Discrimination of Maturity Stages of Cabernet Sauvignon Wine Grapes Using Visible–Near-Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Vis-NIR Reflectance Spectral Data Obtainment
2.3. Measurement of the Physicochemical Parameters
2.3.1. Grape Pretreatment
2.3.2. SSC and TA Determination
2.3.3. TP and TN Measurements
2.4. Chemometrics and Statistical Analyses
2.4.1. Spectral Clustering
2.4.2. Data Partition
2.4.3. Preprocessing Transformations
2.4.4. Variables Selection
2.4.5. Modeling Methods
2.4.6. Model Evaluation
3. Results
3.1. Reference Results of the Grape Samples
3.2. Spectral Feature
3.3. Discrimination Models on the Full Spectra
3.4. Effective Wavelength Selection
3.5. Discrimination Models on the Selected Spectra
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Park, E.; Luo, Y.; Marine, S.C.; Everts, K.L.; Micallef, S.A.; Bolten, S.; Stommel, J. Consumer preference and physicochemical evaluation of organically grown melons. Postharvest Biol. Technol. 2018, 141, 77–85. [Google Scholar] [CrossRef]
- Yang, S.-H.; Zheng, Y.-J.; Liu, X.-X.; Zhang, T.-G.; Zhang, X.-S.; Xu, L.-M. Cabernet Gernischt Maturity Determination Based on Near-Ground Multispectral Figures by Using UAVs. Spectrosc. Spectr. Anal. 2021, 41, 3220–3226. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Yao, Y.; Du, L.X.; Qiao, J.; Ning, Z.H.; Zhou, J.M.; Li, X.W. Quality Analysis and Optimal Harvest Period of Cabernet Sauvignon in Xinjiang Based on Principal Compoent Analysis. Sci. Technol. Food Ind. 2020, 41, 227–232. [Google Scholar] [CrossRef]
- Jediyi, H.; Naamani, K.; Elkoch, A.A.; Dihazi, A.; El Fels, A.E.A.; Arkize, W. First study on technological maturity and phenols composition during the ripeness of five Vitis vinifera L grape varieties in Morocco. Sci. Hortic. 2019, 246, 390–397. [Google Scholar] [CrossRef]
- Zhu, M.; Huang, D.; Hu, X.-J.; Tong, W.-H.; Han, B.-L.; Tian, J.-P.; Luo, H.-B. Application of hyperspectral technology in detection of agricultural products and food: A Review. Food Sci. Nutr. 2020, 8, 5206–5214. [Google Scholar] [CrossRef]
- Duckena, L.; Alksnis, R.; Erdberga, I.; Alsina, I.; Dubova, L.; Duma, M. Non-Destructive Quality Evaluation of 80 Tomato Varieties Using Vis-NIR Spectroscopy. Foods 2023, 12, 1990. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, C.; Sun, Q.; Liu, Y.; Yang, Y.; Zhuang, Z. Prediction of Solid Soluble Content of Green Plum Based on Improved CatBoost. Agriculture 2023, 13, 1122. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Zhan, B.; Wang, Z.; Jiang, Y. Determination of SSC in pears by establishing the multi-cultivar models based on visible-NIR spectroscopy. Infrared Phys. Technol. 2019, 102, 103066. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, C.; Liu, F.; Kong, W.; He, Y.; Lou, B. Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector machine. J. Food Eng. 2016, 179, 11–18. [Google Scholar] [CrossRef]
- Fernandez-Novales, J.; Garde-Cerdan, T.; Tardaguila, J.; Gutierrez-Gamboa, G.; Pilar Perez-Alvarez, E.; Paz Diago, M. Assessment of amino acids and total soluble solids in intact grape berries using contactless Vis and NIR spectroscopy during ripening. Talanta 2019, 199, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Feng, L.; Song, D.; Tu, K.; Peng, J.; Pan, L. Grading and Sorting of Grape Berries Using Visible-Near Infrared Spectroscopy on the Basis of Multiple Inner Quality Parameters. Sensors 2019, 19, 2600. [Google Scholar] [CrossRef] [PubMed]
- Buchmann, N.B.; Josefsson, H.; Cowe, I.A. Performance of European artificial neural network (ANN) calibrations for moisture and protein in cereals using the Danish near-infrared transmission (NIT) network. Cereal Chem. 2001, 78, 572–577. [Google Scholar] [CrossRef]
