A Clean-Label Formulation of Fortified Yogurt Based on Rhododendron Flower Powder as a Functional Ingredient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Rhododendron Flowers Powder Preparation
2.3. Extraction of Phytochemicals from Rhododendron Flowers Powder (RFP)
2.4. The Quantification of Anthocyanins, Phenolic Compounds, and Evaluation of Antioxidant Potential of Rhododendron Flowers Powder (RFP)
2.4.1. Total Anthocyanin Content
2.4.2. Total Flavonoid Content
2.4.3. Total Polyphenolic Content
2.4.4. Antioxidant Activity (DPPH)
2.5. Preparation of Yogurt Supplemented with RFP
2.6. Physicochemical Characterization of Yogurts Supplemented with RFP
2.7. Characterization of Phytochemicals and Antioxidant Activity of Yogurts Supplemented with RFP
2.8. Colorimetric Analysis of Yogurt Supplemented with RFP
2.9. Texture Profile Analysis of Yogurt Supplemented with RFP
2.10. Sensorial Evaluation of Yogurt Supplemented with RFP
2.11. Statistical Analysis
3. Results
3.1. The Phytochemical Characterization of RFP Extract
3.2. Physicochemical Analysis of Yogurt Supplemented with RFP
3.3. Phytochemical Content and Antioxidant Activity of Yogurt Supplemented with RFP
3.4. Textural Profile Analysis
3.5. Colorimetric Analysis
3.6. Sensorial Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rațu, R.N.; Veleșcu, I.D.; Stoica, F.; Usturoi, A.; Arsenoaia, V.N.; Crivei, I.C.; Postolache, A.N.; Lipșa, F.D.; Filipov, F.; Florea, A.M.; et al. Application of Agri-Food by-Products in the Food Industry. Agriculture 2023, 13, 1559. [Google Scholar] [CrossRef]
- Rodriguez-Lopez, A.D.; Melgar, B.; Conidi, C.; Barros, L.; Ferreira, I.C.F.R.; Cassano, A.; Garcia-Castello, E.M. Food Industry By-Products Valorization and New Ingredients. In Sustainability of the Food System; Elsevier: Amsterdam, The Netherlands, 2020; pp. 71–99. [Google Scholar]
- Stoica, F.; Rațu, R.N.; Veleșcu, I.D.; Stănciuc, N.; Râpeanu, G. A Comprehensive Review on Bioactive Compounds, Health Benefits, and Potential Food Applications of Onion (Allium cepa L.) Skin Waste. Trends Food Sci. Technol. 2023, 141, 104173. [Google Scholar] [CrossRef]
- Du, H.; Lai, L.; Wang, F.; Sun, W.; Zhang, L.; Li, X.; Wang, L.; Jiang, L.; Zheng, Y. Characterisation of Flower Colouration in 30 Rhododendron Species via Anthocyanin and Flavonol Identification and Quantitative Traits. Plant Biol. 2018, 20, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Krishna, H.; Attri, B.L.; Kumar, A. Improvised Rhododendron Squash: Processing Effects on Antioxidant Composition and Organoleptic Attributes. J. Food Sci. Technol. 2014, 51, 3404–3410. [Google Scholar] [CrossRef] [PubMed]
- Swaroop, A.; Gupta, A.P.; Sinha, A.K. Simultaneous Determination of Quercetin, Rutin and Coumaric Acid in Flowers of Rhododendron arboreum by HPTLC1. Chromatographia 2005, 62, 649–652. [Google Scholar] [CrossRef]
- Jafari, S.M.; Ghalenoei, M.G.; Dehnad, D. Influence of Spray Drying on Water Solubility Index, Apparent Density, and Anthocyanin Content of Pomegranate Juice Powder. Powder Technol. 2017, 311, 59–65. [Google Scholar] [CrossRef]
