Dietary Phenolic Compounds Exert Some of Their Health-Promoting Bioactivities by Targeting Liver X Receptor (LXR) and Retinoid X Receptor (RXR)
Abstract
:1. Introduction
2. Liver X Receptor (LXR)
3. Retinoid X Receptor (RXR)
4. Bibliographic Analysis
5. Effects of Various Phenolic Compounds on LXR and RXR
5.1. Quercetin
5.2. Resveratrol
5.3. Chlorogenic Acid
5.4. Cyanidin
5.5. Mixed Phenolics
5.6. Phenolic Extracts
6. Perspectives
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wallace, T.C.; Bailey, R.L.; Blumberg, J.B.; Burton-Freeman, B.; Chen, C.Y.O.; Crowe-White, K.M.; Drewnowski, A.; Hooshmand, S.; Johnson, E.; Lewis, R.; et al. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit. Rev. Food Sci. 2020, 60, 2174–2211. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, M.Z.; Kausar, F.; Hassan, M.; Javaid, S.; Malik, A. Anticancer activities of phenolic compounds from Moringa oleifera leaves: In vitro and in silico mechanistic study. Beni-Suef Univ. J. Basic Appl. Sci. 2021, 10, 12. [Google Scholar] [CrossRef]
- Nardini, M. Phenolic Compounds in Food: Characterization and Health Benefits. Molecules 2022, 27, 783. [Google Scholar] [CrossRef] [PubMed]
- Othman, Z.A.; Ghazali, W.S.W.; Noordin, L.; Yusof, N.A.M.; Mohamed, M. Phenolic Compounds and the Anti-Atherogenic Effect of Bee Bread in High-Fat Diet-Induced Obese Rats. Antioxidants 2020, 9, 33. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Lopez, P.; Lozano-Sanchez, J.; Borras-Linares, I.; Emanuelli, T.; Menendez, J.A.; Segura-Carretero, A. Structure-Biological Activity Relationships of Extra-Virgin Olive Oil Phenolic Compounds: Health Properties and Bioavailability. Antioxidants 2020, 9, 685. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.K.; Lin, S.R.; Chang, C.H.; Tsai, M.J.; Lee, D.N.; Weng, C.F. Natural phenolic compounds potentiate hypoglycemia via inhibition of Dipeptidyl peptidase IV. Sci. Rep. 2019, 9, 15585. [Google Scholar] [CrossRef]
- Chandramohan, R.; Pari, L. Antihyperlipidemic effect of tyrosol, a phenolic compound in streptozotocin-induced diabetic rats. Toxicol. Mech. Methods 2021, 31, 507–516. [Google Scholar] [CrossRef]
- Vilkickyte, G.; Raudone, L.; Petrikaite, V. Phenolic Fractions from Vaccinium vitis-idaea L. and Their Antioxidant and Anticancer Activities Assessment. Antioxidants 2020, 9, 1261. [Google Scholar] [CrossRef]
- Weikum, E.R.; Liu, X.; Ortlund, E.A. The nuclear receptor superfamily: A structural perspective. Protein Sci. 2018, 27, 1876–1892. [Google Scholar] [CrossRef]
- Xu, Y.; O’Malley, B.W.; Elmquist, J.K. Brain nuclear receptors and body weight regulation. J. Clin. Investig. 2017, 127, 1172–1180. [Google Scholar] [CrossRef]
- Lin, C.Y.; Gustafsson, J.A. Targeting liver X receptors in cancer therapeutics. Nat. Rev. Cancer 2015, 15, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Dougherty, E.J.; Danner, R.L. PPARγ signaling and emerging opportunities for improved therapeutics. Pharmacol. Res. 2016, 111, 76–85. [Google Scholar] [CrossRef]
- Giampietro, L.; Ammazzalorso, A.; Amoroso, R.; De Filippis, B. Development of Fibrates as Important Scaffolds in Medicinal Chemistry. ChemMedChem 2019, 14, 1051–1066. [Google Scholar] [CrossRef] [PubMed]