- Tsakiridis, N.L.; Samarinas, N.; Kokkas, S.; Kalopesa, E.; Tziolas, N.; Zalidis, G.C. In situ grape ripeness estimation via hyperspectral imaging and deep autoencoders. Comput. Electron. Agric. 2023, 212, 108098. [Google Scholar] [CrossRef]
- Silva, R.; Gramaxo Freitas, O.; Melo-Pinto, P. Boosting the performance of SOTA convolution-based networks with dimensionality reduction: An application on hyperspectral images of wine grape berries. Intell. Syst. Appl. 2023, 19, 200252. [Google Scholar] [CrossRef]
- Zheng, Y.J.; Cao, Y.C.; Yang, J.; Xie, L.J. Enhancing model robustness through different optimization methods and 1-D CNN to eliminate the variations in size and detection position for apple SSC determination. Postharvest Biol. Technol. 2023, 205, 112513. [Google Scholar] [CrossRef]
- Wei, X.J.; Xie, F.X.; Wang, K.; Song, J.; Bai, Y. A study on Shine-Muscat grape detection at maturity based on deep learning. Sci. Rep. 2023, 13, 4587. [Google Scholar] [CrossRef]
- Gurunathan, K.; Bharathkumar, V.; Meeran, M.H.A.; Hariprasath, K.; Jidendiran, R. Classification of Cultivars Employing the Alexnet Technique Using Deep Learning. In Proceedings of the 9th International Conference on Biosignals, Images, and Instrumentation, ICBSII 2023, Chennai, India, 16–17 March 2023. [Google Scholar]
- Costa, D.d.S.; Oliveros Mesa, N.F.; Freire, M.S.; Ramos, R.P.; Teruel Mederos, B.J. Development of predictive models for quality and maturation stage attributes of wine grapes using vis-nir reflectance spectroscopy. Postharvest Biol. Technol. 2019, 150, 166–178. [Google Scholar] [CrossRef]
- Tugnolo, A.; Giovenzana, V.; Beghi, R.; Grassi, S.; Alamprese, C.; Casson, A.; Casiraghi, E.; Guidetti, R. A diagnostic visible/near infrared tool for a fully automated olive ripeness evaluation in a view of a simplified optical system. Comput. Electron. Agric. 2021, 180, 105887. [Google Scholar] [CrossRef]
- Podili, B.; Raghukanth, S.T.G. Seismic Zone Map for India Based on Cluster Analysis of Uniform Hazard Response Spectra. Pure Appl. Geophys. 2023, 180, 3269–3288. [Google Scholar] [CrossRef]
- Daniels, A.J.; Poblete-Echeverria, C.; Opara, U.L.; Nieuwoudt, H.H. Measuring Internal Maturity Parameters Contactless on Intact Table Grape Bunches Using NIR Spectroscopy. Front. Plant Sci. 2019, 10, 1517. [Google Scholar] [CrossRef] [PubMed]
- Arnous, A.; Makris, D.P.; Kefalas, P. Correlation of pigment and flavanol content with antioxidant properties in selected aged regional wines from Greece. J. Food Compos. Anal. 2002, 15, 655–665. [Google Scholar] [CrossRef]
- Sarneckis, C.J.; Dambergs, R.G.; Jones, P.; Mercurio, M.; Herderich, M.J.; Smith, P.A. Quantification of condensed tannins by precipitation with methyl cellulose: Development and validation of an optimised tool for grape and wine analysis. Aust. J. Grape Wine Res. 2006, 12, 39–49. [Google Scholar] [CrossRef]
- Usha, S.G.A.; Vasuki, S. Improved segmentation and change detection of multi-spectral satellite imagery using graph cut based clustering and multiclass SVM. Multimed. Tools Appl. 2018, 77, 15353–15383. [Google Scholar] [CrossRef]
- Baek, M.; Kim, C. A review on spectral clustering and stochastic block models. J. Korean Stat. Soc. 2021, 50, 818–831. [Google Scholar] [CrossRef]
- Wen, G.; Zhu, Y.; Chen, L.; Zhang, S. One-step spectral rotation clustering with balanced constrains. World Wide Web-Internet Web Inf. Syst. 2022, 25, 259–280. [Google Scholar] [CrossRef]
