.63 ± 0.13 | 1.57 ± 0.02 | 1.73 ± 0.30 | 1.64 ± 0.23 |
Residue | 1.75 ± 0.08 c | 1.82 ± 0.19 bc | 1.86 ± 0.05 bc | 1.99 ± 0.06 abc | 2.08 ± 0.04 ab | 2.10 ± 0.09 ab | 2.22 ± 0.03 a |
Dryness | 2.31 ± 0.03 c | 2.31 ± 0.00 c | 2.43 ± 0.22 bc | 2.64 ± 0.03 ab | 2.69 ± 0.07 ab | 2.73 ± 0.20 a | 2.87 ± 0.14 a |
Aftertaste | |||||||
Baked flour ns | 1.66 ± 0.05 | 1.64 ± 0.09 | 1.54 ± 0.03 | 1.58 ± 0.07 | 1.48 ± 0.06 | 1.44 ± 0.00 | 1.58 ± 0.16 |
Brown | 1.01 ± 0.09 d | 1.11 ± 0.17 cd | 1.11 ± 0.23 cd | 1.33 ± 0.08 bc | 1.55 ± 0.02 ab | 1.49 ± 0.02 ab | 1.58 ± 0.08 a |
Dairy product ns | 1.28 ± 0.11 | 1.32 ± 0.06 | 1.29 ± 0.08 | 1.17 ± 0.03 | 1.26 ± 0.01 | 1.24 ± 0.02 | 1.25 ± 0.04 |
Dry | 1.20 ± 0.07 b | 1.19 ± 0.19 b | 1.25 ± 0.14 b | 1.30 ± 0.08 b | 1.54 ± 0.17 a | 1.56 ± 0.05 a | 1.62 ± 0.05 a |
Sweet aromatic ns | 1.32 ± 0.06 | 1.29 ± 0.09 | 1.23 ± 0.01 | 1.39 ± 0.13 | 1.40 ± 0.14 | 1.47 ± 0.12 | 1.37 ± 0.10 |
Salty ns | 1.90 ± 0.06 | 1.89 ± 0.00 | 2.03 ± 0.17 | 2.11 ± 0.03 | 1.93 ± 0.06 | 1.97 ± 0.00 | 1.89 ± 0.10 |
Sweet | 1.52 ± 0.01 a | 1.38 ± 0.02 ab | 1.46 ± 0.03 a | 1.31 ± 0.00 b | 1.49 ± 0.12 a | 1.45 ± 0.01 ab | 1.53 ± 0.29 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adzqia, F.; Suwonsichon, S.; Thongngam, M. Effects of White Sorghum Flour Levels on Physicochemical and Sensory Characteristics of Gluten-Free Bread. Foods 2023, 12, 4113. https://doi.org/10.3390/foods12224113
Adzqia F, Suwonsichon S, Thongngam M. Effects of White Sorghum Flour Levels on Physicochemical and Sensory Characteristics of Gluten-Free Bread. Foods. 2023; 12(22):4113. https://doi.org/10.3390/foods12224113
Chicago/Turabian StyleAdzqia, Fahrunnisa, Suntaree Suwonsichon, and Masubon Thongngam. 2023. "Effects of White Sorghum Flour Levels on Physicochemical and Sensory Characteristics of Gluten-Free Bread" Foods 12, no. 22: 4113. https://doi.org/10.3390/foods12224113
APA StyleAdzqia, F., Suwonsichon, S., & Thongngam, M. (2023). Effects of White Sorghum Flour Levels on Physicochemical and Sensory Characteristics of Gluten-Free Bread. Foods, 12(22), 4113. https://doi.org/10.3390/foods12224113