Methods of Minimizing Polycyclic Aromatic Hydrocarbon Content in Homogenized Smoked Meat Sausages Using Different Casings and Variants of Meat-Fat Raw Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Material and Experimental Design
2.2. Production Technology of Model Homogenized Smoked-Pork Sausages
2.3. Chemicals and Materials
2.4. Thermal Efficiency of the Smoking Process of Model Homogenized Smoked-Pork Sausages
2.5. Determination of PAHs with the QuEChERS–HPLC–FLD/DAD Method
2.6. Quantification and Validation of QuEChERS–HPLC–FLD/DAD Method
2.7. Statistical Analysis
3. Results
3.1. Analysis of the Thermal Efficiency of the Smoking Process of Model Homogenized Smoked-Pork Sausages
3.2. Analysis of PAH Contamination of Model Homogenized Smoked-Pork Sausages
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Food Safety Authority, EFSA. Polycyclic aromatic hydrocarbons in food. Scientific Opinion of the Panel on Contaminants in the Food Chain Adopted on 9 June 2008. EFSA J. 2008, 6, 724. [Google Scholar] [CrossRef]
- Lawal, A.T. Polycyclic aromatic hydrocarbons: A review. Cogent Environ. Sci. 2017, 3, 1339841. [Google Scholar] [CrossRef]
- Singh, L.; Agarwal, T.; Simal-Gandara, J. PAHs, diet and cancer prevention: Cooking process driven-strategies. Trends. Food Sci. Tech. 2020, 99, 487–506. [Google Scholar] [CrossRef]
- Achten, C.; Andersson, J.T. Overview of Polycyclic Aromatic Compounds (PAC). Polycycl. Aromat. Compd. 2015, 35, 177–186. [Google Scholar] [CrossRef]
- Palade, L.M.; Negoiță, M.; Adascalului, A.C.; Mihai, A.L. Polycyclic Aromatic Hydrocarbon Occurrence and Formation in Processed Meat, Edible Oils, and Cereal-Derived Products: A Review. Appl. Sci. 2023, 13, 7877. [Google Scholar] [CrossRef]
- Bukowska, B.; Mokra, K.; Michałowicz, J. Benzo[a]pyrene—Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. Int. J. Mol. Sci. 2022, 23, 6348. [Google Scholar] [CrossRef] [PubMed]
- Bansal, V.; Kim, K.H. Review of PAH contamination in food products and their health hazards. Environ. Int. 2015, 84, 26–38. [Google Scholar] [CrossRef]
- Wu, S.; Gong, G.; Yan, K.; Sun, Y.; Zhang, L. Polycyclic aromatic hydrocarbons in edible oils and fatty foods: Occurrence, formation, analysis, change and control. Adv. Food Nutr. Res. 2020, 93, 59–112. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, P.; Zhou, P.; Luo, P. Levels and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in Vegetable Oils and Frying Oils by Using the Margin of Exposure (MOE) and the Incremental Lifetime Cancer Risk (ILCR) Approach in China. Foods 2023, 12, 811. [Google Scholar] [CrossRef]
- Ciecierska, M. Cocoa beans of different origins and varieties and their derived products contamination with polycyclic aromatic hydrocarbons. Food Chem. 2020, 317, 126408. [Google Scholar] [CrossRef]
- Zachara, A.; Gałkowska, D.; Juszczak, L. Contamination of smoked meat and fish products from Polish market with polycyclic aromatic hydrocarbons. Food Control 2017, 80, 45–51. [Google Scholar] [CrossRef]
- Alomirah, H.; Al-Zenki, S.; Al-Hooti, S.; Zaghloul, S.; Sawaya, W.; Ahmed, N.; Kannan, K. Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control 2011, 22, 2028–2035. [Google Scholar] [CrossRef]
- Wang, Z.; Ng, K.; Warner, R.; Stockmann, R.; Fang, Z. Reduction strategies for polycyclic aromatic hydrocarbons in processed foods. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1598–1626. [Google Scholar] [CrossRef] [PubMed]
- Scientific Committee on Food, SCF. Polycyclic Aromatic Hydrocarbons—Occurrence in Foods, Dietary Exposure and Health Effects. Report No. SCF/CS/CNTM/PAH/29 Add1 Final 2002. Available online: https://ec.europa.eu/food/fs/sc/scf/out154_en.pdf (accessed on 1 September 2023).