- Ding, S.; Jia, H.; Zhang, L.; Jin, F. Research of semi-supervised spectral clustering algorithm based on pairwise constraints. Neural Comput. Appl. 2014, 24, 211–219. [Google Scholar] [CrossRef]
- Galvao, R.K.H.; Araujo, M.C.U.; José, G.E.; Pontes, M.J.C.; Silva, E.C.; Saldanha, T.C.B. A method for calibration and validation subset partitioning. Talanta 2005, 67, 736–740. [Google Scholar] [CrossRef]
- Shao, Y.Y.; Shi, Y.K.; Qin, Y.D.; Xuan, G.T.; Li, J.; Li, Q.K.; Yang, F.J.; Hu, Z.C. A new quantitative index for the assessment of tomato quality using Vis-NIR hyperspectral imaging. Food Chem. 2022, 386, 132864. [Google Scholar] [CrossRef]
- Tian, H.; Zhang, L.N.; Li, M.; Wang, Y.; Sheng, D.G.; Liu, J.; Wang, C.M. Weighted SPXY method for calibration set selection for composition analysis based on near-infrared spectroscopy. Infrared Phys. Technol. 2018, 95, 88–92. [Google Scholar] [CrossRef]
- Nawar, S.; Buddenbaum, H.; Hill, J.; Kozak, J.; Mouazen, A.M. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil Tillage Res. 2016, 155, 510–522. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Wang, J.; Tian, T.; Wang, H.; Cui, J.; Zhu, Y.; Zhang, W.; Tong, X.; Zhou, T.; Yang, Z.; Sun, J. Estimating cotton leaf nitrogen by combining the bands sensitive to nitrogen concentration and oxidase activities using hyperspectral imaging. Comput. Electron. Agric. 2021, 189, 106390. [Google Scholar] [CrossRef]
- He, Y.; Zhao, Y.; Zhang, C.; Li, Y.; Bao, Y.; Liu, F. Discrimination of Grape Seeds Using Laser-Induced Breakdown Spectroscopy in Combination with Region Selection and Supervised Classification Methods. Foods 2020, 9, 199. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Song, Q.M.; Liu, Y.J.; Zeng, T.H.; Liu, S.Y.; Jie, D.F.; Wei, X. Hyperspectral imaging-based detection of soluble solids content of loquat from a small sample. Postharvest Biol. Technol. 2023, 204, 112454. [Google Scholar] [CrossRef]
- Tian, S.J.; Wang, J.P.; Xu, H.R. Firmness measurement of kiwifruit using a self-designed device based on acoustic vibration technology. Postharvest Biol. Technol. 2022, 187. [Google Scholar] [CrossRef]
- Bin, J.; Ai, F.; Fan, W.; Zhou, J.; Li, X.; Tang, W.; Liang, Y. An efficient variable selection method based on variable permutation and model population analysis for multivariate calibration of NIR spectra. Chemom. Intell. Lab. Syst. 2016, 158, 1–13. [Google Scholar] [CrossRef]
- Kumar, K. Competitive adaptive reweighted sampling assisted partial least square analysis of excitation-emission matrix fluorescence spectroscopic data sets of certain polycyclic aromatic hydrocarbons. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2021, 244, 118874. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef]
- Arya, C.M.; Bedi, S.S. Survey on SVM and their application in image classification. Int. J. Inf. Technol. 2021, 13, 1–11. [Google Scholar]
- Zhang, X.; Sun, J.; Li, P.; Zeng, F.; Wang, H. Hyperspectral detection of salted sea cucumber adulteration using different spectral preprocessing techniques and SVM method. Lwt-Food Sci. Technol. 2021, 152, 112295. [Google Scholar] [CrossRef]
- Kumar, A.; Sodhi, S.S. Classification of data on stacked autoencoder using modified sigmoid activation function. J. Intell. Fuzzy Syst. 2023, 44, 1–18. [Google Scholar] [CrossRef]
- Xu, M.; Sun, J.; Yao, K.; Cai, Q.; Shen, J.; Tian, Y.; Zhou, X. Developing deep learning based regression approaches for prediction of firmness and pH in Kyoho grape using Vis/NIR hyperspectral imaging. Infrared Phys. Technol. 2022, 120, 104003. [Google Scholar] [CrossRef]
