Polyphenols in Agricultural Grassland Crops and Their Health-Promoting Activities—A Review
Abstract
:1. Introduction
2. Grassland as a Source of Polyphenolic Compounds
3. Methodology
4. Bioactivity
4.1. Antioxidant Activity
4.1.1. Total Phenolic Content and Total Flavonoid Content
TPC | TFC | ||||||
---|---|---|---|---|---|---|---|
Grassland Species | mg GAE/g | Method | mg QE/g | mg RE/g | mg CE/g | Method | References |
L. perenne (Perennial rye grass) | 19.95–29.43 | 100 µL sample/standard. 2 mL 2% Na2CO3. 100 µL F-C reagent. 30 min incubation in DC. λ 720 nm. | 10.70–14.57 | 250 µL sample/standard. 5% NaNO3, 150 µL 10% AlCl3, and 0.5 mL NaOH (1M). 30 min incubation. λ 510 nm. | [1] | ||
26.46 | 50 µL sample/standard in MeOH mixed with 50 µL F-C reagent, 300 µL of 20% Na2CO3, and 3.5 mL DiH2O. 30 min incubation in DC. λ 728 nm | 25.37 | 2 mL sample/standard in MeOH mixed with 300 µL 5% NaNO2, wait 6 min. Add 300 µL of 10% AlCl3, wait 6 min, and add 1 of NaOH and add DiH2O to make up 6 mL. 15 min incubation. λ 510 nm. | [41] | |||
12.1 | 0.16 mL of sample/standard was mixed with a 1:10 dilution of F-C reagent in DiH2O with 0.64 mL Na2CO3 (0.71 M). 30 min incubation in DC. λ 765 nm. | [40] | |||||
C. intybus (Chicory) | 47.50–74.94 | See above. | 35.56–58.95 | See above. | [1] | ||
23.94 | 1 mL of F-C was added to 2 mL of both MeOH and EtOH extract solutions, followed by 10 mL DiH2O and 25 mL Na2CO3. 30 min incubation in DC. λ 760 nm. | 5.06 | 10 mL of extract was diluted with 25 mL MeOH. 5 mL of 5% sodium acetate, 8.3% AlCl3, and further diluted with MeOH to make up 25 mL. λ 430 nm. | [20] | |||
15.4 | 250 µL of sample/standard was mixed with 250 µL of diluted F-C reagent (1:1), 500 µL of 10% Na2CO3, and 4 mL DiH2O. 25 min incubation. λ 740 nm. | [50] | |||||
40.51 | F-C reagent was added to the sample, followed by 2% Na2CO3 in 0.1M NaOH. | [17] | |||||
85 | 100 g of extract was boiled with 95% EtOH for 2 h and filtered. The residue was dissolved and the remaining extract was subjected to free, acid-and-alkali hydrolysis to quantify polyphenolic compounds. | 6.82 | 1% AlCl3 was added to the ethanolic sample extract. λ 510 nm. | [43] | |||
1.16 | 200 µL of sample/standard was mixed with 3 mL DiH2O, followed by 250 µL F-C reagent and 250 µL of 20% Na2CO3. 2 h incubation. λ 750 nm. | 0.167 | 0.5 mL of sample/standard was mixed with 0.5 mL of 2% AlCl3. 60 min incubation. λ 420 nm. | [42] | |||
P. lanceolata (Plantain) | 112.27–138.69 | See above. | 81.01–102.42 | See above. | [1] | ||
65.2–190.9 | Determined using F-C reagent method. | 16.3–66.9 | Quantified using AlCl3 method. | [38] | |||
45 | Sample extract (1 mL of 2mg/mL), 45 mL DiH2O mixed with 1 mL F-C reagent, 3 mL 2% Na2CO3. 2 h shake incubation. λ 760 nm. | 9.6 | 1 mL of 2% AlCl3 in MeOH. 1 mL of 2 mg sample solution. 10 min incubation. λ 415 nm. | [44] | |||
T. pratense (Red clover) | 38.60–47.49 | See above. | 12.62–21.84 | See above. | [1] | ||