- Kafouris, D.; Koukkidou, A.; Christou, E.; Hadjigeorgiou, M.; Yiannopoulos, S. Determination of polycyclic aromatic hydrocarbons in traditionally smoked meat products and charcoal grilled meat in Cyprus. Meat Sci. 2020, 164, 108088. [Google Scholar] [CrossRef]
- Murkovic, M.; Pedreschi, F.; Ciesarova, Z. Process Contaminants: A Review. Enc. Food Chem. 2019, 609–614. [Google Scholar] [CrossRef]
- Rozentāle, I.; Stumpe-Vīksna, I.; Začs, D.; Siksna, I.; Melngaile, A.; Bartkevičs, V. Assessment of dietary exposure to polycyclic aromatic hydrocarbons from smoked meat products produced in Latvia. Food Control 2015, 54, 16–22. [Google Scholar] [CrossRef]
- Singh, L.; Varshney, J.G.; Agarwal, T. Polycyclic aromatic hydrocarbons’ formation and occurrence in processed food. Food Chem. 2016, 199, 768–781. [Google Scholar] [CrossRef]
- Commission of the European Communities. Commission Recommendation (EC) No. 108/2005 of 4 February 2005 on the Further Investigation into the Levels of Polycyclic Aromatic Hydrocarbons in Certain Foods. Official Journal of the European Union 2005, L 34/3. Available online: https://eur-lex.europa.eu/eli/reco/2005/108/oj (accessed on 1 September 2023).
- Commission of the European Communities. Commission Regulation (EU) No. 835/2011 of 19 August 2011 Amending Regulation (EC) No. 1881/2006 as Regards Maximum Levels for Polycyclic Aromatic Hydrocarbons in Foodstuffs. Official Journal of the European Union 2011, L 215/4. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:215:0004:0008:En:PDF (accessed on 1 September 2023).
- Ledesma, E.; Rendueles, M.; Díaz, M. Contamination of meat products during smoking by polycyclic aromatic hydrocarbons: Processes and prevention. Food Control 2016, 60, 64–87. [Google Scholar] [CrossRef]
- Šimko, P. Factors affecting elimination of polycyclic aromatic hydrocarbons from smoked meat foods and liquid smoke flavorings. Mol. Nutr. Food Res. 2005, 49, 637–647. [Google Scholar] [CrossRef]
- Ciecierska, M.; Obiedziński, M. Influence of smoking process on polycyclic aromatic hydrocarbons’ content in meat products. Acta Sci. Pol. Technol. Aliment. 2007, 6, 17–28. Available online: https://www.food.actapol.net/volume6/issue4/2_4_2007.pdf (accessed on 1 September 2023).
- Djinovic, J.; Popovic, A.; Jira, W. Polycyclic aromatic hydrocarbons (PAHs) in different types of smoked meat products from Serbia. Meat Sci. 2008, 80, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Jira, W.; Pöhlmann, M.; Hitzel, A.; Schwägele, F. Smoked Meat Products—Innovative Strategies for Reduction of Polycyclic Aromatic Hydrocarbons by Optimisation of the Smoking Process. Mater. Sci. 2013, p. 32540822. Available online: https://www.semanticscholar.org/paper/Smoked-meat-products-innovative-strategies-for-of-Jira-P%C3%B6hlmann/922b37ef969ae9eec639a301f78e32038df768e1 (accessed on 2 September 2023).