- Poovitha, S.; Parani, M. In Vitro and in Vivo α-Amylase and α-Glucosidase Inhibiting Activities of the Protein Extracts from Two Varieties of Bitter Gourd (Momordica charantia L.). BMC Complement. Altern. Med. 2016, 16, 185. [Google Scholar] [CrossRef]
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.; Garcia-Viguera, C. Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef]
- Rasgele, P.G.; Kekecoglu, M. Physico-Chemical Properties of Rhododendron Honey Produced in Turkey. Herb. Pol. 2013, 59, 88–97. [Google Scholar] [CrossRef]
- Mishra, B.K.; Jain, N.K.; Kumar, S.; Sharma, K.C. Storage Stability of Ready-Toserve Beverage from Mahua (Madhuca indica) Flowers. Indian J. Hortic. 2013, 70, 459–462. [Google Scholar]
- Solanke, S.N.; Chopra, C.S.; Sharma, S.K. Expression of Rhododendron Aqueous Extract and Its Use in Preparation of RTS Beverage. J. Hill Agric. 2016, 7, 267. [Google Scholar] [CrossRef]
- Bhatt, M.; Abrol, G.S.; Kumar, S.; Nautiyal, B.P. Preparation and Evaluation of Functionally Enriched Squash from Rhododendron (Rhododendron arboreum Sm.) Flowers. Int. J. Food Ferment. Technol. 2017, 7, 191. [Google Scholar] [CrossRef]
- Citta, A.; Folda, A.; Scalcon, V.; Scutari, G.; Bindoli, A.; Bellamio, M.; Feller, E.; Rigobello, M.P. Oxidative Changes in Lipids, Proteins, and Antioxidants in Yogurt during the Shelf Life. Food Sci. Nutr. 2017, 5, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, A.M.; O’Grady, M.N.; O’Callaghan, Y.C.; Smyth, T.J.; O’Brien, N.M.; Kerry, J.P. Seaweed extracts as potential functional ingredients in yogurt. Innov. Food Sci. Emerg. Technol. 2016, 37, 293–299. [Google Scholar] [CrossRef]
- Caleja, C.; Barros, L.; Antonio, A.L.; Carocho, M.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Fortification of yogurts with different antioxidant preservatives: A comparative study between natural and synthetic additives. Food Chem. 2016, 210, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Salehi, M.; Ghorbani, M.; Sadeghi Mahoonk, A.; Khomeiri, M. Physicochemical, antioxidant and sensory properties of yogurt fortified with common purslane (Portulaca oleracea) extract. J. Food Measurem. Charact. 2021, 15, 4288–4296. [Google Scholar] [CrossRef]
- Fidaleo, M.; Lavecchia, R.; Maffei, G.; Zuorro, A. Phenolic Extracts from Bilberry (Vaccinium myrtillus L.) Residues as New Functional Food Ingredients. Intern. J. App. Eng. Res. 2015, 10, 36222–36225. [Google Scholar]
- Šeregelj, V.; Pezo, L.; Šovljanski, O.; Lević, S.; Nedović, V.; Markov, S.; Ćetković, G. New concept of fortified yogurt formulation with encapsulated carrot waste extract. LWT 2020, 138, 110732. [Google Scholar] [CrossRef]
- Sah, B.N.P.; Vasiljevic, T.; McKechnie, S.; Donkor, O.N. Physicochemical, textural and rheological properties of probiotic yogurt fortified with fibre-rich pineapple peel powder during refrigerated storage. LWT Food Sci. Technol. 2016, 65, 978–986. [Google Scholar] [CrossRef]