46.88 | 100 µL sample dissolved in MeOH, + 2 mL 2% Na2CO3. 5 incubation. 100 µL F-C reagent. 30 min incubation in DC. λ 750 nm. | 26.61 | Sample (50 mg) dissolved in 10 mL 80% MeOH, filtered (125 mm). 300 µL extract, 3.4 mL 30% MeOH, 150 µL 0.5 M NaNO2 + 150 μL 0.3M AlCl3. 5 min incubation + 1 mL NaOH (1 M). λ 510 nm. | [45] | |||
152.5 | 0.5 mL of sample in EtOH was mixed with 0.5 mL of F-C reagent to a flask containing 7 mL DiH2O. Wait 3 min. 1 mL of saturated Na2CO3 was added. DiH2O was added to make up to 10 mL in volume. 60 min incubation in DC. λ 750 nm. | [33] | |||||
34.38–48.46 | 0.5 mL of sample extract was mixed with 1.5 mL of diluted F-C reagent (1:9), and 2 mL of 7% Na2CO3. 60 min incubation in DC. λ 765 nm. | 20.98– 21.18 | 0.1 mL sample/standard was added to 1 mL of 96% EtOH, 0.05 mL of 33% acetic acid, 0.15 mL 10% AlCl3 and 2.0 mL 5% hexaethylenetetraamine solutions. 30 min incubation. λ 475 nm. | [35] |
4.2. Bioactivities of Grassland Crops
4.2.1. Antioxidant Activity
4.2.2. Anti-Cancer
4.2.3. Anti-Diabetic
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rapisarda, S.; Abu-Ghannam, N. Polyphenol Characterization and Antioxidant Capacity of Multi-Species Swards Grown in Ireland—Environmental Sustainability and Nutraceutical Potential. Sustainability 2023, 15, 634. [Google Scholar] [CrossRef]
- Ravindran, R.; Koopmans, S.; Sanders, J.P.M.; McMahon, H.; Gaffey, J. Production of Green Biorefinery Protein Concentrate Derived from Perennial Ryegrass as an Alternative Feed for Pigs. Clean Technol. 2021, 3, 656–669. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T.; Manuel Moreno-Rojas, J.; Sierra Alonso, I. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods 2021, 10, 839. [Google Scholar] [CrossRef] [PubMed]
- Gürbüz, N.; Uluişik, S.; Frary, A.; Frary, A.; Doğanlar, S. Health Benefits and Bioactive Compounds of Eggplant. Food Chem. 2018, 268, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Yeo, J.D. Bioactivities of Phenolics by Focusing on Suppression of Chronic Diseases: A Review. Int. J. Mol. Sci. 2018, 19, 1573. [Google Scholar] [CrossRef]
- Khan, M.K.; Karnpanit, W.; Nasar-Abbas, S.M.; Huma, Z.E.; Jayasena, V. Phytochemical Composition and Bioactivities of Lupin: A Review. Int. J. Food Sci. Technol. 2015, 50, 2004–2012. [Google Scholar] [CrossRef]
- Verma, N.; Shukla, S. Impact of Various Factors Responsible for Fluctuation in Plant Secondary Metabolites. J. Appl. Res. Med. Aromat. Plants 2015, 2, 105–113. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef]
- Rudrapal, M.; Chetia, D. Plant Flavonoids as Potential Source of Future Antimalarial Leads. Syst. Rev. Pharm. 2016, 8, 13–18. [Google Scholar] [CrossRef]
- Baiano, A. Recovery of Biomolecules from Food Wastes—A Review. Molecules 2014, 19, 14821–14842. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Besle, J.M.; Lamaison, J.L.; Pradel, P.; Fraisse, D.; Viala, D.; Martin, B. Flavonoids, from Forages to Milk. Renc Rech Ruminants 2004, 11, 67–70. [Google Scholar]