- Puljić, L.; Mastanjević, K.; Kartalović, B.; Kovačević, D.; Vranešević, J.; Mastanjević, K. The influence of different smoking procedures on the content of 16 PAHs in traditional dry cured smoked meat “Hercegovačka Pečenica”. Foods 2019, 8, 690. [Google Scholar] [CrossRef]
- Škaljac, S.; Jokanović, M.; Tomović, V.; Ivić, M.; Tasić, T.; Ikonić, P.; Šojić, B.; Džinić, N.; Petrović, L. Influence of smoking in traditional and industrial conditions on colour and content of polycyclic aromatic hydrocarbons in dry fermented sausage “Petrovská klobása”. LWT 2018, 87, 158–162. [Google Scholar] [CrossRef]
- Hitzel, A.; Pöhlmann, M.; Schwägele, F.; Speer, K.; Jira, W. Polycyclic aromatic hydrocarbons (PAH) and phenolic substances in meat products smoked with different types of wood and smoking spices. Food Chem. 2013, 139, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Malarut, J.; Vangnai, K. Influence of wood types on quality and carcinogenic polycyclic aromatic hydrocarbons (PAHs) of smoked sausages. Food Control 2018, 85, 98–106. [Google Scholar] [CrossRef]
- Racovita, R.C.; Secuianu, C.; Ciuca, M.D.; Israel-Roming, F. Effects of Smoking Temperature, Smoking Time, and Type of Wood Sawdust on Polycyclic Aromatic Hydrocarbon Accumulation Levels in Directly Smoked Pork Sausages. J. Agric. Food Chem. 2020, 68, 9530–9536. [Google Scholar] [CrossRef]
- Gomes, A.; Santos, C.; Almeida, J.; Elias, M.; Roseiro, L.C. Effect of fat content, casing type, and smoking procedures on PAHs contents of Portuguese traditional dry fermented sausages. Food Chem. Toxicol. 2013, 58, 369–374. [Google Scholar] [CrossRef]
- Ledesma, E.; Rendueles, M.; Diaz, M. Characterization of natural and synthetic casings and mechanism of B[a]P penetration in smoked meat products. Food Control 2015, 51, 195–205. [Google Scholar] [CrossRef]
- Pöhlmann, M.; Hitzel, A.; Schwägele, F.; Speer, K.; Jira, W. Polycyclic aromatic hydrocarbons (PAH) and phenolic substances in smoked frankfurter—Type sausages depending on type of casing and fat content. Food Control 2013, 31, 136–144. [Google Scholar] [CrossRef]
- Škaljac, S.; Petrović, L.; Tasić, T.; Ikonić, P.; Jokanović, M.; Tomović, V.; Džinić, N.; Šojić, B.; Tjapkin, A.; Škrbić, B. Influence of smoking in traditional and industrial conditions on polycyclic aromatic hydrocarbons content in dry fermented sausages (Petrovská klobása) from Serbia. Food Control 2014, 40, 12–18. [Google Scholar] [CrossRef]
- Shelly, D.; Perman, C.A. Extraction of Polycyclic Aromatic Hydrocarbons (PAH) from Fish Using the QuEChERS Approach. The Application Notebook 1 September 2010, 49. Available online: https://www.chromatographyonline.com/view/extraction-polycyclic-aromatic-hydrocarbons-pah-fish-using-quechers-approach (accessed on 15 September 2023).
- Commission of the European Communities. Commission Regulation (EU) No. 836/2011 of 19 August 2011 Amending Regulation (EC) No. 333/2007 Laying Down the Methods of Sampling and Analysis for the Official Control of the Levels of Lead, Cadmium, Mercury, Inorganictin, 3-MCPD and Benzo(a)pyrene in Foodstuffs. Official Journal of the European Union 2011, L 215/9. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:215:0009:0016:EN:PDF (accessed on 1 September 2023).