- Lorrain, B.; Ky, I.; Pechamat, L.; Teissedre, P.-L. Evolution of Analysis of Polyhenols from Grapes, Wines, and Extracts. Molecules 2013, 18, 1076–1100. [Google Scholar] [CrossRef]
- Musingarabwi, D.M.; Nieuwoudt, H.H.; Young, P.R.; Eyeghe-Bickong, H.A.; Vivier, M.A. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis. Food Chem. 2016, 190, 253–262. [Google Scholar] [CrossRef]
- Nogales-Bueno, J.; Miguel Hernandez-Hierro, J.; Jose Rodriguez-Pulido, F.; Jose Heredia, F. Determination of technological maturity of grapes and total phenolic compounds of grape skins in red and white cultivars during ripening by near infrared hyperspectral image: A preliminary approach. Food Chem. 2014, 152, 586–591. [Google Scholar] [CrossRef]
- Raul Martinez-Sandoval, J.; Nogales-Bueno, J.; Jose Rodriguez-Pulido, F.; Miguel Hernandez-Hierro, J.; Alberto Segovia-Quintero, M.; Enrique Martinez-Rosas, M.; Jose Heredia, F. Screening of anthocyanins in single red grapes using a non-destructive method based on the near infrared hyperspectral technology and chemometrics. J. Sci. Food Agric. 2016, 96, 1643–1647. [Google Scholar] [CrossRef]
- Li, J.; Ma, T.; Bao, S.; Yin, D.; Ge, Q.; Li, C.; Fang, Y.; Sun, X. Suitable crop loading: An effective method to improve “Shine Muscat” grape quality. Food Chem. 2023, 424, 136451. [Google Scholar] [CrossRef]
- Coombe, B.G.; McCarthy, M.G. Dynamics of grape berry growth and physiology of ripening. Aust. J. Grape Wine Res. 2000, 6, 131–135. [Google Scholar] [CrossRef]
- Xiao, H.; Li, A.; Li, M.; Sun, Y.; Tu, K.; Wang, S.; Pan, L. Quality assessment and discrimination of intact white and red grapes from Vitis vinifera L. at five ripening stages by visible and near-infrared spectroscopy. Sci. Hortic. 2018, 233, 99–107. [Google Scholar] [CrossRef]
- Fatchurrahman, D.; Nosrati, M.; Amodio, M.L.; Chaudhry, M.M.A.; de Chiara, M.L.V.; Mastrandrea, L.; Colelli, G. Comparison Performance of Visible-NIR and Near-Infrared Hyperspectral Imaging for Prediction of Nutritional Quality of Goji Berry (Lycium barbarum L.). Foods 2021, 10, 1676. [Google Scholar] [CrossRef]
- Fan, S.; Wang, Q.; Tian, X.; Yang, G.; Xia, Y.; Li, J.; Huang, W. Non-destructive evaluation of soluble solids content of apples using a developed portable Vis/NIR device. Biosyst. Eng. 2020, 193, 138–148. [Google Scholar] [CrossRef]
- Lee, A.; Shim, J.; Kim, B.; Lee, H.; Lim, J. Non-destructive prediction of soluble solid contents in Fuji apples using visible near-infrared spectroscopy and various statistical methods. J. Food Eng. 2022, 321, 110945. [Google Scholar] [CrossRef]
- Luo, W.; Tian, P.; Fan, G.; Dong, W.; Zhang, H.; Liu, X. Non-destructive determination of four tea polyphenols in fresh tea using visible and near-infrared spectroscopy. Infrared Phys. Technol. 2022, 123, 104037. [Google Scholar] [CrossRef]
- Xiao, H. Detection of Grape Berries Based on Visible/Near Infrared Spectroscopy and Development of Portable Equipment. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2020. [Google Scholar]
- Lu, B.; Liu, N.; Li, H.; Yang, K.; Hu, C.; Wang, X.; Li, Z.; Shen, Z.; Tang, X. Quantitative determination and characteristic wavelength selection of available nitrogen in coco-peat by NIR spectroscopy. Soil Tillage Res. 2019, 191, 266–274. [Google Scholar] [CrossRef]
- Yang, J.; Xu, J.F.; Zhang, X.L.; Wu, C.Y.; Lin, T.; Ying, Y.B. Deep learning for vibrational spectral analysis: Recent progress and a practical guide. Anal. Chim. Acta 2019, 1081, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Ping, F.; Yang, J.; Zhou, X.; Su, Y.; Ju, Y.; Fang, Y.; Bai, X.; Liu, W. Quality Assessment and Ripeness Prediction of Table Grapes Using Visible-Near-Infrared Spectroscopy. Foods 2023, 12, 2364. [Google Scholar] [CrossRef]