- Aranaz, P.; Navarro-Herrera, D.; Zabala, M.; Migueliz, I.; Romo-Hualde, A.; Lopez-Yoldi, M.; Martinez, J.A.; Vizmanos, J.L.; Milagro, F.I.; Gonzalez-Navarro, C.J. Phenolic Compounds Inhibit 3T3-L1 Adipogenesis Depending on the Stage of Differentiation and Their Binding Affinity to PPAR gamma. Molecules 2019, 24, 1045. [Google Scholar] [CrossRef]
- Goher, S.S.; Griffett, K.; Hegazy, L.; Elagawany, M.; Arief, M.M.H.; Avdagic, A.; Banerjee, S.; Burris, T.P.; Elgendy, B. Development of novel liver X receptor modulators based on a 1,2,4-triazole scaffold. Bioorg. Med. Chem. Lett. 2019, 29, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 2016, 54, 1–30. [Google Scholar] [CrossRef]
- Zelcer, N.; Tontonoz, P. Liver X receptors as integrators of metabolic and inflammatory signaling. J. Clin. Investig. 2006, 116, 607–614. [Google Scholar] [CrossRef]
- Alnaaim, S.A.; Al-Kuraishy, H.M.; Alexiou, A.; Papadakis, M.; Saad, H.M.; Batiha, G.E. Role of Brain Liver X Receptor in Parkinson’s Disease: Hidden Treasure and Emerging Opportunities. Mol. Neurobiol. 2023. online ahead of print. [Google Scholar] [CrossRef]
- Endo-Umeda, K.; Makishima, M. Liver X Receptors Regulate Cholesterol Metabolism and Immunity in Hepatic Nonparenchymal Cells. Int. J. Mol. Sci. 2019, 20, 5045. [Google Scholar] [CrossRef]
- Jakobsson, T.; Treuter, E.; Gustafsson, J.A.; Steffensen, K.R. Liver X receptor biology and pharmacology: New pathways, challenges and opportunities. Trends Pharmacol. Sci. 2012, 33, 394–404. [Google Scholar] [CrossRef]
- Lifsey, H.C.; Kaur, R.; Thompson, B.H.; Bennett, L.; Temel, R.E.; Graf, G.A. Stigmasterol stimulates transintestinal cholesterol excretion independent of liver X receptor activation in the small intestine. J. Nutr. Biochem. 2020, 76, 108263. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Tontonoz, P. Liver X receptors in lipid signalling and membrane homeostasis. Nat. Rev. Endocrinol. 2018, 14, 452–463. [Google Scholar] [CrossRef]
- Zhao, L.; Lei, W.R.; Deng, C.; Wu, Z.; Sun, M.; Jin, Z.X.; Song, Y.B.; Yang, Z.; Jiang, S.; Shen, M.Z.; et al. The roles of liver X receptor alpha in inflammation and inflammation-associated diseases. J. Cell. Physiol. 2021, 236, 4807–4828. [Google Scholar] [CrossRef]
- Dawson, M.I.; Xia, Z.B. The retinoid X receptors and their ligands. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2012, 1821, 21–56. [Google Scholar] [CrossRef] [PubMed]
- Allenby, G.; Bocquel, M.T.; Saunders, M.; Kazmer, S.; Speck, J.; Rosenberger, M.; Lovey, A.; Kastner, P.; Grippo, J.F.; Chambon, P.; et al. Retinoic Acid Receptors and Retinoid X-Receptors—Interactions with Endogenous Retinoic Acids. Proc. Natl. Acad. Sci. USA 1993, 90, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Chasse, S.A.; Devarakonda, S.; Sierk, M.L.; Ahvazi, B.; Rastinejad, F. Structural basis of RXR-DNA interactions. J. Mol. Biol. 2000, 296, 509–520. [Google Scholar] [CrossRef]
- Hiebl, V.; Ladurner, A.; Latkolik, S.; Dirsch, V.M. Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnol. Adv. 2018, 36, 1657–1698. [Google Scholar] [CrossRef]