- Pinto, K.R.D.; Tulini, F.L.; Guimarães, J.G.L.; Moraes, I.C.F.; Ditchfield, C.; Lima, C.G.; Silva, V.L.S.; Favaro-Trindade, C.S. Production and Evaluation of Yogurt Colored with Anthocyanin-Rich Pigment Prepared from Jabuticaba (Myrciaria cauliflora Mart.) Skin. Processes 2023, 11, 526. [Google Scholar] [CrossRef]
- Bankole, A.O.; Irondi, E.A.; Awoyale, W.; Ajani, E.O. Application of natural and modified additives in yogurt formulation: Types, production, and rheological and nutraceutical benefits. Front. Nutr. 2023, 10, 2023. [Google Scholar] [CrossRef] [PubMed]
- Rațu, R.N.; Cârlescu, P.M.; Usturoi, M.G.; Lipșa, F.D.; Veleșcu, I.D.; Arsenoaia, V.N.; Florea, A.M.; Ciobanu, M.M.; Radu-Rusu, R.-M.; Postolache, A.N.; et al. Effects of Dairy Cows Management Systems on the Physicochemical and Nutritional Quality of Milk and Yogurt, in a North-Eastern Romanian Farm. Agriculture 2023, 13, 1295. [Google Scholar] [CrossRef]
- Carocho, M.; Barreiro, M.F.; Morales, P.; Ferreira, I.C.F.R. Adding Molecules to Food, Pros and Cons: A Review on Synthetic and Natural Food Additives. Compr. Rev. Food Sci. Food Saf. 2014, 13, 377–399. [Google Scholar] [CrossRef] [PubMed]
- Senaka Ranadheera, C.; Evans, C.A.; Adams, M.C.; Baines, S.K. Probiotic Viability and Physico-Chemical and Sensory Properties of Plain and Stirred Fruit Yogurts Made from Goat’s Milk. Food Chem. 2012, 135, 1411–1418. [Google Scholar] [CrossRef] [PubMed]
- Donmez, O.; Mogol, B.A.; Okmen, V. Syneresis and Rheological Behaviors of Set Yogurt Containing Green Tea and Green Coffee Powders. J. Dairy Sci. 2017, 100, e901–e907. [Google Scholar] [CrossRef] [PubMed]
- Dumitraşcu, L.; Enachi, E.; Stănciuc, N.; Aprodu, I. Optimization of Ultrasound Assisted Extraction of Phenolic Compounds from Cornelian Cherry Fruits Using Response Surface Methodology. CyTA-J. Food 2019, 17, 814–823. [Google Scholar] [CrossRef]
- Turturică, M.; Stănciuc, N.; Bahrim, G.; Râpeanu, G. Effect of Thermal Treatment on Phenolic Compounds from Plum (Prunus domestica) Extracts-A Kinetic Study. J. Food Eng. 2016, 171, 200–207. [Google Scholar] [CrossRef]
- Stoica, F.; Râpeanu, G.; Nistor, O.V.; Enachi, E.; Stănciuc, N.; Mureșan, C.; Bahrim, G.E. Recovery of Bioactive Compounds from Red Onion Skins Using Conventional Solvent Extraction and Microwave Assisted Extraction. Ann. Univ. Dunărea Jos Galaţi 2020, 44, 104–126. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Codex Alimentarius Rules of Food Safety through an Efficiently Implemented HACCP System, Updated in May 2023. Available online: https://www.fao.org/fao-who-codexalimentarius/publications/en/ (accessed on 10 September 2023).
- COUNCIL REGULATION (EEC) No 2377/90 of 26 June 1990 Laying down a Community Procedure for the Establishment of Maximum Residue Limits of Veterinary Medicinal Products in Foodstuffs of Animal Origin. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1990R2377:20080816:EN:PDF (accessed on 17 October 2023).