- Balejko, J.; Kołakowski, E.; Sikorski, Z. Auxiliary materials used in smoking food—Casings. In Food Smoking Technology; Kołakowski, E., Ed.; State Agricultural and Forestry Publishing House: Warsaw, Poland, 2012; pp. 130–140. [Google Scholar]
- Wajdzik, J. Technological suitability of natural casings for the production of cold cuts. Butcher’s Guide 2015, 15, 44–50. [Google Scholar]
- Starek, A. Design, production and refinement of plastic casings. Butcher’s Guide 2015, 15, 42–48. [Google Scholar]
- Sobczak, P.; Zawiślak, J.; Panasiewicz, M. Weight changes during the production of smoked using traditional methods. Pol. J. Food Eng. 2012, 2, 27–29. [Google Scholar]
- Dolatowski, Z.J.; Skórnicki, H. Traditional smoking and baking process safe to human health. Meat Products. Food Ind. 2014, 68, 20–23. [Google Scholar]
- Mastanjević, K.; Kartalović, B.; Petrović, J.; Novakov, N.; Puljić, L.; Kovačević, D.; Jukić, M.; Lukinac, J.; Mastanjević, K. Polycyclic aromatic hydrocarbons in the traditional smoked sausage Slavonska kobasica. J. Food Compos. Anal. 2019, 83, 103282. [Google Scholar] [CrossRef]
- Saito, E.; Tanaka, N.; Miyazaki, A.; Tsuzaki, M. Concentration and particle size distribution of polycyclic aromatic hydrocarbons formed by thermal cooking. Food Chem. 2014, 153, 285–291. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, G.; Su, S.; Schen, H.; Huang, Y.; Li, T.; Li, W.; Zhang, Y.; Lu, Y.; Chen, H.; et al. Contamination and distribution of parent, nitrated and oxygenated polycyclic aromatic hydrocarbons in smoked meat. Environ. Sci. Pollut. Res. Int. 2014, 21, 1521–11530. [Google Scholar] [CrossRef]
- Škaljac, S.; Jokanović, M.; Tomović, V.; Kartalović, B.; Ikonić, P.; Ćućević, N.; Vranešević, J.; Ivić, M.; Šojić, B.; Peulić, T. Influence of traditional smoking on the content of polycyclic aromatic hydrocarbons in dry fermented beef sausage from Serbia. Food Control 2023, 150, 109766. [Google Scholar] [CrossRef]
- Migdał, W.; Dudek, R.; Kapinos, F.; Kluska, W. Traditional smoked sausages—Content of polycyclic aromatic hydrocarbons (PAHs). In Properties of Food Products and Raw Materials. Selected Issues; Tarko, T., Duda-Chodak, A., Witczak, M., Najgebauer-Lejko, D., Eds.; Małopolska Branch of the Polish Society of Food Technologists: Cracow, Poland, 2014. [Google Scholar]
PAH | Calibration Curve | Correlation Coefficient r2 | Linearity Range (µg/L) | LOD (µg/kg) | LOQ (µg/kg) | Recovery for 100 µg/kg of Sample Fortification | Recovery for 10 µg/kg of Sample Fortification | Recovery for 1 µg/kg of Sample Fortification | Recovery (%) * | RSD (%) * | HORRATR Value * |