- Dominguez-Avila, J.A.; Gonzalez-Aguilar, G.A.; Alvarez-Parrilla, E.; de la Rosa, L.A. Modulation of PPAR Expression and Activity in Response to Polyphenolic Compounds in High Fat Diets. Int. J. Mol. Sci. 2016, 17, 1002. [Google Scholar] [CrossRef]
- Lu, Y.; Jia, Y.P. Quercetin upregulates ABCA1 expression through liver X receptor alpha signaling pathway in THP-1 macrophages. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 3945–3952. [Google Scholar]
- Waizenegger, J.; Lenze, D.; Luckert, C.; Seidel, A.; Lampen, A.; Hessel, S. Dose-dependent induction of signaling pathways by the flavonoid quercetin in human primary hepatocytes: A transcriptomic study. Mol. Nutr. Food Res. 2015, 59, 1117–1129. [Google Scholar] [CrossRef]
- Pang, J.; Xu, H.H.; Wang, X.; Chen, X.; Li, Q.; Liu, Q.N.; You, Y.R.; Zhang, H.Y.; Xu, Z.L.; Zhao, Y.M.; et al. Resveratrol enhances trans-intestinal cholesterol excretion through selective activation of intestinal liver X receptor alpha. Biochem. Pharmacol. 2021, 186, 114481. [Google Scholar] [CrossRef] [PubMed]
- Maj, E.; Maj, B.; Bobak, K.; Gos, M.; Chodynski, M.; Kutner, A.; Wietrzyk, J. Differential Response of Lung Cancer Cells, with Various Driver Mutations, to Plant Polyphenol Resveratrol and Vitamin D Active Metabolite PRI-2191. Int. J. Mol. Sci. 2021, 22, 2354. [Google Scholar] [CrossRef]
- Nachliely, M.; Sharony, E.; Bolla, N.R.; Kutner, A.; Danilenko, M. Prodifferentiation Activity of Novel Vitamin D Analogs PRI-1916 and PRI-1917 and Their Combinations with a Plant Polyphenol in Acute Myeloid Leukemia Cells. Int. J. Mol. Sci. 2016, 17, 1068. [Google Scholar] [CrossRef] [PubMed]
- Stone, A.D.; Batie, S.F.; Sabir, M.S.; Jacobs, E.T.; Lee, J.H.; Whitfield, G.K.; Haussler, M.R.; Jurutka, P.W. Resveratrol Potentiates Vitamin D and Nuclear Receptor Signaling. J. Cell. Biochem. 2015, 116, 1130–1143. [Google Scholar] [CrossRef]
- Escolà-Gil, J.C.; Julve, J.; Llaverias, G.; Urpi-Sarda, M.; Silvennoinen, R.; Lee-Rueckert, M.; Andres-Lacueva, C.; Blanco-Vaca, F. Resveratrol administration or SIRT1 overexpression does not increase LXR signaling and macrophage-to-feces reverse cholesterol transport in vivo. Transl. Res. 2013, 161, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Suh, H.R.; Yoon, Y.; Lee, K.J.; Kim, D.G.; Kim, S.; Lee, B.H. Protective effect of resveratrol derivatives on high-fat diet induced fatty liver by activating AMP-activated protein kinase. Arch. Pharm. Res. 2014, 37, 1169–1176. [Google Scholar] [CrossRef]
- Lee, J.H.; Baek, S.Y.; Jang, E.J.; Ku, S.K.; Kim, K.M.; Ki, S.H.; Kim, C.E.; Park, K.I.; Kim, S.C.; Kim, Y.W. Oxyresveratrol ameliorates nonalcoholic fatty liver disease by regulating hepatic lipogenesis and fatty acid oxidation through liver kinase B1 and AMP-activated protein kinase. Chem. Biol. Interact. 2018, 289, 68–74. [Google Scholar] [CrossRef]
- Huang, K.; Liang, X.C.; Zhong, Y.L.; He, W.Y.; Wang, Z. 5-Caffeoylquinic acid decreases diet-induced obesity in rats by modulating PPAR and LXR transcription. J. Sci. Food Agric. 2015, 95, 1903–1910. [Google Scholar] [CrossRef]