- Adler, S.A.; Purup, S.; Hansen-Møller, J.; Thuen, E.; Steinshamn, H. Phytoestrogens and Their Metabolites in Bulk-Tank Milk: Effects of Farm Management and Season. PLoS ONE 2015, 10, e0127187. [Google Scholar] [CrossRef] [PubMed]
- Clarke, H.J.; Griffin, C.; Rai, D.K.; O’Callaghan, T.F.; O’Sullivan, M.G.; Kerry, J.P.; Kilcawley, K.N. Dietary Compounds Influencing the Sensorial, Volatile and Phytochemical Properties of Bovine Milk. Molecules 2020, 25, 26. [Google Scholar] [CrossRef] [PubMed]
- Perović, J.; Tumbas Šaponjac, V.; Kojić, J.; Krulj, J.; Moreno, D.A.; García-Viguera, C.; Bodroža-Solarov, M.; Ilić, N. Chicory (Cichorium intybus L.) as a Food Ingredient—Nutritional Composition, Bioactivity, Safety, and Health Claims: A Review. Food Chem. 2021, 336, 127676. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, Y.; Ponnampalam, E.N.; Suleria, H.A.R.; Cottrell, J.J.; Dunshea, F.R. LC-ESI/QTOF-MS Profiling of Chicory and Lucerne Polyphenols and Their Antioxidant Activities. Antioxidants 2021, 10, 932. [Google Scholar] [CrossRef]
- Sahan, Y.; Gurbuz, O.; Guldas, M.; Degirmencioglu, N.; Begenirbas, A. Phenolics, Antioxidant Capacity and Bioaccessibility of Chicory Varieties (Cichorium spp.) Grown in Turkey. Food Chem. 2017, 217, 483–489. [Google Scholar] [CrossRef]
- Rizvi, W.; Fayazuddin, M.; Shariq, S.; Singh, O.; Moin, S.; Akhtar, K.; Kumar, A. Anti-Inflammatory Activity of Roots of Cichorium intybus Due to Its Inhibitory Effect on Various Cytokines and Antioxidant Activity. Anc. Sci. Life 2014, 34, 44–49. [Google Scholar] [CrossRef]
- Pushparaj, P.N.; Low, H.K.; Manikandan, J.; Tan, B.K.H.; Tan, C.H. Anti-Diabetic Effects of Cichorium intybus in Streptozotocin-Induced Diabetic Rats. J. Ethnopharmacol. 2007, 111, 430–434. [Google Scholar] [CrossRef]
- Epure, A.; Pârvu, A.E.; Vlase, L.; Benedec, D.; Hanganu, D.; Gheldiu, A.M.; Toma, V.A.; Oniga, I. Phytochemical Profile, Antioxidant, Cardioprotective and Nephroprotective Activity of Romanian Chicory Extract. Plants 2021, 10, 64. [Google Scholar] [CrossRef]
- Azzini, E.; Maiani, G.; Garaguso, I.; Polito, A.; Foddai, M.S.; Venneria, E.; Durazzo, A.; Intorre, F.; Palomba, L.; Rauseo, M.L.; et al. The Potential Health Benefits of Polyphenol-Rich Extracts from Cichorium intybus L. Studied on Caco-2 Cells Model. Oxid. Med. Cell. Longev. 2016, 2016, 1594616. [Google Scholar] [CrossRef] [PubMed]
- Reina, E.; Al-Shibani, N.; Allam, E.; Gregson, K.S.; Kowolik, M.; Windsor, L.J. The Effects of Plantago Major on the Activation of the Neutrophil Respiratory Burst. J. Tradit. Complement. Med. 2013, 3, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Reza, M.M.; Redoy, M.R.A.; Rahman, M.A.; Ety, S.; Alim, M.A.; Cheng, L.; Al-Mamun, M. Response of Plantain (Plantago lanceolata L.) Supplementation on Nutritional, Endo-Parasitic, and Endocrine Status in Lambs. Trop. Anim. Health Prod. 2021, 53, 82. [Google Scholar] [CrossRef] [PubMed]