- Mbaeyi-Nwaoha, I.E.; Umeh, L.C.; Igbokwe, C.J. Production and Quality Evaluation of Flavoured Yoghurt from Graded Levels of Sweet Variety of African Bush Mango “Urigi” (Irvingia Gabonensis) Juice and Pulp. Int. J. Food Sci. Technol. 2017, 5, 56–69. [Google Scholar]
- Stephen Ezeonu, C. Quantification of Physicochemical Components in Yoghurts from Coconut, Tiger Nut and Fresh Cow Milk. Adv. Biotechnol. Microbiol. 2016, 1, 555573. [Google Scholar] [CrossRef]
- Igbabul, B.; Shember, J.; Amove, J. Physicochemical, Microbiological and Sensory Evaluation of Yoghurt Sold in Marurdi Metropolis. Afr. J. Food Sci. Technol. 2014, 5, 129–135. [Google Scholar]
- Pan, L.-H.; Liu, F.; Luo, S.-Z.; Luo, J.-P. Pomegranate juice powder as sugar replacer enhanced quality and function of set yogurts: Structure, rheological property, antioxidant activity and in vitro bioaccessibility. Lebensm. Wiss. Technol. Food Sci. Technol. 2019, 115, 108479. [Google Scholar] [CrossRef]
- Dag, D.; Kilercioglu, M.; Oztop, M.H. Physical and Chemical Characteristics of Encapsulated Goldenberry (Physalis peruviana L.) Juice Powder. Lebenson. Wiss. Technol. 2017, 83, 86–94. [Google Scholar] [CrossRef]
- Bourne, M.C. Principles of Objective Texture Measurement. In Food Texture and Viscosity; Elsevier: Amsterdam, The Netherlands, 2002; pp. 107–188. [Google Scholar]
- Tseng, A.; Zhao, Y. Wine Grape Pomace as Antioxidant Dietary Fibre for Enhancing Nutritional Value and Improving Storability of Yogurt and Salad Dressing. Food Chem. 2013, 138, 356–365. [Google Scholar] [CrossRef]
- Yuksel, Z.; Avci, E.; Erdem, Y.K. Characterization of Binding Interactions between Green Tea Flavanoids and Milk Proteins. Food Chem. 2010, 121, 450–456. [Google Scholar] [CrossRef]
- Mohamed, A.G.; Zayan, A.F.; Shahein, N. Physiochemical and sensory evaluation of yoghurt fortified with dietary fiber and phenolic compounds. Life Sci. J. 2014, 11, 816–822. [Google Scholar]
- Jing, L.; Ma, H.; Fan, P.; Gao, R.; Jia, Z. Antioxidant Potential, Total Phenolic and Total Flavonoid Contents of Rhododendron Anthopogonoides and Its Protective Effect on Hypoxia-Induced Injury in PC12 Cells. BMC Complement. Altern. Med. 2015, 15, 287. [Google Scholar] [CrossRef]
- Rafi, M.; Febriany, S.; Wulandari, P.; Suparto, I.H.; Ridwan, T.; Rahayu, S.; Siswoyo, D.M. Total Phenolics, Flavonoids, and Anthocyanin Contents of Six Vireya Rhododendron from Indonesia and Evaluation of Their Antioxidant Activities. J. App. Pharma. Sci. 2018, 8, 049–054. [Google Scholar]
- Mahdavee Khazaei, K.; Jafari, S.M.; Ghorbani, M.; Hemmati Kakhki, A. Application of Maltodextrin and Gum Arabic in Microencapsulation of Saffron Petal’s Anthocyanins and Evaluating Their Storage Stability and Color. Carbohydr. Polym. 2014, 105, 57–62. [Google Scholar] [CrossRef]