- Yin, P.; Xie, S.W.; Zhuang, Z.X.; Fang, H.H.; Tian, L.X.; Liu, Y.J.; Niu, J. Chlorogenic acid improves health in juvenile largemouth bass (Micropterus salmoides) fed high-fat diets: Involvement of lipid metabolism, antioxidant ability, inflammatory response, and intestinal integrity. Aquaculture 2021, 545, 737169. [Google Scholar] [CrossRef]
- Xu, M.; Yang, L.C.; Zhu, Y.P.; Liao, M.F.; Chu, L.L.; Li, X.; Lin, L.Z.; Zheng, G.D. Collaborative effects of chlorogenic acid and caffeine on lipid metabolism via the AMPKα-LXRα/SREBP-1c pathway in high-fat diet-induced obese mice. Food Funct. 2019, 10, 7489–7497. [Google Scholar] [CrossRef]
- Hwang, Y.P.; Kim, H.G.; Choi, J.H.; Do, M.T.; Tran, T.P.; Chun, H.K.; Chung, Y.C.; Jeong, T.C.; Jeong, H.G. 3-Caffeoyl, 4-dihydrocaffeoylquinic acid from Salicornia herbacea attenuates high glucose-induced hepatic lipogenesis in human HepG2 cells through activation of the liver kinase B1 and silent information regulator T1/AMPK-dependent pathway. Mol. Nutr. Food Res. 2013, 57, 471–482. [Google Scholar] [CrossRef]
- Jia, Y.; Hoang, M.H.; Jun, H.J.; Lee, J.H.; Lee, S.J. Cyanidin, a natural flavonoid, is an agonistic ligand for liver X receptor alpha and beta and reduces cellular lipid accumulation in macrophages and hepatocytes. Bioorg. Med. Chem. Lett. 2013, 23, 4185–4190. [Google Scholar] [CrossRef]
- Du, C.Y.; Shi, Y.H.; Ren, Y.Z.; Wu, H.J.; Yao, F.; Wei, J.Y.; Wu, M.; Hou, Y.J.; Duan, H.J. Anthocyanins inhibit high-glucose-induced cholesterol accumulation and inflammation by activating LXRα pathway in HK-2 cells. Drug Des. Dev. Ther. 2015, 9, 5099–5113. [Google Scholar] [CrossRef]
- Little, R.; Houghton, M.J.; Carr, I.M.; Wabitsch, M.; Kerimi, A.; Williamson, G. The Ability of Quercetin and Ferulic Acid to Lower Stored Fat is Dependent on the Metabolic Background of Human Adipocytes. Mol. Nutr. Food Res. 2020, 64, e2000034. [Google Scholar] [CrossRef]
- Cazares-Camacho, R.; Dominguez-Avila, J.A.; Astiazaran-Garcia, H.; Montiel-Herrera, M.; Gonzalez-Aguilar, G.A. Neuroprotective effects of mango cv. ‘Ataulfo’ peel and pulp against oxidative stress in streptozotocin-induced diabetic rats. J. Sci. Food Agric. 2021, 101, 497–504. [Google Scholar] [CrossRef]
- Fouache, A.; Zabaiou, N.; De Joussineau, C.; Morel, L.; Silvente-Poirot, S.; Namsi, A.; Lizard, G.; Poirot, M.; Makishima, M.; Baron, S.; et al. Flavonoids differentially modulate liver X receptors activity-Structure-function relationship analysis. J. Steroid Biochem. 2019, 190, 173–182. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, Z.S.; Wang, L.X.; Guo, X.Y.; Hao, Z.H.; Li, Z.; Johnston, L.J.; Dong, B. Cooperative Interaction of Phenolic Acids and Flavonoids Contained in Activated Charcoal with Herb Extracts, Involving Cholesterol, Bile Acid, and FXR/PXR Activation in Broilers Fed with Mycotoxin-Containing Diets. Antioxidants 2022, 11, 2200. [Google Scholar] [CrossRef]
- Jiang, P.; Xu, C.Q.; Zhou, M.; Zhou, H.Q.; Dong, W.D.; Wu, X.Y.; Chen, A.C.; Feng, Q. RXRα-enriched cancer stem cell-like properties triggered by CDDP in head and neck squamous cell carcinoma (HNSCC). Carcinogenesis 2018, 39, 252–262. [Google Scholar] [CrossRef]