- Gligor, F.G.; Frum, A.; Vicaș, L.G.; Totan, M.; Roman-Filip, C.; Dobrea, C.M. Determination of a Mixture of Plantago lanceolata L. and Salvia officinalis L. by High-Performance Liquid Chromatography with Ultraviolet Detection (HPLC-UV). Anal. Lett. 2020, 53, 1391–1406. [Google Scholar] [CrossRef]
- Hoon, J.; Hee, Y.; Beom, S.; Turk, A.; Oh, K.; Yeon, B.; Yong, K.; Kyeong, M. Identification of Antioxidant Constituents of the Aerial Part of Plantago asiatica Using LC–MS/MS Coupled DPPH Assay. Phytochem. Lett. 2018, 26, 20–24. [Google Scholar] [CrossRef]
- Ahatović, A.; Čakar, J.; Subašić, M.; Hasanović, M.; Murtić, S.; Durmić-Pašić, A. Plantago lanceolata L. from Serpentine Soils in Central Bosnia Tolerates High Levels of Heavy Metals in Soil. Water. Air. Soil Pollut. 2020, 231, 169. [Google Scholar] [CrossRef]
- Beara, I.N.; Lesjak, M.M.; Orčić, D.Z.; Simin, N.D.; Četojević-Simin, D.D.; Božin, B.N.; Mimica-Dukić, N.M. Comparative Analysis of Phenolic Profile, Antioxidant, Anti-Inflammatory and Cytotoxic Activity of Two Closely-Related Plantain Species: Plantago altissima L. and Plantago lanceolata L. LWT 2012, 47, 64–70. [Google Scholar] [CrossRef]
- Alsaraf, K.M.; Mohammad, M.H.; Al-Shammari, A.M.; Abbas, I.S. Selective Cytotoxic Effect of Plantago lanceolata L. against Breast Cancer Cells. J. Egypt. Natl. Canc. Inst. 2019, 31, 10. [Google Scholar] [CrossRef]
- Abate, L.; Bachheti, R.K.; Tadesse, M.G.; Bachheti, A. Ethnobotanical Uses, Chemical Constituents, and Application of Plantago lanceolata L. J. Chem. 2022, 2022, 1532031. [Google Scholar] [CrossRef]
- Dalar, A.; Konczak, I. Phenolic Contents, Antioxidant Capacities and Inhibitory Activities against Key Metabolic Syndrome Relevant Enzymes of Herbal Teas from Eastern Anatolia. Ind. Crops Prod. 2013, 44, 383–390. [Google Scholar] [CrossRef]
- Ozkan, G.; Kamiloglu, S.; Ozdal, T.; Boyacioglu, D.; Capanoglu, E. Potential Use of Turkish Medicinal Plants in the Treatment of Various Diseases. Molecules 2016, 21, 257. [Google Scholar] [CrossRef] [PubMed]
- Montefusco, A.; Semitaio, G.; Marrese, P.P.; Iurlaro, A.; De Caroli, M.; Piro, G.; Dalessandro, G.; Lenucci, M.S. Antioxidants in Varieties of Chicory (Cichorium intybus L.) and Wild Poppy (Papaver rhoeas L.) of Southern Italy. J. Chem. 2015, 2015, 923142. [Google Scholar] [CrossRef]
- Kroyer, G.T. Red Clover Extract as Antioxidant Active and Functional Food Ingredient. Innov. Food Sci. Emerg. Technol. 2004, 5, 101–105. [Google Scholar] [CrossRef]
- Ahmad, S.; Zeb, A. Phytochemical Profile and Pharmacological Properties of Trifolium repens. J. Basic Clin. Physiol. Pharmacol. 2021, 32, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Kazlauskaite, J.A.; Ivanauskas, L.; Marksa, M.; Bernatoniene, J. The Effect of Traditional and Cyclodextrin-Assisted Extraction Methods on Trifolium pratense L. (Red Clover) Extracts Antioxidant Potential. Antioxidants 2022, 11, 435. [Google Scholar] [CrossRef]