---|---|---|---|---|---|---|---|---|---|---|---|
Phen | y = 265,879x + 45,520 | 0.9999 | 1–50 | 0.06 | 0.11 | 80.6 | 78.1 | 76.4 | 78.4 | 8.3 | 0.7 |
Anthr | y = 195,739x + 43,120 | 0.9999 | 1–50 | 0.07 | 0.14 | 81.5 | 77.6 | 74.3 | 77.8 | 8.1 | 0.7 |
F | y = 29,531x − 2478.5 | 0.9998 | 1–50 | 0.13 | 0.26 | 89.0 | 87.2 | 81.4 | 85.9 | 9.2 | 0.8 |
Pyr | y = 128,631x + 55,798.5 | 0.9998 | 1–50 | 0.08 | 0.16 | 92.3 | 89.7 | 85.6 | 89.2 | 9.9 | 0.8 |
C[cd]P | y = 221,125x + 11,330 | 0.9994 | 2–50 | 0.47 | 0.94 | 109.3 | 106.9 | 108.9 | 108.4 | 9.1 | 0.8 |
B[a]A | y = 268,136x − 14,620.7 | 0.9997 | 1–50 | 0.05 | 0.10 | 93.2 | 87.3 | 85.9 | 88.8 | 6.3 | 0.5 |
Chr | y = 72,306x + 5232.1 | 0.9997 | 1–50 | 0.08 | 0.16 | 88.4 | 84.5 | 85.7 | 86.2 | 6.6 | 0.5 |
5-MChr | y = 152,197x + 5685.2 | 0.9996 | 1–50 | 0.07 | 0.15 | 91.4 | 84.8 | 80.6 | 85.6 | 7.3 | 0.6 |
B[j]F | y = 156,650x + 2996.8 | 0.9995 | 2–50 | 0.32 | 0.64 | 83.9 | 82.1 | 78.0 | 81.3 | 6.8 | 0.6 |
B[b]F | y = 119,531x + 55,798.5 | 0.9996 | 1–50 | 0.10 | 0.20 | 92.2 | 87.8 | 81.7 | 87.3 | 7.7 | 0.6 |
B[k]F | y = 422,930x + 18,992.4 | 0.9998 | 1–50 | 0.10 | 0.19 | 93.1 | 88.1 | 84.7 | 88.7 | 7.0 | 0.6 |
B[a]P | y = 419,310x − 2966.6 | 0.9998 | 1–50 | 0.12 | 0.24 | 92.2 | 90.2 | 86.1 | 89.5 | 7.6 | 0.6 |
D[ah]A | y = 122,346x + 3706.9 | 0.9996 | 1–50 | 0.13 | 0.26 | 86.0 | 80.3 | 78.9 | 81.7 | 7.8 | 0.6 |
D[al]P | y = 148,885x + 66,921.6 | 0.9999 | 2–50 | 0.30 | 0.60 | 80.9 | 78.8 | 75.1 | 78.3 | 8.0 | 0.7 |
B[ghi]P | y = 135,674x + 42,856.7 | 0.9996 | 1–50 | 0.15 | 0.30 | 88.0 | 86.9 | 82.6 | 85.8 | 7.9 | 0.7 |
I[cd]P | y = 122,483x − 11,362.5 | 0.9997 | 1–50 | 0.28 | 0.56 | 83.2 | 81.1 | 79.9 | 81.4 | 7.7 | 0.6 |
D[ae]P | y = 240,462x + 24,541 | 0.9998 | 1–50 | 0.29 | 0.59 | 82.9 | 78.0 | 73.9 | 78.3 | 9.1 | 0.8 |
D[ai]P | y = 14,242x + 73,123.3 | 0.9995 | 1–50 | 0.13 | 0.25 | 82.0 | 80.4 | 73.3 | 78.6 | 9.2 | 0.8 |
D[ah]P | y = 127,819x + 43,472.9 | 0.9995 | 1–50 | 0.16 | 0.33 | 78.2 | 73.9 | 69.1 | 73.7 | 9.4 | 0.8 |
Thermal Efficiency for Particular Smoking Batches | Natural Casing | Cellulose Casing | Collagen Casing | Polyamide Casing | Control Sample |
---|---|---|---|---|---|
1 | 79.9 | 81.9 | 81.8 | 84.6 | 91.5 |
2 | 81.4 | 83.4 | 83.2 | 84.9 | 91.0 |
3 | 82.0 | 82.0 | 83.0 | 84.1 | 90.9 |
Mean thermal efficiency (% ± SD) | 81.1 ± 1.1 | 82.5 ± 0.8 | 82.7 ± 0.7 | 84.5 ± 0.4 | 91.1 ± 0.4 |