- Ahmad, I.; Hao, M.; Li, Y.; Zhang, J.; Ding, Y.; Lyu, F. Fortification of Yogurt with Bioactive Functional Foods and Ingredients and Associated Challenges—A Review. Trends Food Sci. Technol. 2022, 129, 558–580. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Karim, N.; Xu, Y.; Cui, H.; Fang, J.; Cheng, K.; Mo, J.; Chen, W. Chemical Composition, Quality Attributes and Antioxidant Activity of Stirred-Type Yogurt Enriched with Melastoma Dodecandrum Lour Fruit Powder. Food Funct. 2022, 13, 1579–1592. [Google Scholar] [CrossRef] [PubMed]
- Mehra, R.; Kumar, H.; Kumar, N.; Kaushik, R. Red Rice Conjugated with Barley and Rhododendron Extracts for New Variant of Beer. J. Food Sci. Technol. 2020, 57, 4152–4159. [Google Scholar] [CrossRef] [PubMed]
- Kailasapathy, K. Survival of Free and Encapsulated Probiotic Bacteria and Their Effect on the Sensory Properties of Yoghurt. Lebenson. Wiss. Technol. 2006, 39, 1221–1227. [Google Scholar] [CrossRef]
- Demirkol, M.; Tarakci, Z. Effect of Grape (Vitis labrusca L.) Pomace Dried by Different Methods on Physicochemical, Microbiological and Bioactive Properties of Yoghurt. Lebenson. Wiss. Technol. 2018, 97, 770–777. [Google Scholar] [CrossRef]
- Kennas, A.; Amellal-Chibane, H.; Kessal, F.; Halladj, F. Effect of Pomegranate Peel and Honey Fortification on Physicochemical, Physical, Microbiological and Antioxidant Properties of Yogurt Powder. J. Saudi Soc. Agric. Sci. 2020, 19, 99–108. [Google Scholar]
- Chouchouli, V.; Kalogeropoulus, N.; Konteles, S.J.; Karvela, E.; Makris, D.P.; Karathanos, V.T. Fortification of Yogurts with Grapes (Vitis vinifera) Seed Extracts. LWT-Food Sci. Technol. 2013, 53, 522–529. [Google Scholar] [CrossRef]
- Karaaslan, M.; Ozden, M.; Vardin, H.; Turkoglu, H. Phenolic Fortification of Yogurt Using Grape and Callusextracts. LWT Food Sci. Technol. 2011, 44, 1065–1072. [Google Scholar] [CrossRef]
- Muniandy, P.; Shori, A.B.; Baba, A.S. Influence of Green, White and Black Tea Addition on the Antioxidant Activity of Probioticyogurt during Refrigerated Storage. Food Packag. 2016, 8, 1–8. [Google Scholar]
- Kabir, M.R.; Hasan, M.M.; Islam, M.R.; Haque, A.R.; Hasan, S.K. Formulation of Yogurt with Banana Peel Extracts to Enhancestorability and Bioactive Properties. J. Food Process. Preserv. 2020, 45, e15191. [Google Scholar]
- Oliveira, A.; Alexandre, E.M.C.; Coelho, M.; Lopes, C.; Almeida, D.P.F.; Pintado, M. Incorporation Ofstrawberries Preparation in Yoghurt: Impact on Phytochemicals and Milk Proteins. Food Chem. 2015, 171, 370–378. [Google Scholar] [CrossRef]