- Booth, N.L.; Overk, C.R.; Yao, P.; Burdette, J.E.; Nikolic, D.; Chen, S.N.; Bolton, J.L.; Van Breemen, R.B.; Pauli, G.F.; Farnsworth, N.R. The Chemical and Biologic Profile of a Red Clover (Trifolium pratense L.) Phase II Clinical Extract. J. Altern. Complement. Med. 2006, 12, 133–139. [Google Scholar] [CrossRef]
- Saviranta, N.M.M.; Julkunen-Tiitto, R.; Oksanen, E.; Karjalainen, R.O. Leaf Phenolic Compounds in Red Clover (Trifolium pratense L.) Induced by Exposure to Moderately Elevated Ozone. Environ. Pollut. 2010, 158, 440–446. [Google Scholar] [CrossRef]
- Sanna, F.; Piluzza, G.; Campesi, G.; Molinu, M.G.; Re, G.A.; Sulas, L. Antioxidant Contents in a Mediterranean Population of Plantago lanceolata L. Exploited for Quarry Reclamation Interventions. Plants 2022, 11, 791. [Google Scholar] [CrossRef]
- Kenny, O.; J Smyth, T.; M Hewage, C.; P Brunton, N. Antioxidant Properties and Quantitative UPLC-MS/MS Analysis of Phenolic Compounds in Dandelion (Taraxacum Officinale) Root Extracts. Free. Radic. Antioxid. 2014, 4, 55–61. [Google Scholar] [CrossRef]
- Kagan, I.A.; Goodman, J.P.; Seman, D.H.; Lawrence, L.M.; Smith, S.R. Effects of Harvest Date, Sampling Time, and Cultivar on Total Phenolic Concentrations, Water-Soluble Carbohydrate Concentrations, and Phenolic Profiles of Selected Cool-Season Grasses in Central Kentucky. J. Equine Vet. Sci. 2019, 79, 86–93. [Google Scholar] [CrossRef]
- Nagaty Mahrous, M.; Attia, E.; Abdelkader, M.S.; Hamed, A. Phytochemical Screening, and In Vitro Evaluation of Antioxidant Activity of Lolium perenne. J. Adv. Biomed. Pharm. Sci. 2023, 6, 150–154. [Google Scholar] [CrossRef]
- Kandil, A.S.; Abou-Elella, F.; El Shemy, H.A. Cytotoxic Profile Activities of Ethanolic and Methanolic Extracts of Chicory Plant (Cichorium intybus L.). J. Radiat. Res. Appl. Sci. 2019, 12, 106–111. [Google Scholar] [CrossRef]
- Abbas, Z.K.; Saggu, S.; Sakeran, M.I.; Zidan, N.; Rehman, H.; Ansari, A.A. Phytochemical, Antioxidant and Mineral Composition of Hydroalcoholic Extract of Chicory (Cichorium intybus L.) Leaves. Saudi J. Biol. Sci. 2014, 22, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Bahadori, M.B.; Sarikurkcu, C.; Kocak, M.S.; Calapoglu, M.; Uren, M.C.; Ceylan, O. Plantago lanceolata as a Source of Health-Beneficial Phytochemicals: Phenolics Profile and Antioxidant Capacity. Food Biosci. 2020, 34, 100536. [Google Scholar] [CrossRef]
- Esmaeili, A.K.; Taha, R.M.; Mohajer, S.; Banisalam, B. Antioxidant Activity and Total Phenolic and Flavonoid Content of Various Solvent Extracts from in Vivo and in Vitro Grown Trifolium pratense L. (Red Clover). Biomed Res. Int. 2015, 2015, 643285. [Google Scholar] [CrossRef]
- Kucükboyaci, N.; Kadioglu, O.; Adiguzel, N.; Tamer, U.; Guvenc, A.; Bani, B. Determination of Isoflavone Content By HPLC-UV Method and in Vitro Antioxidant Activity of Red Clover (Trifolium pratense L.). Turk. J. Pharm. Sci. 2013, 10, 463–472. [Google Scholar]