- Tian, M.Y.; Zhang, X.; Wang, L.H.; Li, Y. Curcumin Induces ABCA1 Expression and Apolipoprotein A-I-Mediated Cholesterol Transmembrane in the Chronic Cerebral Hypoperfusion Aging Rats. Am. J. Chin. Med. 2013, 41, 1027–1042. [Google Scholar] [CrossRef]
- Yan, C.; Zhang, Y.; Zhang, X.; Aa, J.; Wang, G.; Xie, Y. Curcumin regulates endogenous and exogenous metabolism via Nrf2-FXR-LXR pathway in NAFLD mice. Biomed. Pharmacother. 2018, 105, 274–281. [Google Scholar] [CrossRef]
- Batie, S.; Lee, J.H.; Jama, R.A.; Browder, D.O.; Montano, L.A.; Huynh, C.C.; Marcus, L.M.; Tsosie, D.G.; Mohammed, Z.; Trang, V.; et al. Synthesis and biological evaluation of halogenated curcumin analogs as potential nuclear receptor selective agonists. Bioorgan. Med. Chem. 2013, 21, 693–702. [Google Scholar] [CrossRef]
- Jimenez-Aspee, F.; Pospiech, J.; Bauer, S.; Sus, N.; Kufer, T.A.; Frank, J. Prumnopitys Andina Fruit Extract Activates Liver X Receptors after In Vitro Digestion. Mol. Nutr. Food Res. 2023, 67, e2200377. [Google Scholar] [CrossRef]
- Danielewski, M.; Kucharska, A.Z.; Matuszewska, A.; Rapak, A.; Gomulkiewicz, A.; Dzimira, S.; Dziegiel, P.; Nowak, B.; Trocha, M.; Magdalan, J.; et al. Cornelian Cherry (Cornus mas L.) Iridoid and Anthocyanin Extract Enhances PPAR-alpha, PPAR-gamma Expression and Reduces I/M Ratio in Aorta, Increases LXR-alpha Expression and Alters Adipokines and Triglycerides Levels in Cholesterol-Rich Diet Rabbit Model. Nutrients 2021, 13, 3621. [Google Scholar] [CrossRef]
- Noratto, G.D.; Lage, N.N.; Chew, B.P.; Mertens-Talcott, S.U.; Talcott, S.T.; Pedrosa, M.L. Non-anthocyanin phenolics in cherry (Prunus avium L.) modulate IL-6, liver lipids and expression of PPARδ and LXRs in obese diabetic (db/db) mice. Food Chem. 2018, 266, 405–414. [Google Scholar] [CrossRef]
- Mokhtari, I.; Moumou, M.; Harnafi, M.; Milenkovic, D.; Amrani, S.; Harnafi, H. Loquat fruit peel extract regulates lipid metabolism and liver oxidative stress in mice: In vivo and in silico approaches. J. Ethnopharmacol. 2023, 310, 116376. [Google Scholar] [CrossRef]
- Oleaga, C.; Ciudad, C.J.; Izquierdo-Pulido, M.; Noé, V. Cocoa flavanol metabolites activate HNF-3β, Sp1, and NFY-mediated transcription of apolipoprotein AI in human cells. Mol. Nutr. Food Res. 2013, 57, 986–995. [Google Scholar] [CrossRef]
- Hao, X.P.; Xiao, H.; Ju, J.; Lee, M.J.; Lambert, J.D.; Yang, C.S. Green Tea Polyphenols Inhibit Colorectal Tumorigenesis in Azoxymethane-Treated F344 Rats. Nutr. Cancer 2017, 69, 623–631. [Google Scholar] [CrossRef]
- Morris, J.; Moseley, V.R.; Cabang, A.B.; Coleman, K.; Wei, W.; Garrett-Mayer, E.; Wargovich, M.J. Reduction in promotor methylation utilizing EGCG (Epigallocatechin-3-gallate) restores RXRα expression in human colon cancer cells. Oncotarget 2016, 7, 35313–35326. [Google Scholar] [CrossRef]
- Li, D.M.; Cui, Y.; Wang, X.J.; Liu, F.; Li, X.L. Apple Polyphenol Extract Improves High-Fat Diet-Induced Hepatic Steatosis by Regulating Bile Acid Synthesis and Gut Microbiota in C57BL/6 Male Mice. J. Agric. Food Chem. 2021, 69, 6829–6841. [Google Scholar] [CrossRef]