- Prajapati, D.M.; Shrigod, N.M.; Prajapati, R.J.; Pandit, P.D. Textural and Rheological Properties of Yoghurt: A Review. Adv. Life Sci. 2016, 5, 5238–5254. [Google Scholar]
- Sodini, I.; Remeuf, F.; Haddad, S.; Corrieu, G. The Relative Effect of Milk Base, Starter, and Process on Yogurt Texture: A Review. Crit. Rev. Food Sci. Nutr. 2004, 44, 113–137. [Google Scholar] [CrossRef]
- Yildiz, E.; Ozcan, T. Functional and Textural Properties of Vegetable-fibre Enriched Yoghurt. Int. J. Dairy Technol. 2019, 72, 199–207. [Google Scholar] [CrossRef]
- Azari-Anpar, M.; Payeinmahali, H.; Daraei Garmakhany, A.; Sadeghi Mahounak, A. Physicochemical, Microbial, Antioxidant, and Sensory Properties of Probiotic Stirred Yoghurt Enriched with Aloe Vera Foliar Gel. J. Food Process. Preserv. 2017, 41, e13209. [Google Scholar] [CrossRef]
- Wallace, T.C.; Giusti, M.M. Determination of Color, Pigment, and Phenolic Stability in Yogurt Systems Colored with Nonacylated Anthocyanins from Berberis boliviana L. as Compared to Other Natural/Synthetic Colorants. J. Food Sci. 2008, 73, C241–C248. [Google Scholar] [CrossRef]
- Yadav, K.; Bajaj, R.K.; Mandal, S.; Saha, P.; Mann, B. Evaluation of Total Phenol Content and Antioxidant Properties of Encapsulated Grape Seed Extract in Yoghurt. Int. J. Dairy Technol. 2018, 71, 96–104. [Google Scholar] [CrossRef]
- Leyva Daniel, D.E.; Huerta, B.E.; Vizcarra Mendoza, M.G.; Sosa, I.A. Effect of Drying Conditions on the Retention of Phenolic Compounds, Anthocyanins and Antioxidant Activity of Roselle Hibiscus. Int. J. Food Sci. Technol. 2013, 48, 2283–2291. [Google Scholar] [CrossRef]
Parameters | Extract |
---|---|
Total anthocyanins (mg C3G/g DW) | 1.05 ± 0.24 |
Total flavonoids (mg CE/g DW) | 8.58 ± 0.19 |
Total polyphenols (mg GAE/g DW) | 21.46 ± 0.63 |
DPPH (µmol TE/g DW) | 16.89 ± 0.22 |
L* | 42.82 ± 0.25 |
a* | 12.53 ± 0.07 |
b* | 3.25 ± 0.09 |
Chroma | 12.94 ± 0.08 |
Hue angle | 0.25 ± 0.01 |
ΔE | 44.73 ± 0.26 |
Component (%) | Sample | Storage Period (Days) | ||
---|---|---|---|---|
1 | 14 | 28 | ||
Moisture | YC | 86.77 ± 0.17 xA | 86.82 ± 0.12 xA | 86.77 ± 0.17 xA |
YRFP1 | 84.48 ± 0.69 yA | 84.85 ± 0.69 yA | 85.10 ± 0.69 yA | |
YRFP2 | 82.58 ± 0.69 zA | 82.49 ± 0.69 zA | 82.23 ± 0.00 zA | |
Fat | YC | 3.85 ± 0.03 yA | 3.85 ± 0.03 xyA | 3.85 ± 0.03 xA |
YRFP1 | 3.88 ± 0.05 xyA | 3.81 ± 0.05 yAB | 3.77 ± 0.05 yB | |
YRFP2 | 3.91 ± 0.05 xA | 3.89 ± 0.05 xAB | 3.85 ± 0.05 xB | |
Total protein | YC | 3.70 ± 0.09 xyA | 3.70 ± 0.09 yA | 3.70 ± 0.09 xyA |
YRFP1 | 3.74 ± 0.01 yA | 3.69 ± 0.01 xyA | 3.67 ± 0.01 yA | |
YRFP2 | 3.81 ± 0.02 xA | 3.78 ± 0.02 xA | 3.76 ± 0.02 xA | |
Ash | YC | 0.74 ± 0.07 zA | 0.74 ± 0.07 zA | 0.74 ± 0.07 zA |
YRFP1 | 0.88 ± 0.03 yA | 0.87 ± 0.03 yA | 0.86 ± 0.03 yA | |