- Vlaisavljević, S.; Kaurinović, B.; Popović, M.; Vasiljević, S. Profile of Phenolic Compounds in Trifolium pratense L. Extracts at Different Growth Stages and Their Biological Activities. Int. J. Food Prop. 2017, 20, 3090–3101. [Google Scholar] [CrossRef]
- Iqbal, Y.; Ponnampalam, E.N.; Cottrell, J.J.; Suleria, H.A.R.; Dunshea, F.R. Extraction and Characterization of Polyphenols from Non-Conventional Edible Plants and Their Antioxidant Activities. Food Res. Int. 2022, 157, 111205. [Google Scholar] [CrossRef]
- Złotek, U.; Mikulska, S.; Nagajek, M.; Świeca, M. The Effect of Different Solvents and Number of Extraction Steps on the Polyphenol Content and Antioxidant Capacity of Basil Leaves (Ocimum basilicum L.) Extracts. Saudi J. Biol. Sci. 2016, 23, 628–633. [Google Scholar] [CrossRef]
- Cova, C.M.; Boffa, L.; Pistocchi, M.; Giorgini, S.; Luque, R.; Cravotto, G. Technology and Process Design for Phenols Recovery from Industrial Chicory (Chicorium intybus) Leftovers. Molecules 2019, 24, 2681. [Google Scholar] [CrossRef]
- Hossain, M.B.; Rai, D.K.; Brunton, N.P.; Martin-Diana, A.B.; Barry-Ryan, A.C. Characterization of Phenolic Composition in Lamiaceae Spices by LC-ESI-MS/MS. J. Agric. Food Chem. 2010, 58, 10576–10581. [Google Scholar] [CrossRef] [PubMed]
- Ferioli, F.; D’Antuono, L.F. An Update Procedure for an Effective and Simultaneous Extraction of Sesquiterpene Lactones and Phenolics from Chicory. Food Chem. 2012, 135, 243–250. [Google Scholar] [CrossRef]
- Eray, N.; Kartal, D.İ.; Çelik, İ. Antioxidant Properties of Cichorium intybus L. (Chicory) Extracts and Their Cytotoxic Effects on Hepg2 Cells. Yuz. Yil Univ. J. Agric. Sci. 2020, 30, 444–453. [Google Scholar] [CrossRef]
- Akbaribazm, M.; Khazaei, M.R.; Khazaei, M. Trifolium pratense L. (Red Clover) Extract and Doxorubicin Synergistically Inhibits Proliferation of 4T1 Breast Cancer in Tumor-Bearing BALB/c Mice through Modulation of Apoptosis and Increase Antioxidant and Anti-Inflammatory Related Pathways. Food Sci. Nutr. 2020, 8, 4276–4290. [Google Scholar] [CrossRef] [PubMed]
- Deweese, R.; Hunter, R.; Davey, C.; Christina, S.; Abramovitch, D.; Ivankovic, D.; Weinbrenner, D. Cytotoxic Effects of Trifolium pratense, Baptisia australis, and Rubus idaeus Extracts on CHO-K1 Cells. GSC Adv. Res. Rev. 2021, 8, 128–139. [Google Scholar] [CrossRef]
- Thi Viet Huong, D.; Minh Giang, P.; Hoang Yen, N.; Nguyen, S.T. Plantago major L. Extracts Reduce Blood Glucose in Streptozotocin-Induced Diabetic Mice. J. Chem. 2021, 2021, 6688731. [Google Scholar] [CrossRef]
- Parandin, R. Antidiabtic and Hepatoprotective Effects of Hydroalcoholic Extract of Trifolium pratense in Mice. Exp. Anim. Biol. 2020, 110, 101–110. [Google Scholar]
- Centers for Disease Control and Prevention. National Diabetes Statistics Report 2020. In Estimates of Diabetes and Its Burden in the United States; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020. [Google Scholar]