- Campos, I.; Bataller, R.; Armero, R.; Manuel Gandia, J.; Soto, J.; Martinez-Manez, R.; Gil-Sanchez, L. Monitoring grape ripeness using a voltammetric electronic tongue. Food Res. Int. 2013, 54, 1369–1375. [Google Scholar] [CrossRef]
- Armstrong, C.E.J.; Gilmore, A.M.; Boss, P.K.; Pagay, V.; Jeffery, D.W. Machine learning for classifying and predicting grape maturity indices using absorbance and fluorescence spectra. Food Chem. 2023, 403, 134321. [Google Scholar] [CrossRef]
- Lin, P.; Li, X.L.; Chen, Y.M.; He, Y. A Deep Convolutional Neural Network Architecture for Boosting Image Discrimination Accuracy of Rice Species. Food Bioprocess Technol. 2018, 11, 765–773. [Google Scholar] [CrossRef]
- Wu, N.; Zhang, C.; Bai, X.; Du, X.; He, Y. Discrimination of Chrysanthemum Varieties Using Hyperspectral Imaging Combined with a Deep Convolutional Neural Network. Molecules 2018, 23, 2831. [Google Scholar] [CrossRef] [PubMed]
- Basile, T.; Marsico, A.D.; Perniola, R. Use of Artificial Neural Networks and NIR Spectroscopy for Non-Destructive Grape Texture Prediction. Foods 2022, 11, 281. [Google Scholar] [CrossRef] [PubMed]
Layers | Parameters | Activation | Additional Processing |
---|---|---|---|
Convolution-1D(1) | Kernel number = 64 | Relu | Batch normalization |
Kernel size = 2, strides = 2 | |||
Maxpooling | Size = 3, Strides = 1 | -- | -- |
Convolution-1D(2) | Kernel number = 32 | Relu | Batch normalization |
Kernel size = 2, strides = 2 | |||
Dense(1) | Neurons = 512(128) | -- | Batch normalization |
Drop out = 0.5 | |||
Dense(2) | Neurons = 64(32) | -- | Batch normalization |
Drop out = 0.5 | |||
Dense(3) | Neurons = 5 | -- | -- |
Ripening Stage | SSC (°Brix) | TA (g/L) | SSC/TA | TP (mg/g) | TN (mg/g) |
---|---|---|---|---|---|
I | 11.93 ± 3.07 e | 12.91 ± 4.49 a | 0.92 ± 0.59 d | 62.12 ± 8.57 a | 48.60 ± 11.17 a |
II | 14.84 ± 1.24 d | 5.92 ± 1.55 b | 2.51 ± 0.77 c | 45.79 ± 5.136 c | 30.64 ± 5.14 b |
III | 15.71 ± 1.27 c | 3.76 ± 0.79 c | 4.18 ± 1.01 b | 34.13 ± 3.08 e | 14.96 ± 3.53 e |
IV | 17.78 ± 0.65 b | 3.39 ± 0.35 d | 5.25 ± 0.56 a | 40.86 ± 2.93 d | 19.12 ± 3.21 d |
V | 18.71 ± 0.71 a | 3.42 ± 0.38 d | 5.47 ± 0.66 a | 49.44 ± 3.65 b | 25.49 ± 3.16 c |
Stages | MSC | MSC-CARS | p-Value | ||
---|---|---|---|---|---|
T | F | T | F | ||
I | 13 | 5 | 15 | 3 | 0.691 (Fisher) |
II | 20 | 1 | 20 | 1 | 1 |
III | 36 | 6 | 39 | 3 | 0.48 |
IV | 43 | 8 | 50 | 1 | 0.036 |
V | 17 | 1 | 14 | 4 | 0.338 (Fisher) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Liu, W.; Li, K.; Lu, D.; Su, Y.; Ju, Y.; Fang, Y.; Yang, J. Discrimination of Maturity Stages of Cabernet Sauvignon Wine Grapes Using Visible–Near-Infrared Spectroscopy. Foods 2023, 12, 4371. https://doi.org/10.3390/foods12234371
Zhou X, Liu W, Li K, Lu D, Su Y, Ju Y, Fang Y, Yang J. Discrimination of Maturity Stages of Cabernet Sauvignon Wine Grapes Using Visible–Near-Infrared Spectroscopy. Foods. 2023; 12(23):4371. https://doi.org/10.3390/foods12234371
Chicago/Turabian StyleZhou, Xuejian, Wenzheng Liu, Kai Li, Dongqing Lu, Yuan Su, Yanlun Ju, Yulin Fang, and Jihong Yang. 2023. "Discrimination of Maturity Stages of Cabernet Sauvignon Wine Grapes Using Visible–Near-Infrared Spectroscopy" Foods 12, no. 23: 4371. https://doi.org/10.3390/foods12234371
APA StyleZhou, X., Liu, W., Li, K., Lu, D., Su, Y., Ju, Y., Fang, Y., & Yang, J. (2023). Discrimination of Maturity Stages of Cabernet Sauvignon Wine Grapes Using Visible–Near-Infrared Spectroscopy. Foods, 12(23), 4371. https://doi.org/10.3390/foods12234371