YRFP2 | 0.99 ± 0.03 xA | 0.98 ± 0.03 xA | 0.97 ± 0.03 xA | |
Crude fiber | YC | 0.00 ± 0.00 zA | 0.00 ± 0.00 zA | 0.00 ± 0.00 zA |
YRFP1 | 0.94 ± 0.03 yA | 0.93 ± 0.03 yAB | 0.92 ± 0.03 yB | |
YRFP2 | 1.10 ± 0.01 xA | 1.12 ± 0.01 xA | 1.10 ± 0.00 xA | |
Energy value (kcal 100 g−1 FW) | YC | 84.00 ± 0.50 zA | 83.79 ± 0.39 zA | 84.00 ± 0.50 xyA |
YRFP1 | 89.13 ± 2.58 yA | 87.18 ± 2.58 yAB | 86.00 ± 2.60 yB | |
YRFP2 | 96.12 ± 2.73 xA | 96.22 ± 2.73 xA | 97.10 ± 0.30 xA | |
CHO | YC | 4.93 ± 0.12 zA | 4.88 ± 0.10 zA | 4.94 ± 0.12 zA |
YRFP1 | 6.07 ± 0.30 yA | 5.84 ± 0.30 yA | 5.67 ± 0.31 yA | |
YRFP2 | 7.60 ± 0.30 xA | 7.73 ± 0.31 xA | 8.08 ± 0.05 xA | |
pH | YC | 4.62 ± 0.11 xA | 4.51 ± 0.01 xA | 4.46 ± 0.01 xA |
YRFP1 | 4.56 ± 0.01 xyA | 4.36 ± 0.01 yB | 4.09 ± 0.02 yC | |
YRFP2 | 7.60 ± 0.30 yA | 7.73 ± 0.30 zB | 8.08 ± 0.02 zC |
Parameters | Sample | Storage Period (Days) | ||
---|---|---|---|---|
1 | 14 | 28 | ||
Total polyphenolic compounds (mg GAE/100 g DW) | YC | 4.25 ± 0.50 zA | 3.82 ± 0.26 zA | 3.09 ± 0.57 zA |
YRFP1 | 11.99 ± 0.74 yA | 10.74 ± 0.68 yA | 9.49 ± 0.91 yA | |
YRFP2 | 16.42 ± 8.74 xA | 19.77 ± 0.93 xA | 18.84 ± 1.27 xA | |
Total flavonoids (mg CE/100 g DW) | YC | 0.00 ± 0.00 zA | 0.00 ± 0.00 zA | 0.00 ± 0.00 zA |
YRFP1 | 1.20 ± 0.26 yA | 0.87 ± 0.27 yAB | 0.57 ± 0.42 xyB | |
YRFP2 | 1.85 ± 0.29 xA | 1.42 ± 0.43 xB | 0.87 ± 0.26 xC | |
Total anthocyanins (mg/100 g DW) | YC | 0.00 ± 0.00 zA | 0.00 ± 0.00 zA | 0.00 ± 0.00 zA |
YRFP1 | 1.46 ± 0.64 yA | 1.05 ± 0.01 yAB | 0.59 ± 0.28 yB | |
YRFP2 | 2.65 ± 0.72 xA | 2.11 ± 0.05 xAB | 1.78 ± 0.10 xB | |
DPPH (μmol TE/100 g) | YC | 3.20 ± 0.21 zA | 2.24 ± 0.53 zB | 1.08 ± 0.41 zC |
YRFP1 | 9.41 ± 0.42 yA | 8.72 ± 0.68 yAB | 7.76 ± 0.32 yB | |
YRFP2 | 15.89 ± 0.91 xA | 14.72 ± 0.73 xB | 13.48 ± 0.84 xC |
Textural Parameters | Sample | Storage Period (Days) | ||
---|---|---|---|---|
1 | 14 | 28 | ||
Cohesiveness | YC | 0.29 ± 0.00 yA | 0.31 ± 0.00 zAB | 0.32 ± 0.00 yB |
YRFP1 | 0.33 ± 0.01 xyA | 0.34 ± 0.01 yAB | 0.37 ± 0.01 xyB | |
YRFP2 | 0.34 ± 0.01 xA | 0.36 ± 0.01 xB | 0.38 ± 0.01 xC | |
Springiness | YC | 0.50 ± 0.02 xA | 0.51 ± 0.02 xAB | 0.53 ± 0.02 xB |
YRFP1 | 0.30 ± 0.01 yA | 0.33 ± 0.01 yB | 0.36 ± 0.01 yC | |
YRFP2 | 0.24 ± 0.01 zA | 0.29 ± 0.00 zB | 0.31 ± 0.00 zC | |
Hardness, N | YC | 5.65 ± 0.00 zA | 5.66 ± 0.00 zA | 5.66 ± 0.00 zA |
YRFP1 | 7.50 ± 0.02 yA | 7.52 ± 0.02 yAB | 7.53 ± 0.02 yB | |
YRFP2 | 11.59 ± 0.02 xA | 11.61 ± 0.02 xAB | 11.63 ± 0.02 xB | |
Gumminess, N | YC | 1.63 ± 0.01 zA | 1.65 ± 0.01 zAB | 1.66 ± 0.01 zB |
YRFP1 | 2.74 ± 0.02 yA | 2.75 ± 0.02 yAB | 2.76 ± 0.02 yB | |
YRFP2 | 4.08 ± 0.01 xA | 4.10 ± 0.01 xAB | 4.11 ± 0.01 xB | |
Adhesiveness, mJ | YC | −2.51 ± 0.01 zA | −2.53 ± 0.01 zAB | −2.55 ± 0.01 xB |