- Dalar, A.; Konczak, I. Cichorium intybus from Eastern Anatolia: Phenolic Composition, Antioxidant and Enzyme Inhibitory Activities. Ind. Crops Prod. 2014, 60, 79–85. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, X.; Guo, K.; Zhou, F.; Yang, H. Use of Chlorogenic Acid against Diabetes Mellitus and Its Complications. J. Immunol. Res. 2020, 2020, 9680508. [Google Scholar] [CrossRef]
- Meng, S.; Cao, J.; Feng, C.; Peng, J.; Hu, J. Roles of Chlorogenic Acid on Regulating Glucose and Lipids Metabolism: A Review. Evid. Based Complement. Altern. Med. 2013, 2013, 801457. [Google Scholar] [CrossRef]
- Chiva-Blanch, G.; Urpi-Sarda, M.; Ros, E.; Valderas-Martinez, P.; Casas, R.; Arranz, S.; Guillén, M.; Lamuela-Raventós, R.M.; Llorach, R.; Andres-Lacueva, C.; et al. Effects of Red Wine Polyphenols and Alcohol on Glucose Metabolism and the Lipid Profile: A Randomized Clinical Trial. Clin. Nutr. 2013, 32, 200–206. [Google Scholar] [CrossRef]
- Balzer, J.; Rassaf, T.; Heiss, C.; Kleinbongard, P.; Lauer, T.; Merx, M.; Heussen, N.; Gross, H.B.; Keen, C.L.; Schroeter, H.; et al. Sustained Benefits in Vascular Function Through Flavanol-Containing Cocoa in Medicated Diabetic Patients. A Double-Masked, Randomized, Controlled Trial. J. Am. Coll. Cardiol. 2008, 51, 2141–2149. [Google Scholar] [CrossRef]
- Xi, H.; Zhou, W.; Niu, Y.; Zhu, R.; Wang, S.; Guo, Y.; Liu, W.; Xiong, X.; Guo, L. Effect of Oat Consumption on Blood Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Acad. Nutr. Diet. 2023, 123, 809–823. [Google Scholar] [CrossRef] [PubMed]
(a) Phenolic Acids | L. perenne | C. intybus | P. lanceolata | T. pratense | Reference |
---|---|---|---|---|---|
3-Hydroxybenzoic acid | 4 | [44] | |||
4-Hydroxybenzoic acid | 36 | [44] | |||
149.46 | [27] | ||||
0.713 | [47] | ||||
2,5-Dihydroxybenzoic acid | 16.2 | [27] | |||
0.088 | [47] | ||||
Caffeic acid | 20 | [17] | |||
90.46 | [27] | ||||
1860 | [50] | ||||
1.041 | [47] | ||||
Chicoric acid | 2334 | [52] | |||
18450 | [20] | ||||
1692 | [16] | ||||
Chlorogenic acid | 4668 | 1208 | 7588 | 78 | [1] |
910.69 | [20] | ||||
7115.62 | [27] | ||||
Cinnamic acid | 115 | [16] | |||
209.78 | [27] | ||||
Ferulic acid | 10 | [17] | |||
57.01 | [27] | ||||
17 | [44] | ||||
Gallic acid | 38.17 | [16] | |||
0.03 | [17] | ||||
212.01 | [28] | ||||
Mono caffeoyltartaric acid | 1323 | [52] | |||
742.81 | [20] | ||||
p-Coumaric acid | 0.03 | [17] | |||
24 | [44] | ||||
87.67 | [27] | ||||
Protocatechuic acid | 103.48 | [27] | |||
0.197 | [47] | ||||
Vanillic acid | 0.08 | [17] | |||
411.52 | [27] | ||||
Verbascoside | 95,000 | [44] | |||
45,130 | [38] | ||||
Syringic acid | 0.23 | [17] | |||
(b) Flavonoid class | L. perenne | C. intybus | P. lanceolata | T. pratense | Reference |
Apigenin | 184.38 | [27] | |||
27 | [44] | ||||
0.32 | [47] | ||||
Apigenin 7-O-glucoside | 21 | [44] | |||
0.288 | [47] | ||||
Apiin | 3.48 | [27] | |||
Biochanin A | 20 | 866 | 166 | 2372 | [1] |
Catechin | 20 | [17] | |||
23 | [44] | ||||