PAH | Natural Casing | Cellulose Casing | Collagen Casing | Polyamide Casing | ||||
---|---|---|---|---|---|---|---|---|
External Part | Internal Part | External Part | Internal Part | External Part | Internal Part | External Part | Internal Part | |
Phen x | 29.24 ± 2.49 A1 | 8.93 ± 0.67 a1 | 22.05 ± 2.04 B1 | 4.85 ± 0.42 b1 | 6.84 ± 0.55 C1 | 0.72 ± 0.10 c1 | 7.95 ± 0.76 C1 | 0.81 ± 0.10 c1 |
Anthr | 4.99 ± 0.41 A2 | 1.39 ± 0.08 a2 | 4.02 ± 0.30 B2 | 0.76 ± 0.07 b2 | 0.99 ± 0.09 C2 | 0.14 ± 0.02 c2 | 1.07 ± 0.11 C2 | 0.13 ± 0.03 c2 |
F | 14.85 ± 1.10 A3 | 4.01 ± 0.22 a3 | 11.18 ± 0.91 B3 | 2.12 ± 0.14 b3 | 2.70 ± 0.20 C3 | 0.31 ± 0.05 c3 | 2.85 ± 0.23 C3 | 0.33 ± 0.06 c3 |
Pyr | 16.61 ± 1.23 A4 | 4.43 ± 0.23 a4 | 13.15 ± 1.12 B4 | 2.33 ± 0.16 b4 | 2.99 ± 0.22 C4 | 0.33 ± 0.07 c4 | 3.12 ± 0.30 C4 | 0.36 ± 0.08 c4 |
C[cd]P | nd w | nd | nd | nd | nd | nd | nd | nd |
B[a]A | 2.84 ± 0.25 A5 | nd | 2.15 ± 0.12 B5 | nd | nd | nd | nd | nd |
Chr | 2.67 ± 0.28 A6 | nd | 1.78 ± 0.10 B6 | nd | nd | nd | nd | nd |
5-MChr | nd | nd | nd | nd | nd | nd | nd | nd |
B[j]F | nd | nd | nd | nd | nd | nd | nd | nd |
B[b]F | 2.25 ± 0.12 A7 | nd | 1.67 ± 0.11 B7 | nd | nd | nd | nd | nd |
B[k]F | 2.41 ± 0.21 A8 | nd | 1.88 ± 0.15 B8 | nd | nd | nd | nd | nd |
B[a]P | 2.34 ± 0.19 A9 | nd | 1.79 ± 0.16 B9 | nd | nd | nd | nd | nd |
D[al]P | nd | nd | nd | nd | nd | nd | nd | nd |
D[ah]A | 2.46 ± 0.18 A10 | nd | 1.82 ± 0.20 B10 | nd | nd | nd | nd | nd |
B[ghi]P | 2.02 ± 0.22 A11 | nd | 1.65 ± 0.18 B11 | nd | nd | nd | nd | nd |
I[cd]P | nd | nd | nd | nd | nd | nd | nd | nd |
D[ae]P | nd | nd | nd | nd | nd | nd | nd | nd |
D[ai]P | nd | nd | nd | nd | nd | nd | nd | nd |
D[ah]P | nd | nd | nd | nd | nd | nd | nd | nd |
Σ 19 PAHs x | 82.68 ± 6.45 A12 | 18.75 ± 1.19 a12 | 63.14 ± 5.06 B12 | 10.06 ± 0.78 b12 | 13.52 ± 1.06 C12 | 1.46 ± 0.23 c12 | 14.99 ± 1.38 C12 | 1.63 ± 0.26 c12 |
Σ 15 heavy PAHs x | 16.99 ± 1.23 A13 | nd | 12.74 ± 0.69 B13 | nd | nd | nd | nd | nd |
Σ 4 light PAHs y | 65.69 ± 5.22 A14 | 18.75 ± 1.19 a14 | 50.40 ± 4.37 B14 | 10.06 ± 0.78 b14 | 13.52 ± 1.06 C14 | 1.46 ± 0.23 c14 | 14.99 ± 1.38 C14 | 1.63 ± 0.26 c14 |
Σ 4 marker-heavy PAHs z | 10.10 ± 0.68 A15 | nd | 7.39 ± 0.39 B15 | nd | nd | nd | nd | nd |
Natural Casing | ||||||
---|---|---|---|---|---|---|
Variant 1 | Variant 2 | Variant 3 | ||||
External Part | Internal Part | External Part | Internal Part | External Part | Internal Part | |
Phen x | 29.24 ± 2.49 C16 | 8.93 ± 0.67 b16 | 36.74 ± 3.02 B16 | 10.38 ± 0.85 ab16 | 43.31 ± 3.35 A16 | 11.95 ± 0.97 a16 |