YRFP1 | −6.72 ± 0.03 yA | −6.74 ± 0.03 yAB | −6.75 ± 0.03 yB | |
YRFP2 | −11.42 ± 0.02 xA | −11.45 ± 0.02 xAB | −11.47 ± 0.02 xB |
Parameters | Sample | Storage Period (Days) | ||
---|---|---|---|---|
1 | 14 | 28 | ||
L* | YC | 96.97 ± 0.26 xA | 96.40 ± 0.26 xAB | 95.98 ± 0.26 xB |
YRFP1 | 82.49 ± 0.72 yA | 81.29 ± 0.72 yB | 80.24 ± 0.72 yC | |
YRFP2 | 71.54 ± 0.96 zA | 70.84 ± 0.96 zAB | 70.46 ± 0.96 zB | |
a* | YC | −9.22 ± 0.09 zA | −8.75 ± 0.09 zB | −8.49 ± 0.09 zC |
YRFP1 | 6.23 ± 0.12 yA | 8.83 ± 0.12 yB | 10.53 ± 0.12 yC | |
YRFP2 | 12.14 ± 0.11 xA | 14.89 ± 0.11 xAB | 16.80 ± 0.11 xB | |
b* | YC | 17.55 ± 0.21 zA | 17.83 ± 0.21 zB | 18.21 ± 0.21 zC |
YRFP1 | 29.47 ± 0.26 yA | 29.77 ± 0.26 yB | 30.05 ± 0.26 yC | |
YRFP2 | 41.05 ± 0.16 xA | 41.24 ± 0.16 xAB | 41.33 ± 0.16 xB | |
Chroma | YC | 19.83 ± 0.22 zA | 19.86 ± 0.22 zA | 20.09 ± 0.22 zA |
YRFP1 | 30.12 ± 0.25 yA | 31.05 ± 0.25 yAB | 31.84 ± 0.25 yB | |
YRFP2 | 42.81 ± 0.17 xA | 43.84 ± 0.17 xA | 44.61 ± 0.17 xA | |
Hue angle | YC | 178.91 ± 0.00 xA | 178.89 ± 0.00 xB | 178.87 ± 0.00 xC |
YRFP1 | 1.36 ± 0.00 yA | 1.28 ± 0.00 yB | 1.23 ± 0.00 yC | |
YRFP2 | 1.28 ± 0.00 zA | 1.22 ± 0.00 zAB | 1.18 ± 0.00 zB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Postolache, A.N.; Veleșcu, I.D.; Stoica, F.; Crivei, I.C.; Arsenoaia, V.N.; Usturoi, M.G.; Constantinescu, C.G.; Lipșa, F.D.; Frunză, G.; Simeanu, D.; et al. A Clean-Label Formulation of Fortified Yogurt Based on Rhododendron Flower Powder as a Functional Ingredient. Foods 2023, 12, 4365. https://doi.org/10.3390/foods12234365
Postolache AN, Veleșcu ID, Stoica F, Crivei IC, Arsenoaia VN, Usturoi MG, Constantinescu CG, Lipșa FD, Frunză G, Simeanu D, et al. A Clean-Label Formulation of Fortified Yogurt Based on Rhododendron Flower Powder as a Functional Ingredient. Foods. 2023; 12(23):4365. https://doi.org/10.3390/foods12234365
Chicago/Turabian StylePostolache, Alina Narcisa, Ionuț Dumitru Veleșcu, Florina Stoica, Ioana Cristina Crivei, Vlad Nicolae Arsenoaia, Marius Giorgi Usturoi, Cristina Gabriela Constantinescu (Pop), Florin Daniel Lipșa, Gabriela Frunză, Daniel Simeanu, and et al. 2023. "A Clean-Label Formulation of Fortified Yogurt Based on Rhododendron Flower Powder as a Functional Ingredient" Foods 12, no. 23: 4365. https://doi.org/10.3390/foods12234365
APA StylePostolache, A. N., Veleșcu, I. D., Stoica, F., Crivei, I. C., Arsenoaia, V. N., Usturoi, M. G., Constantinescu, C. G., Lipșa, F. D., Frunză, G., Simeanu, D., & Rațu, R. N. (2023). A Clean-Label Formulation of Fortified Yogurt Based on Rhododendron Flower Powder as a Functional Ingredient. Foods, 12(23), 4365. https://doi.org/10.3390/foods12234365