Daidzein | 26 | 154 | 12 | 262 | [1] |
1.527 | [47] | ||||
Epicatechin gallate | 29.28 | [16] | |||
Formononetin | 38 | 2646 | 440 | 5934 | [1] |
Genistein | 641.8 | [16] | |||
0.588 | [47] | ||||
Hesperidin | 0.17 | [17] | |||
270 | [44] | ||||
Hyperoside | 2.65 | [27] | |||
290 | [44] | ||||
45.259 | [47] | ||||
Isoquercitrin | 427.3 | [20] | |||
Kaempferol | 22 | 852 | 74 | 36 | [1] |
0.062 | [47] | ||||
Kaempferol-3-O-glucoside | 8.544 | [47] | |||
Kaempferol glucuronide | 876.2 | [52] | |||
Kaempferol malonyl glucoside | 341.8 | [52] | |||
Kaempferol-3-O-gluconide | 5.95 | [27] | |||
Luteolin | 18 | 874 | 118 | 44 | [1] |
Luteolin-3-glucoside | 1390 | [50] | |||
Methyl quercetin glucuronide | 255 | [52] | |||
Myricetin | 0.05 | [17] | |||
Naringenin | 16 | 14 | 10 | 12 | [1] |
0.062 | [47] | ||||
Quercetin | 14 | 16 | 8 | 8 | ([1] |
0.128 | [47] | ||||
Quercetin-3-O-glucoside | 24.243 | [47] | |||
Quercetin malonyl glucoside | 695.3 | [52] | |||
Rutin | 4.7 | [44] | |||
0.157 | [52] | ||||
The concentration values are depicted by colour, where green indicates a high concentration per compound, while red indicates a low concentration. | |||||
Low | High |
Grassland Species | FRAP (µM TE/g) | DPPH• | ABTS• (µmol TE/g DW) | ORAC (µmol TE/g DW) | References | |||
---|---|---|---|---|---|---|---|---|
Activity (µmol TE/g DW) | IC 50 (μg/mL) | % Inhibition | Sample Concentration (mg/mL) | |||||
L. perenne (Perennial rye grass) | 67.36–102.77 | 19.27–25.87%. | 0.25 | 755.08–1053.55 | [1] | |||
417.25 | [41] | |||||||
C. intybus (Chicory) | 194.44–286.71 | 35.74–58.98% | 0.25 | 1224.33–1594.22 | [1] | |||
896.68 | 164.98 | [20] | ||||||
233.66 | 161.8 | [17] | ||||||
67.27 | [43] | |||||||
EtOH: 70.83%. MeOH: 54.65%. | 1 | [42] | ||||||
P. lanceolata (Plantain) | 368.70–482.49 | 71.59–80.94% | 0.25 | 2032.51–2478.93 | [1] | |||
102–351 | 87–214 | [38] | ||||||
4.2 | [27] | |||||||
51–95% | 0.20–0.80 | [44] | ||||||
T. pratense (Red clover) | 89.54–136.05 | 23.36–37.58% | 0.25 | 988.17–1220.49 | [1] | |||
94.25 | [45] | |||||||
320 | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verhulst, E.P.; Brunton, N.P.; Rai, D.K. Polyphenols in Agricultural Grassland Crops and Their Health-Promoting Activities—A Review. Foods 2023, 12, 4122. https://doi.org/10.3390/foods12224122
Verhulst EP, Brunton NP, Rai DK. Polyphenols in Agricultural Grassland Crops and Their Health-Promoting Activities—A Review. Foods. 2023; 12(22):4122. https://doi.org/10.3390/foods12224122
Chicago/Turabian StyleVerhulst, Emily P., Nigel P. Brunton, and Dilip K. Rai. 2023. "Polyphenols in Agricultural Grassland Crops and Their Health-Promoting Activities—A Review" Foods 12, no. 22: 4122. https://doi.org/10.3390/foods12224122
APA StyleVerhulst, E. P., Brunton, N. P., & Rai, D. K. (2023). Polyphenols in Agricultural Grassland Crops and Their Health-Promoting Activities—A Review. Foods, 12(22), 4122. https://doi.org/10.3390/foods12224122