Anthr | 4.99 ± 0.41 B17 | 1.39 ± 0.08 c17 | 5.84 ± 0.46 B17 | 1.68 ± 0.09 b17 | 6.95 ± 0.51 A17 | 2.07 ± 0.16 a17 |
F | 14.85 ± 1.10 B18 | 4.01 ± 0.22 c18 | 16.68 ± 1.21 B18 | 4.49 ± 0.28 b18 | 19.45 ± 1.45 A18 | 5.36 ± 0.31 a18 |
Pyr | 16.61 ± 1.23 C19 | 4.43 ± 0.23 c19 | 19.07 ± 1.35 B19 | 5.12 ± 0.35 b19 | 22.34 ± 1.59 A19 | 6.19 ± 0.37 a19 |
C[cd]P | nd w | nd | nd | nd | nd | nd |
B[a]A | 2.84 ± 0.25 B20 | nd | 3.35 ± 0.26 AB20 | nd | 3.99 ± 0.31 A20 | 0.18 ± 0.02 a20 |
Chr | 2.67 ± 0.28 B21 | nd | 3.10 ± 0.27 B21 | nd | 3.75 ± 0.30 A21 | 0.16 ± 0.01 a21 |
5-MChr | nd | nd | nd | nd | nd | nd |
B[j]F | nd | nd | nd | nd | nd | nd |
B[b]F | 2.25 ± 0.12 C22 | nd | 2.75 ± 0.17 B22 | nd | 3.40 ± 0.22 A22 | 0.20 ± 0.02 a22 |
B[k]F | 2.41 ± 0.21 C23 | nd | 2.84 ± 0.22 B23 | nd | 3.44 ± 0.26 A23 | 0.19 ± 0.01 a23 |
B[a]P | 2.34 ± 0.19 C24 | nd | 2.78 ± 0.20 B24 | nd | 3.45 ± 0.24 A24 | 0.24 ± 0.02 a24 |
D[al]P | nd | nd | nd | nd | nd | nd |
D[ah]A | 2.46 ± 0.18 B25 | nd | 2.85 ± 0.21 AB25 | nd | 3.25 ± 0.27 A25 | 0.25 ± 0.02 a25 |
B[ghi]P | 2.02 ± 0.22 B26 | nd | 2.36 ± 0.20 B26 | nd | 2.98 ± 0.23 A26 | 0.23 ± 0.01 a26 |
I[cd]P | nd | nd | nd | nd | nd | nd |
D[ae]P | nd | nd | nd | nd | nd | nd |
D[ai]P | nd | nd | nd | nd | nd | nd |
D[ah]P | nd | nd | nd | nd | nd | nd |
Σ 19 PAHs x | 82.68 ± 6.45 C27 | 18.75 ± 1.19 c27 | 98.37 ± 7.56 B27 | 21.67 ± 1.57 b27 | 116.32 ± 9.13 A27 | 27.02 ± 1.92 a27 |
Σ 15 heavy PAHs x | 16.99 ± 1.23 C28 | nd | 20.04 ± 1.52 B28 | nd | 24.27 ± 1.83 A28 | 1.45 ± 0.11 a28 |
Σ 4 light PAHs y | 65.69 ± 5.22 C29 | 18.75 ± 1.19 c29 | 78.33 ± 6.04 B29 | 21.67 ± 1.57 b29 | 92.05 ± 7.30 A29 | 25.57 ± 1.81 a29 |
Σ 4 marker-heavy PAHs z | 10.10 ± 0.68 C30 | nd | 11.98 ± 0.90 B30 | nd | 14.59 ± 1.07 A30 | 0.78 ± 0.07 a30 |
Pah | Cellulose Casing | |||||
---|---|---|---|---|---|---|
Variant 1 | Variant 2 | Variant 3 | ||||
External Part | Internal Part | External Part | Internal Part | External Part | Internal Part | |
Phen x | 22.05 ± 2.04 C31 | 4.85 ± 0.42 b31 | 26.75 ± 2.09 B31 | 5.26 ± 0.45 b31 | 32.42 ± 2.44 A31 | 6.56 ± 0.50 a31 |
Anthr | 4.02 ± 0.30 B32 | 0.76 ± 0.07 b32 | 4.41 ± 0.33 AB32 | 0.83 ± 0.09 ab32 | 5.01 ± 0.38 A32 | 0.95 ± 0.09 a32 |
F | 11.18 ± 0.91 C33 | 2.12 ± 0.14 b33 | 13.32 ± 0.96 B33 | 2.32 ± 0.18 ab33 | 14.89 ± 1.10 A33 | 2.76 ± 0.21 a33 |
Pyr | 13.15 ± 1.12 C34 | 2.33 ± 0.16 b34 | 15.39 ± 1.23 B34 | 2.56 ± 0.19 b34 | 17.95 ± 1.35 A34 | 3.14 ± 0.23 a34 |
C[cd]P | nd w | nd | nd | nd | nd | nd |