- Domínguez-Avila, J.A.; Alvarez-Parrilla, E.; López-Díaz, J.A.; Maldonado-Mendoza, I.E.; Gómez-García, M.D.; de la Rosa, L.A. The pecan nut (Carya illinoinensis) and its oil and polyphenolic fractions differentially modulate lipid metabolism and the antioxidant enzyme activities in rats fed high-fat diets. Food Chem. 2015, 168, 529–537. [Google Scholar] [CrossRef]
- Ruiz-Canizales, J.; Domínguez-Avila, J.A.; Wall-Medrano, A.; Ayala-Zavala, J.F.; González-Córdova, A.F.; Vallejo-Córdoba, B.; Salazar-López, N.J.; González-Aguilar, G.A. Fiber and phenolic compounds contribution to the hepatoprotective effects of mango diets in rats fed high cholesterol/sodium cholate. Phytother. Res. 2019, 33, 2996–3007. [Google Scholar] [CrossRef] [PubMed]
- Farràs, M.; Arranz, S.; Carrión, S.; Subirana, I.; Muñoz-Aguayo, D.; Blanchart, G.; Kool, M.; Solà, R.; Motilva, M.J.; Escolà-Gil, J.C.; et al. A Functional Virgin Olive Oil Enriched with Olive Oil and Thyme Phenolic Compounds Improves the Expression of Cholesterol Efflux-Related Genes: A Randomized, Crossover, Controlled Trial. Nutrients 2019, 11, 1732. [Google Scholar] [CrossRef] [PubMed]
- Pedret, A.; Catalán, U.; Fernández-Castillejo, S.; Farràs, M.; Valls, R.M.; Rubió, L.; Canela, N.; Aragonés, G.; Romeu, M.; Castañer, O.; et al. Impact of Virgin Olive Oil and Phenol-Enriched Virgin Olive Oils on the HDL Proteome in Hypercholesterolemic Subjects: A Double Blind, Randomized, Controlled, Cross-Over Clinical Trial (VOHF Study). PLoS ONE 2015, 10, e0129160. [Google Scholar] [CrossRef] [PubMed]
- Franceschelli, S.; De Cecco, F.; Pesce, M.; Ripari, P.; Guagnano, M.T.; Nuevo, A.B.; Grilli, A.; Sancilio, S.; Speranza, L. Hydroxytyrosol Reduces Foam Cell Formation and Endothelial Inflammation Regulating the PPARγ/LXRα/ABCA1 Pathway. Int. J. Mol. Sci. 2023, 24, 2057. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Ke, Z.L.; Zhou, C.B.; Luo, Y.P.; Ding, X.B.; Luo, G.J.; Li, W.F.; Shi, S.Y. Polyphenol Profile, Antioxidant Activity, and Hypolipidemic Effect of Longan Byproducts. Molecules 2023, 28, 2083. [Google Scholar] [CrossRef]
Phenolic Treatment | Bioactivity Documented | Effect on LXR or RXR | Reference |
---|---|---|---|
Quercetin (5, 10, or 15 μM) | Increased mRNA and protein of cholesterol efflux genes in vitro | Increased LXRα mRNA and protein | [29] |
Quercetin (10, 50, or 250 μM) | Potential immunomodulation and anti-cancer effects in vitro | Cell-dependent increase or decrease in LXRα and RXRα mRNA | [30] |
Resveratrol (0.8–500 mg/kg body weight oral gavage or 0.1 or 0.5% w/w dietary supplementation) | Improved lipid profile and fecal sterol excretion in vivo, increased expression of cholesterol transporters in vitro | Selective effect on LXRα, but not on LXRβ | [31] |
Resveratrol (1, 25, 125, or 625 μM) | Potential antiproliferative effects in vitro | Cell-dependent increase or decrease in RXRα mRNA | [32] |
Resveratrol (10−5 M) with or without vitamin D3 (10−8–10−10 M) | Increased vitamin-D-related transcription in vitro | Formation and/or stabilization of VDR/RXR heterodimer | [34] |
Resveratrol (40 or 400 mg/kg) | Altered reverse cholesterol transport in vivo independently of resveratrol | No effect on LXR signaling | [35] |
Resveratrol (15 mg/kg/day) and a synthetic derivative (SY-102, 45 mg/kg/day) | Hepatoprotection in vivo | Modulated the AMPK/LXR/SREBP pathway | [36] |
Oxyresveratrol (10 or 30 mg/kg) | Inhibit hepatic lipogenesis and consequent hepatoprotection in vivo | Modulated the LXRα/SREBP-1c pathway | [37] |
5-caffeoylquinic acid (20 or 90 mg/kg) | Hepatoprotection in vivo | Normalized LXRα mRNA, increased RXRα mRNA | [38] |
Chlorogenic acid (300 or 600 mg/kg diet) | Improvements to the lipid profile; antioxidant and anti-inflammatory effects in vivo | Increased LXRα mRNA, no effects on RXRα | [39] |
Chlorogenic acid (0.1 or 0.2%) and caffeine (0.02 or 0.04%) combined | Decreased macrophage and hepatocyte lipid content in vitro | Decreased LXRα mRNA when combined with caffeine; no effect by itself | [40] |
3-caffeoyl, 4-dihydrocaffeoylquinic acid (1–30 μM) | Hepatoprotection in vitro | Did not normalize LXRα mRNA expression | [41] |
Cyanidin (5, 10, 50, or 100 μM) | Decreased macrophage and hepatocyte lipid content in vitro | Increased LXRα and LXRβ mRNA, increased expression of LXRα-regulated genes but not LXRβ, higher affinity for LXRα | [42] |
Cyanidin-3-O-β-glucoside chloride or cyanidin chloride (50 μM) | Increased cholesterol efflux and anti-inflammatory effects in vitro | Modulated the LXRα pathway | [43] |
Quercetin and ferulic acid (1 μM of each or both) | Modulated lipid metabolism in vitro | Increased mRNA of genes controlled by the PPARα/RXRα pathway | [44] |
Galangin, quercetin, apigenin, and naringenin (1, 10, or 100 μM individually administered) | Various phenolic–protein interactions determined in silico, potential lipid-modulating effects in vitro | Quercetin increased LXRα and LXRβ mRNA, apigenin increased LXRβ mRNA, no effect of galangin and naringenin | [46] |
Phenolic-rich Chinese herb extract (250 mg/kg diet in vivo, 200 μg/mL in vitro); phenolic acids (caffeic acid and vanillin, 150 μg/mL in vitro); or flavonoids (daidzein and quercetin-d-glucoside, 50 μg/mL in vitro) | Potential effects on bile and xenobiotic metabolism; possible synergy between phenolics | Phenolic acids or phenolic acids and flavonoids increased RXRα mRNA | [47] |
Curcumin (40 mg/kg) | Normalized gene expression of cancer stem cells in vitro | Normalized RXRα mRNA expression | [48] |
Curcumin (50 or 100 mg/kg) | Improved cognitive parameters of rats with cerebral hypoperfusion | Modulated LXRβ and RXRα mRNA expression | [49] |
Curcumin (50 or 100 mg/kg) | Hepatoprotection in vivo | Modulated the Nrf2/FXR/LXR pathway | [50] |
Curcumin and halogenated derivatives of curcumin (3.75 × 10−5 M), and resveratrol (2.8 × 10−5 M) | Synergy between resveratrol and curcumin and its halogenated derivatives in vitro | Modulated RXR/VDR signaling | [51] |
Phenolic-rich extract of Prumnopitys andina (1, 10, 50, 100, and 200 μg/mL) | Potential lipid modulation and anti-inflammatory effects in vitro | Increased mRNA expression of LXRα and LXRβ | [52] |