B[a]A | 2.15 ± 0.12 B35 | nd | 2.48 ± 0.20 AB35 | nd | 2.88 ± 0.24 A35 | nd |
Chr | 1.78 ± 0.10 C36 | nd | 2.10 ± 0.15 B36 | nd | 2.53 ± 0.17 A36 | nd |
5-MChr | nd | nd | 0.67 ± 0.07 B37 | nd | 0.80 ± 0.10 B37 | nd |
B[j]F | nd | nd | nd | nd | nd | nd |
B[b]F | 1.67 ± 0.11 C38 | nd | 2.02 ± 0.16 B38 | nd | 2.52 ± 0.18 A38 | nd |
B[k]F | 1.88 ± 0.15 B39 | nd | 2.24 ± 0.18 AB39 | nd | 2.65 ± 0.23 A39 | nd |
B[a]P | 1.79 ± 0.16 C40 | nd | 2.15 ± 0.12 B40 | nd | 2.53 ± 0.16 A40 | nd |
D[al]P | nd | nd | 0.34 ± 0.08 A41 | nd | 0.41 ± 0.07 A41 | nd |
D[ah]A | 1.82 ± 0.20 B42 | nd | 2.11 ± 0.15 AB42 | nd | 2.46 ± 0.19 A42 | nd |
B[ghi]P | 1.65 ± 0.18 B43 | nd | 1.88 ± 0.20 AB43 | nd | 2.21 ± 0.22 A43 | nd |
I[cd]P | nd | nd | nd | nd | nd | nd |
D[ae]P | nd | nd | 0.57 ± 0.10 A44 | nd | 0.69 ± 0.11 A44 | nd |
D[ai]P | nd | nd | nd | nd | nd | nd |
D[ah]P | nd | nd | nd | nd | nd | nd |
Σ 19 PAHs x | 63.14 ± 5.06 C45 | 10.06 ± 0.78 b45 | 76.43 ± 5.96 B45 | 10.97 ± 0.90 b45 | 89.95 ± 6.94 A45 | 13.41 ± 1.01 a45 |
Σ 15 heavy PAHs x | 12.74 ± 0.69 C46 | nd | 16.56 ± 1.35 B46 | nd | 19.68 ± 1.67 A46 | nd |
Σ 4 light PAHs y | 50.40 ± 4.37 C47 | 10.06 ± 0.78 b47 | 59.87 ± 4.61 B47 | 10.97 ± 0.90 b47 | 70.27 ± 5.27 A47 | 13.41 ± 1.01 a47 |
Σ 4 marker-heavy PAHs z | 7.39 ± 0.39 C48 | nd | 8.75 ± 0.63 B48 | nd | 10.46 ± 0.75 A48 | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciecierska, M.; Dasiewicz, K.; Wołosiak, R. Methods of Minimizing Polycyclic Aromatic Hydrocarbon Content in Homogenized Smoked Meat Sausages Using Different Casings and Variants of Meat-Fat Raw Material. Foods 2023, 12, 4120. https://doi.org/10.3390/foods12224120
Ciecierska M, Dasiewicz K, Wołosiak R. Methods of Minimizing Polycyclic Aromatic Hydrocarbon Content in Homogenized Smoked Meat Sausages Using Different Casings and Variants of Meat-Fat Raw Material. Foods. 2023; 12(22):4120. https://doi.org/10.3390/foods12224120
Chicago/Turabian StyleCiecierska, Marta, Krzysztof Dasiewicz, and Rafał Wołosiak. 2023. "Methods of Minimizing Polycyclic Aromatic Hydrocarbon Content in Homogenized Smoked Meat Sausages Using Different Casings and Variants of Meat-Fat Raw Material" Foods 12, no. 22: 4120. https://doi.org/10.3390/foods12224120
APA StyleCiecierska, M., Dasiewicz, K., & Wołosiak, R. (2023). Methods of Minimizing Polycyclic Aromatic Hydrocarbon Content in Homogenized Smoked Meat Sausages Using Different Casings and Variants of Meat-Fat Raw Material. Foods, 12(22), 4120. https://doi.org/10.3390/foods12224120