Cornelian cherry (Cornus mas L.) extract (10 or 50 mg/kg bw) | Improved lipid profile in vivo | Increased LXRα protein | [53] |
Non-anthocyanin cherry (Prunus avium L.) phenolics (629 ± 39 and 130 ± 3.9 mg gallic acid equivalents/kg diet) | Hepatoprotection and anti-inflammatory effects in vivo | Normalized LXRβ mRNA | [54] |
Loquat (Eriobotrya japonica (Thunb.) Lindl.) fruit peel extract (100 or 200 mg/kg/day) | Improved lipid profile in vivo | Potential in silico interactions between phenolics and some of their metabolites with LXRα, RXRα, RXRβ, and RXRγ | [55] |
Cocoa flavonols (10 μM) | Potential modulation of apolipoprotein A1 in vitro | Binding of RXRα to site A of the APOA1 promoter | [56] |
Green tea catechins (0.24%) | Anti-tumor effects in vivo | Increased mRNA expression of RXRα, β, and γ | [57] |
Epigallocatechin-3-gallate (50, 100, or 150 μM) | Potential anti-tumor effects in vitro | Restored epigenetically silenced RXRα expression | [58] |
Apple polyphenol extract (125 or 500 mg/kg/day) | Hepatic and intestinal protection in vivo | Increased ileal LXRα mRNA expression | [59] |
Isolated pecan (Carya illinoinensis) phenolics (0.1% w/w) | Anti-atherogenic effects in vivo | Increased LXRα mRNA expression | [60] |
Isolated mango (Mangifera indica) phenolics (0.1% w/w) | Hepatoprotection against high-cholesterol/sodium cholate diets in vivo | Increased LXRα mRNA expression | [61] |
Olive oil enriched with olive oil and thyme phenolics (500 mg/kg of phenolics, 25 mL/day) | Potential cholesterol clearance from peripheral blood mononuclear cells in hypercholesterolemic adults | Increased LXRβ and RXRα mRNA expression | [62] |
Changes to the HDL-associated proteome of hypercholesterolemic adults | Predicted effects on LXR/RXR | [63] | |
Hydroxytyrosol (25, 50, or 100 μM) | Increased cholesterol clearance from foam cells in vitro | Increased LXRα mRNA and protein expression | [64] |
Phenolic-rich extract from longan (Dimocarpus longan Lour.) byproducts (0.2%) | Anti-obesity and hypolipidemic effects in vivo | Increased LXRα mRNA and protein expression | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Avila, J.A. Dietary Phenolic Compounds Exert Some of Their Health-Promoting Bioactivities by Targeting Liver X Receptor (LXR) and Retinoid X Receptor (RXR). Foods 2023, 12, 4205. https://doi.org/10.3390/foods12234205
Domínguez-Avila JA. Dietary Phenolic Compounds Exert Some of Their Health-Promoting Bioactivities by Targeting Liver X Receptor (LXR) and Retinoid X Receptor (RXR). Foods. 2023; 12(23):4205. https://doi.org/10.3390/foods12234205
Chicago/Turabian StyleDomínguez-Avila, J. Abraham. 2023. "Dietary Phenolic Compounds Exert Some of Their Health-Promoting Bioactivities by Targeting Liver X Receptor (LXR) and Retinoid X Receptor (RXR)" Foods 12, no. 23: 4205. https://doi.org/10.3390/foods12234205
APA StyleDomínguez-Avila, J. A. (2023). Dietary Phenolic Compounds Exert Some of Their Health-Promoting Bioactivities by Targeting Liver X Receptor (LXR) and Retinoid X Receptor (RXR). Foods, 12(23), 4205. https://doi.org/10.3390/foods12234205